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Boosting search by rare events
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Randomized search algorithms for hard combinatorial problems exhibit a large variability of per-
formances. We study the different types of rare events which occur in such out-of-equilibrium
stochastic processes and we show how they cooperate in determining the final distribution of run-
ning times. As a byproduct of our analysis we show how search algorithms are optimized by random
restarts.
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Recent years have witnessed an increasing convergence
of research themes coming from out-of-equilibrium statis-
tical physics and computer science or discrete mathemat-
ics [1, 2, 3]. For instance, giving a ’static’ characteriza-
tion of systems displaying an extremely slow dynamics
is a central problem both in computer science [4] and
in spin glass theory [5]. The results in these fields are
strongly focused on the typical properties of large ran-
dom systems. This approach is justified as long as the
quantities of interest concentrate in probability around
some typical value when the size diverges (the so called
self-averaging property).

In this letter we provide an analytical and numerical
study of different types of rare events which occur in the
time evolution of randomized search algorithms for hard
optimization problems. As a byproduct of our analy-
sis, we find a general picture for understanding and opti-
mizing the introduction of restarts in randomized search
algorithms. This has recently proven to be an highly
effective technique for improving such algorithms [6].

It is a well known fact (and a basic problem for both
theoretical and applied computer science) that the so
called NP-complete [7] combinatorial decision problems
might require computational resources that grow expo-
nentially with the number of variables N needed for their
encoding. However combinatorial search methods often
exhibit remarkable variability in performance: it is not
uncommon to observe a combinatorial method “hang” on
a given instance of a problem, whereas a different heuris-
tic algorithm, or even just another stochastic run, solves
the instance quickly.

With the aim of clarifying such behavior, in the re-
cent years there has been an intense research activity on
randomly generated hard combinatorial problems which
has lead to the identification of non-trivial problem en-
sembles [8]. Particularly representative and widely stud-
ied examples are satisfiability of random Boolean expres-
sions, vertex coloring and covering of random graphs and
number partitioning [1].

This type of setting gives us much more freedom than
in a standard physical experiment. Indeed an algorithm
can be run an exponential number of times with each
run in turn possibly taking exponential time. In such a

situation rare events may have dramatic effects and com-
pletely determine the total computational time and the
outcome of such random-restart experiments. We will
show that there exist distinct sources of hardness fluc-
tuations, static (i.e. intrinsic) and dynamic (algorithm-
dependent), which account for the variability of resolu-
tions times.

While our approach is general and applies to a wide
class of problems, in what follows we focus on the (NP-
complete) vertex cover (VC) problem restricted over ran-
dom graphs. The choice of VC is dictated mainly by its
relative simplicity. As expected, extensive numerical ex-
periments match the analytical predictions.

The action of a backtrack algorithm on combinatorial
problems resembles decimation flows in statistical me-
chanics [10]. The algorithm proceeds by choosing at ran-
dom one or more variables at a time and assigning their
values according to some heuristics. The problem is then
turned into a sub-problem in which the assigned vari-
ables act as correlated quenched randomness. This evo-
lution can be described macroscopically by keeping track
of a proper set of average quantities ~α (e.g. the ratio of
the number of non-satisfied constraints to the number of
non-assigned variables). The sub-instance generated by
fixing a fraction t of the N variables may however not
have any solution (this happens because the algorithm
made a wrong assignment at an earlier stage). Sooner
or later the algorithm detects the inexistence of solutions
compatible with the variables assigned so far and begins
a backtrack correction process which may take an expo-
nential number of steps to correct early mistakes.

The fraction t of assigned variables acts therefore
as a control parameter and the system undergoes a
SAT/UNSAT phase transition (i.e. a transition from a
satisfiable to an un-satisfiable instance of the problem)
when t crosses some critical value tc [10]. This corre-
sponds to the trajectory ~α(t) crossing a critical surface
in the static phase diagram at ~αc ≡ ~α(tc). For simple
enough randomized algorithms it is possible to compute
the size eNΩ(~α) [10, 11] of the backtracking tree for an
UNSAT instance characterized by the parameters ~α. The
computational complexity of the algorithm is therefore
given by exp[(1− tc)Ω(~αc)N ].
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How do rare events enter this scenario and how to take
advantage of their presence? There are at least two com-
peting phenomena involving large deviations which affect
the resolution time.

(I) Let us assume that the trajectory ~α(t) follows
the most probable line. Once the SAT/UNSAT criti-
cal line is crossed there still exists a small probability
exp[−N (1− t)ψ(~α(t))] of having generated a subproblem
which is solvable. The deeper one goes into the UNSAT
phase the smaller will be such probability. On the other
hand such a rare event corresponds to a reduction of or-
der N of the size of the problem and, therefore, to an
exponential reduction of the size exp[N (1− t)Ω(~α(t))] of
the backtracking tree.

This trade-off can be exploited in a random restart
algorithm: we interrupt the search after eNτR backtrack-
ing steps and re-run it (with different random numbers).
The probability of finding a solution in one of such runs
is given by PS ≈ exp[−N mint(1 − t)ψ(~α(t))], where
t is constrained by the fact that the size of the back-
tracking tree must be smaller than eNτR : this implies
(1 − t)Ω(~α(t)) ≤ τR. Assuming that different stochastic
runs quickly lead to uncorrelated sub-problems, a solu-
tion is found after NR ≈ 1/PR restarts. The complexity
of the algorithm is therefore exp[Nτ (τR)], where

τ (τR) = τR + min
t

(1− t)ψ(~α(t)) , (1)

and where the minimizing value of t must satisfy

(1− t)Ω(~α(t)) ≤ τR. (2)

(II) The above scenario is however largely incomplete.
Indeed there exist another, dynamical, source of fluctua-
tions: O(1) fluctuations with respect to the typical tra-
jectory (this effect has been studied and pointed out to
us by S. Cocco and R. Monasson [17]). At time t the
macroscopic parameters take the value ~α with probabil-
ity exp[−NIt(~α)] (with It(~α) = 0 along the typical tra-
jectory ~α = ~α(t)). Again, such a rare event implies an
exponential change in the computational complexity, and
the possible gain can be exploited by the random restart
algorithm. Equation (1) must be properly generalized.
We get

τ (τR) = τR + min
t,~α
{It(~α) + (1− t)ψ(~α)} , (3)

always with the constraint Eq.(2). These are not the
only sources of fluctuations but they give a quite accurate
picture of the phenomenon.

Let’s apply the above scheme to the case of VC, which
is at the same time NP-complete [7] and very easy to
define: Consider an undirected graph G = (V,E) with N
vertices i ∈ V = {1, 2, ..., N} and L edges (i, j) ∈ E ⊂
V × V . The problem consists in distributing X covering
marks over the vertices in such a way that every edge
of the graph is covered, that is it has at least one of its

ending vertices which is marked. If such covering can be
found the graph is said to be coverable (COV), otherwise
it is uncoverable (UNCOV).

A non trivial ensemble of graphs which captures some
relevant computational features of VC at the level of typ-
ical or average cases, is the set of random graphs GN,L
with N vertices and L edges (and flat probability distri-
bution). Similarly to other random NP-complete prob-
lems [1], a threshold phenomena occurs as the control pa-
rameter X is changed[15]. For a given average connectiv-
ity c = 2L/(N−1), when the number X = xN of covering
marks is lowered the model undergoes a COV/UNCOV
transition at some critical density of covers xc(c) for
N →∞. Statistical mechanics methods allow for a pre-
cise estimate of xc(c) [12] and probabilistic tools provide
rigorous lower and upper bounds for such a threshold
[13, 14]. For x > xc(c), vertex covers of size Nx exist
with probability one, for x < xc(c) the available cov-
ering marks are not sufficient. The statistical mechan-
ics analysis is performed by mapping the optimization
problem onto a zero temperature disordered system with
Hamiltonian

H({n}) =
∑

i

δni,0 , (4)

where ni ∈ {0, 1} (ni = 0 if a mark is put on vertex i) and
satisfy an excluded volume constraint: if (ij) ∈ G then
either ni = 0 or nj = 0. The ground state energy EGS
of the model is the minimum number of marks needed
for covering the graph: for X ≥ EGS the graph is COV,
while for X < EGS it is UNCOV.

It is known experimentally and analytically for some
algorithms [11] that the typical computational cost, given
e.g. by the number of visited decision nodes in the back-
tracking tree, becomes exponential for initial conditions
in a region close or below xc(c), while it remains linear
well inside the coverable phase, x > xc(c). This easy-
hard scenario characterizes the typical-case complexity
pattern found in other NP-complete random ensembles
[8].

We consider the following backtrack algorithm [9].
During the computation, a vertices can be covered, un-
covered or just free, meaning that the algorithm has not
yet assigned any value to that vertex. Here is the re-
cursive procedure: The algorithm chooses a vertex i at
random among those which are free (at t = 0 all vertices
are free). If i has neighboring vertices which are either
free or uncovered, then the vertex i is declared covered
first. In case i has only covered neighbors, the vertex
is declared uncovered. The process continues unless the
number of covered vertices exceeds Nx. If the algorithm
backtracks, then the opposite choice is taken for the ver-
tex i unless this corresponds to declaring uncovered a
vertex whose neighbors are all uncovered. The algorithm
halts if it finds a solution (and declares the graph to be
COV) or after exploring all the search tree (in this case



3

it declares the graph to be UNCOV).
In order to study the algorithm we need to follow the

variables X,N,L which become time dependent. In one
time step (T → T + 1), the probability for a change
L → L + ∆L in the number of links and X → X + ∆X
in the number of available covering marks reads

P∆L,∆X = e−c
[
δ∆X,0δ∆L,0 +

∞∑

k=1

ck

k!
δ∆X,−1δ∆L,−k

]
. (5)

This defines a Markov process in the space (X,GN,L)
which mimics the effects of the algorithm. We want to
iterate the above step ∆T times and compute the cor-
responding transition probability. Let us introduce the
rescaled time t = T/N (i.e. the fraction of assigned vari-
ables) and the macroscopic time dependent parameters
c(t) = 2LT/NT and x(t) = XT/NT (which we denoted
collectively by ~α in the general description of our ap-
proach). Due to the Markovian structure of this process,
the probability for a trajectory ~α(t) ≡ (c(t), x(t)) can be
written in a path integral form. To the leading order we
get P [c, x] =

∫
Ds exp{−N

∫
dtLt(c, x, s)}, where

Lt(c, x, s) = − i
2s∂t[(1− t)c] + (− ˙̃x) log(− ˙̃x)

+(1 + ˙̃x) log(1 + ˙̃x) + ˙̃x log
(
exp(ceis) − 1

)
+ c , (6)

where we used the shorthand: x̃(t) ≡ (1 − t)x(t). The
transition probability Pt1(c0, x0→ c1, x1) is given by the
corresponding constrained path-integral. Such an inte-
gral can be computed by saddle-point, leading to an ex-
plicit formula for the trajectories:

c(t) =
c0

1− t −
2

B(1 − t)

∫ eB

eB(1−t)
dζ

log ζ

ζ −A , (7)

x(t) =
x0 − t
1− t −

A − 1

AB(1 − t) log

{
1− Ae−B

1− Ae−B(1−t)

}
,(8)

where the two integration constants (A and B) must be
computed from the conditions c(t1) = c1, x(t1) = x1.

The large deviation functional is It1(c1, x1) =
∫ t1

0 dtLt(·),
where the integral is computed along the trajectory
(7),(8). For A = 0 and B = c0 we recover the typical
trajectory [16] and we get It(c, x) = 0. As shown in Fig.
1, numerical simulation are in remarkable agreement with
the analytical predictions.

A subgraph generated according to the process de-
scribed above can be still COV (with an exponentially
small probability) after the trajectory ~α(t) = (c(t), x(t))
has entered the UNSAT phase (i.e. after x(t) < xc(c(t))).
Repeated restarts can exploit this rare event. The size
exp[N (1 − t)Ω(~α(t))] of the backtrack tree at any point
in the UNCOV region can be computed analytically [11]
and used in Eq.(2). Hence, in order to evaluate Eq.(3),
we just need to compute the probability of being COV in
the UNCOV region, that is we need to know the proba-
bility distribution of the ground state energy of the model
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FIG. 1: Dynamical rare events. We consider the probability
Pt(x) that, after Nt steps we are left with Nx marks, and
we plot It(x) = − logPt(x)/N . The continuous line is the
theoretical prediction It(x) = minc It(c, x), while the sym-
bols are numerical results for N = 100 (empty circles), 200
(squares), 300 (stars) and 400 (full circles). We used the the
initial condition c0 = 2, x0 = 0.5, and t = 0.5.

(4). This computation can be carried over by the replica
method. We notice that the replicated partition function
averaged over the disorder reads

〈Zn〉 →
∫ ∞

0

dP (EGS) e−ωEGS , (9)

where one takes the zero temperature limit β →∞ keep-
ing ω ≡ nβ fixed. As N →∞, 〈Zn〉 ∼ exp[−Nφ(ω)] and
P (EGS) ∼ exp[−Nψ(x)], where x = EGS/N . We get
therefore φ(ω) = ψ(x) + ωx|ω=−∂xψ.

The small ω behavior of φ(ω) yields the typical ground
state energy and its small fluctuations. The knowledge of
the whole function φ(ω) gives the large deviation proper-
ties of the ground state energy. In general ψ(x) is convex
and has its unique zero at the typical ground state energy
x = xc(c). The probability that a graph in the ensemble
is coverable with X = Nx < Nxc(c) marks is given by
exp[−Nψ(x)]. A replica symmetric calculation yields

φ(ω) = c(1− FQ) +
c

2
logFQ − (10)

− log[e−ω + (1 − e−ω)e−cFQQ] ,

where we used the short-hand FQ = [1 + (e−ω − 1)Q2]−1

and Q satisfies the self-consistency equation: Q−1 =
1− e−ω[1 + exp(cFQQ)] . Figure 2 gives the geometrical
picture of a random restart experiment. Quite remark-
able is the prediction on the (c, x)-values up to which the
algorithm has to backtrack before finding the solution.
Such a curve lies well inside the UNCOV region indicat-
ing that the two types of rare events are both relevant
for τR > 0. In Fig. 3 we consider the computational
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FIG. 2: Random restart experiments with initial condition
at c = 3.2, x = 0.6 (empty circle). The long dashed line is
the replica symmetric critical line x = xc(c). The rightmost
dotted line is the typical trajectory. The leftmost one is the
rare trajectory followed by the last (successful) restart of the
algorithm when τR = 0.1. The symbols are numerical re-
sults for the (c, x)-values corresponding to the backtrack tree
generated by the algorithm since the last restart. Triangles,
squares and stars correspond, respectively, to N = 30, 60,
120. The continuous line is the theoretical prediction for the
same quantity (i.e. the minimizing ~α ≡ (c, x) in Eq. (3)).

complexity eNτ(τR ) of the random restart algorithm for
the initial condition c = 3.2, x = 0.6. Finite size effects
are important for the achievable sizes of the problem. An
extrapolation can be done for the smaller values of τR,
where we were able to run the algorithm on much larger
systems.

Building on large deviations results we have shown that
running times of randomized complete search algorithms
can be greatly reduced by a restart strategy. The op-
timal restart rate τ opt

R can be computed within our ap-

proach: for VC we find τ opt
R = 0. This result highlights

the relevance of the sub-exponential regime which has
been investigated thoroughly in Ref. [17]. In more gen-
eral cases we expect τ opt

R > 0 [6]. In would be interesting
to explore whether this rare events scenario also applies
to other classes of stochastic processes, both algorithmic
and physical.
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∗ montanar@lpt.ens.fr
† zecchina@ictp.trieste.it; Permanent address: ICTP,

Strada Costiera 11, I-34100 Trieste, Italy.

0 0.05 0.1 0.15 0.2 0.25τR

0

0.05

0.1

0.15

0.2

0.25

τ

FIG. 3: Typical computational complexity of the random
restart algorithm. Here we plot the logarithm of number of
nodes visited by the algorithm divided by the size N , for dif-
ferent values of the restart rate τR. Symbols refer to N = 30
(circles), 60 (triangles), and 120 (diamonds). The stars are
the result of an N → ∞ extrapolation. The continuous and
dashed lines reproduce the theoretical prediction with, cf. Eq.
(3), and without, cf. Eq. (1), dynamical rare events.
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