
A Highly Scalable and Effective Method
for Metasearch

WEIYI MENG and ZONGHUAN WU
State University of New York at Binghamton
CLEMENT YU
University of Illinois at Chicago
and
ZHUOGANG LI
State University of New York at Binghamton

A metasearch engine is a system that supports unified access to multiple local search engines.
Database selection is one of the main challenges in building a large-scale metasearch engine. The
problem is to efficiently and accurately determine a small number of potentially useful local search
engines to invoke for each user query. In order to enable accurate selection, metadata that reflect
the contents of each search engine need to be collected and used. This article proposes a highly
scalable and accurate database selection method. This method has several novel features. First, the
metadata for representing the contents of all search engines are organized into a single integrated
representative. Such a representative yields both computational efficiency and storage efficiency.
Second, the new selection method is based on a theory for ranking search engines optimally. Exper-
imental results indicate that this new method is very effective. An operational prototype system
has been built based on the proposed approach.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed databases; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process; selection process; H.3.4 [Information Storage and
Retrieval]: Systems and Software—information networks

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Database selection, distributed text retrieval, metasearch
engine, resource discovery

This work is supported in part by the following NSF grants: IIS-9902792, IIS-9902872, EIA-
9911099, CCR-9816633, and CCR-9803974.
Authors’ addresses: W. Meng, Z. Wu, Z. Li, Department of Computer Science, State University
of New York at Binghamton, Binghamton, NY 13902; email: meng@cs.binghamton.edu; C. Yu,
Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607; email:
yu@eecs.uic.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2001 ACM 1046-8188/07/0100–0310 $5.00

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001, Pages 310–335.

A Highly Scalable Method for Metasearch • 311

1. INTRODUCTION

The World Wide Web has become a vast information resource in recent years.
By February of 1999, there were already approximately 800 million publicly
indexable pages on the Web [Lawrence and Lee Giles 1999]. Finding desired
data is one of the most popular ways the Web is utilized. Many search engines
have been created to facilitate the retrieval of Web pages. Each search engine
has a text database that is defined by the set of documents that can be searched
by the search engine. In this article, a search engine and its database are used
interchangeably. Usually, an index for all documents in the database is created
in advance. For each term that represents a content word or a combination of
several (usually adjacent) content words, this index can identify the documents
that contain the term quickly. In this article, we consider only search engines
that support vector space queries (i.e., queries that can be represented as a
set of terms with no Boolean operators). Less than 10% of all user queries use
Boolean operators [Jansen et al. 1998].

Several major search engines on the Web, for example, AltaVista, Google,
and NorthernLight, have been attempting to index the entire Web and provide
a search capability for all Web pages. However, these centralized search engines
suffer from a number of limitations [Hawking and Thistlewaite 1999]. For ex-
ample, the coverage of the Web by each of them is limited [Lawrence and Lee
Giles 1998b, 1999] due to various reasons such as robot exclusion and the lack
of appropriate links. As another example, as these major search engines get
larger, higher percentages of their indexed information are becoming obsolete.
Furthermore, many documents indexed by major general-purpose search en-
gines are of low quality due to the lack of good quality-control mechanisms (e.g.,
not filtering out bad quality documents such as those with little content) and
the lack of maintenance effort (e.g., not identifying and removing duplicates).
More and more people are having doubts about the search effectiveness and the
scalability of the centralized search engine technology for searching the entire
Web [Hawking and Thistlewaite 1999; Sugiura and Etzioni 2000].

One way to tackle the problem of limited coverage of the Web by individual
search engines is to combine the coverages of multiple search engines through
the creation of a metasearch engine. A metasearch engine is a system that
supports unified access to multiple local search engines. It does not maintain its
own index on Web pages but a sophisticated metasearch engine often maintains
characteristic information about each underlying local search engine in order
to provide better service. When a metasearch engine receives a user query, it
first passes the query (with necessary reformatting) to the appropriate local
search engines, and then collects (sometimes reorganizes) the results from its
local search engines. Most existing metasearch engines employ a small number
of general-purpose search engines as their underlying local search engines (e.g.,
MetaCrawler [Selberg and Etzioni 1995, 1997], SavvySearch [Dreilinger and
Howe 1997], and ProFusion [Fan and Gauch 1999; Gauch et al. 1996]). While
these metasearch engines can indeed cover a larger portion of the Web than
any individual search engine, they do not solve the other problems associated
with large general-purpose search engines, for example, the inability to update

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

312 • W. Meng et al.

index information quickly and the lack of the mechanism and effort to control
the quality of indexed documents.

There are hundreds of thousands of special-purpose search engines that fo-
cus on documents in confined domains such as documents in an organization or
of a specific subject area [Bergman 2000]. For example, the Cora search engine
(cora.whizbang.com) focuses on computer science research papers and Medical
World Search (www.mwsearch.com) is a search engine for medical information.
Many organizations have their own search engines. A recent survey indicates
that the combined coverage of the Web by these special-purpose search engines
is hundreds of times larger than that by any single general-purpose search
engine [Bergman 2000]. The reason is that many special-purpose search en-
gines have special document collections that are not indexable by Web robots
employed by general-purpose search engines. Thus an approach that can pro-
vide the search capability for a much larger portion of the Web than any single
general-purpose search engine or the combination of several general-purpose
search engines is to combine all these special-purpose search engines. In this
article, we consider a metasearch engine that is aimed at employing all special-
purpose search engines as its local search engines. In addition to the signif-
icantly increased search coverage of the Web, such a metasearch engine has
several other advantages over general-purpose search engines. First, since usu-
ally each special-purpose search engine covers only a small portion of the Web
it is easier for it to keep its index data up to date (i.e., updating of index data
to reflect the changes of documents can be carried out more frequently). Sec-
ond, the documents indexed by special-purpose search engines are likely to
be of better quality due to better quality control and maintenance. Third, the
databases of special-purpose search engines are natural clusters of the Web doc-
uments. There is evidence that retrieval from special-purpose search engines
[Sugiura and Etzioni 2000] and from clusters can yield higher effectiveness
[Xu and Croft 1999]. In addition, running a metasearch engine requires much
smaller investment in hardware (computers, storage, etc.) in comparison to
running a large general search engine such as Google which uses thousands
of computers.

There are several challenges to implementing an effective and efficient
metasearch engine. Among the main challenges, the database selection prob-
lem is to identify, for a given user query, the local search engines that are
likely to contain useful documents for the query. The objective of performing
database selection is to improve efficiency, as by sending each query to only
potentially useful search engines, network traffic and the cost of searching use-
less databases can be reduced. In order to perform database selection well, a
representative for each database needs to be stored in the metasearch engine
to indicate the contents of the database. The collection fusion problem is to
retrieve documents from selected databases and then merge these documents
with the objective of listing more useful documents ahead of less useful ones.
Various heterogeneities among multiple search engines often make it very dif-
ficult to achieve a good fusion [Meng et al. 1999b]. A good metasearch engine
should have the retrieval effectiveness close to that as if all documents were in
a single database while minimizing the access cost.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 313

In this article, we propose a new approach to perform database selection
and collection fusion. This method uses the framework that was developed in
Yu et al. [1999b, 2001b] for ranking databases optimally based on the simi-
larity of the most similar document in each local database (see Section 3 for
more information). The main contribution of this article is the development
and experiment of a new technique for ranking databases. This technique is
based on a new measure to rank databases and a novel database representa-
tive that has the following features. First, it is highly scalable in terms of both
computation and storage requirement. In fact, it can scale to a virtually un-
limited number of local databases. Second, it is an integrated representative
for all local databases in contrast to one representative for each local database
in existing approaches. Third, for single-term queries, which occur frequently
in the Internet environment, this technique guarantees the correct selection
of databases. Fourth, for multiterm queries, certain dependencies among these
terms are examined to see if adjacent terms could be combined to simulate
phrases. Our experimental results indicate that our new method is not only
very scalable but also very accurate. We believe that this method represents
a major step forward towards building extremely large-scale metasearch en-
gines. An operational prototype metasearch engine based on our method has
been implemented.

The rest of the article is organized as follows. In Section 2, related work
is reviewed and compared. In Section 3, we review a framework of perform-
ing database selection and collection fusion using the similarity of the most
similar document in each database. In Section 4, we present our new tech-
nique based on this framework. Experimental results are presented in Section
5. We briefly describe our prototype system in Section 6. Finally, we conclude
in Section 7.

2. RELATED WORK

In the last several years, a large number of research papers on issues re-
lated to metasearch engines or distributed collections have been published (e.g.,
Baumgarten [1997], Callan et al. [1995], Dreilinger and Howe [1997], Gravano
and Garcia-Molina [1995, 1997], Liu et al. [2001b], Manber and Bigot [1997],
Meng et al. [1998, 1999a], Selberg and Etzioni [1997], Sugiura and Etzioni
[2000], Voorhees et al. [1995], Yuwono and Lee [1997]).

For database selection, most approaches rank the databases for a given query
based on certain usefulness measures. For example, gGlOSS uses the sum
of the document similarities that are higher than a threshold [Gravano and
Garcia-Molina 1995], CORI Net uses the belief that a database contains rele-
vant documents due to the terms in a given query [Callan et al. 1995], D-WISE
uses the sum of weighted document frequencies of query terms [Yuwono and
Lee 1997], Q-Pilot uses the dot-product similarity between an expansion query
and a database description [Sugiura and Etzioni 2000], and one of our ap-
proaches uses the expected number of documents whose similarities are higher
than a threshold [Meng et al. 1998]. All these database ranking methods are
heuristics as they are not designed to produce optimal orders based on some

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

314 • W. Meng et al.

optimality criteria. In Yu et al. [1999b, 2001b], the measure used to rank a
database is the similarity of the most similar document in the database. It is
shown that ranking databases in descending order of the similarity of the most
similar document in each database is a necessary and sufficient condition to
rank databases optimally for retrieving the m most similar documents across
all databases for any positive integer m. A necessary and sufficient condition for
ranking databases optimally was also given in Kirk et al [1995]. However, Kirk
et al [1995] considered only the databases and queries for structured data.
The database selection method in Liu [1999] also considered only databases
and queries for mostly structured data. In contrast, unstructured text data are
considered in Yu et al [1999b, 2001b].

For collection fusion, most earlier approaches use weighted allocation to
retrieve documents, that is, retrieve proportionally more documents from
databases that have higher ranking scores (e.g., CORI Net, D-WISE, ProFu-
sion [Fan and Gauch 1999], and MRDD [Voorhees et al. 1995]), and use ad-
justed local similarities of documents to merge retrieved documents (e.g., D-
WISE and ProFusion). These approaches are all heuristics and are not aimed
at guaranteeing the retrieval of all potentially useful documents for a given
query. In Gravano and Garcia-Molina [1997], and Meng et al. [1998], to deter-
mine what documents to retrieve from a local database, approaches are pro-
posed to find a tight local similarity threshold for the local database based on
a global similarity threshold. These approaches aim at guaranteeing the re-
trieval of all potentially useful documents from each selected database while
minimizing the retrieval of useless documents. The problem with these types
of approaches is that the local similarity function used in each search en-
gine must be known, but the similarity function is usually proprietary. The
Inquirus metasearch engine [Lawrence and Lee Giles 1998a] uses the real
global similarities of documents to merge retrieved documents. The advan-
tage is that high quality merging can be achieved. The disadvantage is that
documents may need to be fetched to the metasearch engine to enable the
computation of their global similarities. The collection fusion approach in Yu
et al. [1999b, 2001b] utilizes an approximate optimal database order to deter-
mine what documents to retrieve and uses real global similarities to merge
retrieved documents.

The database selection and collection fusion framework used in this arti-
cle is based on our previous work in Yu et al. [1999b, 2001b]. In a nutshell,
this framework first tries to rank local databases optimally using the neces-
sary and sufficient condition mentioned above. Next, an algorithm is used to
determine what databases should be searched and what documents from each
searched database should be returned to the metasearch engine. Finally, the
global similarities of returned documents are used to merge all returned doc-
uments. This framework is reviewed in Section 3. The focus of this article is
on improving the scalability of database selection within this framework. Our
main contribution is that we have devised a new database selection method.
The new method employs a new measure to rank databases and can scale to
a virtually unlimited number of local databases in a metasearch engine in
terms of both computation and space requirement and also essentially maintain

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 315

the retrieval accuracy of the previous method. We believe that this is a major
step forward towards building a very large-scale metasearch engine. A recent
whitepaper prepared by a working group on resource discovery (database se-
lection) asserted that there are potentially one million repositories on the Web
[Arms et al. 1999] and called for the development of highly scalable methods for
resource discovery.

Most existing systems/approaches consider only small-scale metasearch en-
gines that have from several to a few hundred local search engines. It is unlikely
that these approaches can scale to hundreds of thousands of local search engines
and at the same time achieve good effectiveness. The reasons are as follows.
First, existing methods compare a given query against all database represen-
tatives to perform database selection. This is computationally very expensive
as the number of databases is very large. Second, based on existing methods
[Callan et al. 1995; Gravano and Garcia-Molina 1995; Liu et al. 2001b; Meng
et al. 1999a; Yuwono and Lee 1997], in order to perform database selection
well, a “detailed” representative for each database is needed. Here “detailed”
means that one or more pieces of statistical information for each term appear-
ing in a database are used. A detailed representative for a database may have
roughly 1% of the size of that of the database. As a result, for a metasearch
engine with hundreds of thousands of local search engines, the total size of
these representatives could be hundreds or even thousands of times that of an
average database. Consequently, the representatives may have to be stored on
slower storage devices (such as disk) instead of in memory, causing the database
selection computation to be slowed down.

In contrast, in this article, we propose a novel integrated representative for
all databases, instead of a separate representative for each database in all
existing methods. The size of the integrated database representative can be
kept below a few gigabytes, regardless of the number of databases there might
be in a metasearch engine. Moreover, only a small constant number of databases
needs to be considered for each query during database selection. As a result,
our method is highly scalable in both computation and storage. In addition,
for typical Internet queries, our approach retrieves close to 100% of the most
similar documents.

In Baumgarten [1997], a theoretical framework was provided for achieving
optimal results in a distributed environment. Recent experimental results re-
ported in Baumgarten [1999] show that if the number of documents retrieved
is comparable to the number of databases, then good retrieval effectiveness can
be achieved; otherwise the performance deteriorates substantially. In the Inter-
net environment, most users are interested in finding a small number of good
documents for their queries. Our method shows good experimental results in
this environment (see Section 5). In addition, our theory differs substantially
from that given in Baumgarten [1997].

In Xu and Callan [1998], experimental results were given to demonstrate
that it was possible to retrieve documents in distributed environments with
essentially the same effectiveness as though all data were at one site. How-
ever, the results depended on the existence of a training collection that has
similar coverage of the subject matter and terms as the collection of databases

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

316 • W. Meng et al.

to be searched. In the Internet environment where data are highly heteroge-
neous, it is unclear whether such a training collection can in fact be constructed.
Even if such a collection can be constructed, the storage penalty could be very
high in order to accommodate the heterogeneity. In Xu and Croft [1999] it was
shown that by properly clustering documents it was possible to retrieve docu-
ments in distributed environments with essentially the same effectiveness as
in a centralized environment. However, in the Internet environment, it is not
clear whether it is feasible to cluster large collections and to perform reclus-
tering for dynamic changes. Our technique does not require any clustering
of documents.

Please see Meng et al. [2001b] for a more comprehensive review of other work
in the metasearch engine and distributed information retrieval area.

3. A FRAMEWORK FOR DATABASE SELECTION
AND COLLECTION FUSION

A query in this article is simply a set of words submitted by a user. It is trans-
formed into a vector of terms with weights [Salton and McGill 1983], where
a term is essentially a content word and the dimension of the vector is the
number of all distinct terms. When a term appears in a query, the component
(i.e., term weight) of the query vector corresponding to the term is positive; if
it is absent, the weight is zero. A document is similarly transformed into a
vector with weights. The weight of a term in a query (document) is usually
computed based on the term frequency (the number of occurrences, denoted
by tf) of the term in the query (document) and the document frequency (the
number of documents having the term, denoted by df) of the term [Salton and
McGill 1983; Sparck Jones 1972; Yu and Meng 1998]. The weight factor based
on the tf information is the tf weight and the weight factor based on the df
information is the idf weight. The similarity between a query and a document
can be measured by the dot-product of their respective vectors. Often, the dot-
product is divided by the product of the lengths of the two vectors to normalize
the similarity between 0 and 1. The similarity function with such a normaliza-
tion is known as the Cosine function [Salton and McGill 1983]. When the idf
weight of each term is computed based on the global df of the term (i.e., the
number of documents containing the term across all databases), the computed
similarities are global similarities. Note that if there is no or little overlap
among local databases, the sum of local dfs of a term in all local databases
can be used as an approximation of the global df of the term. If there are
serious overlaps among local databases, then a sampling technique such as
that in Bharat and Broder [1998] can be extended to estimate the global df of
a term.

Example 1. Let q = (q1, . . . , qn) be a query, where qi is the tf weight of
term ti in q. Let gidfi be the global idf weight of ti. Then the query vector is
q′ = (q1∗gidf1, . . . , qn∗gidfn). Let d = (d1, . . . , dn) be a document vector, where
di is the tf weight of ti in d . Then di/|d | is the normalized weight of ti in d ,
where |d | =√d2

1+···+d2
n is the length of d . Based on the Cosine similarity function,

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 317

the global similarity between query q and document d is:

sim(q, d) =
∑n

i=1 qi ∗ gidfi ∗ di

|q′| ∗ |d |
=
(

q1 ∗ gidf1 ∗
d1

|d | + · · · + qn ∗ gidfn ∗
dn

|d |
)/
|q′|. (1)

In this section we review a framework for database selection and collection
fusion. This framework was first introduced in Yu et al [1999a,b]. Suppose a
user is interested in retrieving the m most similar documents for a query q from
N databases D1, D2, . . . , DN , where m is any positive integer. This framework
can be summarized into one definition on optimal database ranking, a necessary
and sufficient condition for ranking databases optimally, and an algorithm for
integrated database selection and collection fusion based on ranked databases.

Definition 1. A set of N databases is said to be optimally ranked in the order
[D1, D2, . . . , DN] with respect to a given query q if for any positive integer m,
there exists a k such that D1, D2, . . . , Dk contain the m most similar documents
and each Di, 1 ≤ i ≤ k contains at least one of the m most similar documents.

Intuitively, the ordering is optimal because the k databases containing the
m most similar documents to the query are ranked ahead of other databases.
Note that the ordering of the databases depends on the query q. For ease of
presentation, we assume that all similarities of the documents with the query
are distinct so that the set of the m most similar documents to the query
is unique.

PROPOSITION 1. [Yu et al. 2001b] Databases D1, D2, . . . , DN are optimally
ranked in the order [D1, D2, . . . , DN] with respect to a given query q if and only
if msim(q, D1) > msim(q, D2) > · · · > msim(q, DN), where msim(q, Di) is the
global similarity of the most similar document in database Di with the query q.

Example 2. Consider three databases D1, D2, and D3. If the global similar-
ities of the most similar documents in the databases D1, D2, and D3 to a given
query are 0.6, 0.75, and 0.5, respectively, then the databases should be ranked
in the order [D2, D1, D3] for the query.

If not all similarities of the documents with the query are distinct, Propo-
sition 1 remains essentially true (need to change all > to ≥) but the optimal
order may no longer be unique. In this case, if msim(q, D1) ≥ msim(q, D2) ≥
· · · ≥ msim(q, DN), then for every positive integer m, there exists a k such that
D1, D2, . . . , Dk contain one set of the m documents that have the highest sim-
ilarities with q among all documents and each Di, 1 ≤ i ≤ k contains at least
one document in the set. It is possible that a document not in the set has the
same similarity as some documents in the set.

Based on the optimal order of the databases [D1, . . . , DN], an algorithm,
known as OptDocRetrv, was developed to perform database selection and
collection fusion [Yu et al. 1999b, 2001b]. This algorithm is sketched as follows.
Suppose the first s databases have been selected (s is 2 initially if m ≥ 2). Each
of these selected search engines returns the actual global similarity of the most

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

318 • W. Meng et al.

similar document in its database to the metasearch engine that computes the
minimum, denoted min sim, of these s values. Each of the s search engines then
returns to the metasearch engine those documents whose global similarities
are greater than or equal to min sim. Note that at most m documents from
each search engine need to be returned to the metasearch engine. If m or more
documents have been returned from the s search engines, then they are sorted
in descending order of similarity and the first m documents are returned to
the user. Otherwise, the next database in the optimal order will be selected
and the above process repeated until at least a total m documents is returned
to the user.

Note that in the above algorithm, collection fusion is based on the actual
global similarities of documents. It has been shown [Yu et al. 2001b] that if the
databases are ranked optimally, then algorithm OptDocRetrv will guarantee
the retrieval of all the m most similar documents.

In order to apply this framework in practice, the following problems must be
solved. First, we need to figure out how to obtain from any local database those
documents whose global similarities with a given query are greater than or
equal to a given threshold (e.g., the min sim in each iteration of OptDocRetrv).
Note that local search engines retrieve documents based on local similarity
functions and term statistics that may cause the local similarity of a document
to be different from the global similarity of the document. This problem has
been addressed in Meng et al. [1998] and Yu et al. [1999a] and is not discussed
further in this article. Second, Proposition 1 cannot be used as is because we
cannot afford to search each database to obtain the global similarity of its most
similar document. Instead, for each database, we need to estimate the required
similarity. In Yu et al. [1999b, 2001b], an estimation method that uses two types
of database representatives was proposed. There is a global representative for
all databases and it stores the global df for each term in these databases. There
is also a separate representative for each database and it stores two pieces of
information for each term. This estimation method has a time complexity that
is linear in terms of the number of terms in a query. However, the query needs to
be compared with each database representative. Thus if the metasearch engine
has a large number of databases, this method does not scale very well in terms
of computational efficiency and storage space.

4. A NEW DATABASE RANKING METHOD

In this section, we propose our new method for database selection based on the
framework described in Section 3. A key step is to rank databases according
to the global similarity of the most similar document in each database. Our
previous methods tried to estimate the similarity of the most similar document
in each database directly [Yu et al. 1999b, 2001b]. A substantial amount of
information about each database is needed to enable accurate estimation. The
new method takes a different approach. Instead of using the similarity of the
most similar document to rank databases, we rank the databases based on a
different measure. This new method has some appealing features. First, the new
measure can be obtained using less information than estimating the similarity

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 319

of the most similar document. Our novel integrated representative permits the
measure to be computed very efficiently. Second, the ranking of databases based
on the new measure matches very well with that based on the similarity of the
most similar document as indicated by our experimental results reported in
Section 5. In Section 4.1, we describe our new database ranking measure. In
Section 4.2, we introduce our integrated database representative. In Section 4.3,
we discuss how to incorporate one type of term dependencies into the solution.

4.1 The New Ranking Measure

Consider a term ti and a local database D j . Let mnwi, j and anwi, j be the maxi-
mum normalized weight and the average normalized weight of ti in D j , respec-
tively. The quantity mnwi, j is defined as follows. First, if d = (d1, . . . , di, . . . , dn)
is the vector representation of a document in D j , where di is the weight of term
ti, then di/|d | is the normalized weight of ti in d (|d | is the length of d). Next,
mnwi, j is the maximum of the normalized weights of ti in all documents in
database D j ; that is, mnwi, j = maxd∈D j {di/|d |}. Similarly, anwi, j is simply the
average of the normalized weights of ti over all documents in D j , including
documents not containing term ti. Let gidfi be the global inverse document
frequency weight of ti.

Consider a given user query q. Suppose the query vector of q is q′ = (q1 ∗
gidf1, . . . , qn ∗ gidfn) (see Example 1). Then the global similarity of the most
similar document of database D j with respect to q can be estimated by [Yu
et al. 2001b]:

max
1≤i≤n

qi ∗ gidfi ∗mnwi, j +
n∑

k=1
k 6=i

qk ∗ gidfk ∗ anwk, j

/
|q′|. (2)

By comparing Formulas (1) and (2), the intuition for having this estimate
can be described as follows. The most similar document in a database is likely
to have the maximum normalized weight on one of the query terms, say term ti.
This yields the first half of the above expression within the braces. For each of
the other query terms, the document takes the average normalized value. This
yields the second half. Then the maximum is taken over all i, since the most
similar document may have the maximum normalized weight on any one of the
n query terms. Normalization by the query norm |q′| yields a value less than or
equal to 1. We drop |q′| for ease of presentation. This does not have any impact
as the relative similarity values of the most similar documents of the different
databases are not changed.

Through a large number of experiments, we observed that the maximum
normalized weight of a term is typically two or more orders of magnitude larger
than the average normalized weight of the term as the latter is computed over
all documents including those not containing the term. This feature implies
that in Formula (2), if all query terms have the same tf weight (a reasonable
assumption as in a typical query, each term appears once), qi ∗ gidfi ∗mnwi, j is
likely to dominate

∑n
k=1, k 6=i qk ∗ gidfk ∗ anwk, j , especially when the number of

terms n in a query is small (which is typically true in the Internet environment

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

320 • W. Meng et al.

[Jansen et al. 1998; Kirsch 1998]). In other words, whether database D j is going
to be ranked high (i.e., whether its most similar document is going to have a
relatively large similarity) with respect to a given query q is largely determined
by the value of max1≤i≤n{qi ∗ gidfi ∗mnwi, j }.

The preceding discussion is summarized below. For a given term ti and
database D j , let ami, j = gid fi ∗ mnwi, j be the adjusted maximum normal-
ized weight of term ti in D j . Let ti, i = 1, . . . , n, be the n terms in a query q.
We define the ranking score (or rs for short) of database D j with respect to q as
follows:

rs(q, D j) = max
1≤i≤n
{qi ∗ ami, j }. (3)

The ranking score defined above is our new measure to rank databases. For
a given database, this measure can be computed for any query by a database
representative that stores only one piece of information per distinct term in the
database. For term ti in database D j , this piece of information is ami, j . Note
that Formula (3) has a linear time complexity regarding the number of terms in
the query. In the rest of the article, we attempt to establish, by both theory and
experimental results, that by ranking databases based on their ranking scores
for short queries (typical of Internet queries [Jansen et al. 1998; Kirsch 1998]),
such ranking is very close to the optimal ranking based on the similarity of the
most similar document in each database.

4.2 Integrated Representative of Databases

In order to compute the ranking score of a database with respect to any given
query, the adjusted maximum normalized weight of each term in the database
needs to be obtained and stored. If all the documents in a database are ac-
cessible, then the needed statistical information can be easily obtained. There
are several situations where the documents in a database can be accessible.
First, the database is under the control of the developer of the metasearch
engine such as in the case of an Intranet environment. Second, the doc-
uments can be independently obtained. For example, the search engine at
www.binghamton.edu/search/ is for searching all Web pages at Binghamton
University. But these Web pages can also be independently obtained by us-
ing a Web spider (robot) starting with the home page of the university
(www.binghamton.edu). Third, a local search engine is cooperative. For exam-
ple, in metasearch engine NCSTRL (Networked Computer Science Technical
Reference Library, cs-tr.cs.cornell.edu), all local databases must sign up to join
the metasearch engine. In this case, the metasearch engine may simply re-
quest/require each local search engine to provide the statistical information
needed for database selection. Clearly, there will be cases where the documents
of a database cannot be independently obtained and a local search engine is
uncooperative. In these cases, a technique known as query sampling [Callan
et al. 1999] could be adopted to estimate the needed statistics. For the rest of
this article, we assume that the adjusted maximum normalized weights have
already been obtained.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 321

If we follow the example of existing approaches, we would create a sepa-
rate database representative for each database. In this case, the representa-
tive for database D would contain the adjusted maximum normalized weight
for each term in D. When a query is received by the metasearch engine, the
query information and the representative of each database will be used to com-
pute the ranking score of each database. After the databases are ranked, the
OptDocRetrv algorithm reviewed in Section 3 can be used to select databases
and retrieve documents.

The database representative introduced in Section 4.1 stores only one piece of
information per term and is already more scalable than most existing database
selection approaches that use detailed database representatives (e.g., Callan et
al. [1995], Gravano and Garcia-Molina [1995], Liu et al. [2001b], and Meng et al.
[1999a]) in terms of the storage space required. For metasearch engines that
have up to a few hundred local databases, we probably can afford to have a sep-
arate representative for each database and store all of them in the metasearch
engine. However, if our goal is to build a metasearch engine that may have hun-
dreds of thousands of local search engines so that the entire Web potentially can
be searched by the metasearch engine, then it may not be economical to have a
separate representative for each search engine. Computing hundreds of thou-
sands of ranking scores for each query is very time consuming. Our solution to
this problem is to create a novel integrated representative for all databases.

For a given positive integer r and term ti, let LAM (ti, r) contain the r largest
ami, j over all D j . In other words, LAM (ti, r) contains only the r largest adjusted
maximum normalized weights of ti across all local databases. The integrated
representative that we propose for all local databases is as follows. For each
term ti, a set of up to r pairs of the format (didi, j , ami, j) is kept in the integrated
representative, where ami, j ∈ LAM (ti, r) and didi, j is the identifier of the
database having ami, j . Thus, for each term, the r largest adjusted maximum
normalized weights and their corresponding database ids are stored. The idea
is to store only the information associated with the most important databases
for each potential query term.

When evaluating a query q using the integrated database representative, we
compute the ranking scores for only those databases whose id appears in at least
one LAM (ti, r), where ti is a query term. Specifically, for a database D j which
has the largest adjusted maximum normalized weights for a subset S of query
terms, the ranking score of this database is computed by maxti∈S{ami, j ∗ qi},
where qi is the weight of term ti in the query. Thus, for a query having n terms,
at most n ∗ r ranking scores are computed. This is independent of the number
of databases. In the Internet environment, n is usually very small (n = 2.2
on the average [Kirsch 1998]). The value of r is also a small constant (see the
next paragraph). As a result, our proposed method is highly scalable in terms
of computation.

One way to determine the value r is as follows. If the metasearch engine is
designed to search no more than u search engines for any given query, then
r can be set to u. In practice, a small u, say 20, is likely to be sufficient for
most users if relevant search engines can be selected. The above integrated
representative can scale to a virtually unlimited number of local databases in

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

322 • W. Meng et al.

terms of storage. The reason is as follows. First, suppose a rough bound of the
number of distinct terms, say M = 10 millions, exists regardless of the number
of local databases participating in the metasearch engine. Next, for each term,
only a small constant number (2 ∗ r) of quantities (r largest adjusted maximum
normalized weights and r database identifiers) are stored in the integrated
representative. Therefore the total size of this representative is bounded by
(10+ 4 ∗ 2 ∗ r) ∗M bytes, assuming that each term occupies 10 bytes on the
average and each quantity occupies 4 bytes. When r = 20 and M = 10, 000, 000,
(10+4∗2∗r)∗M = 1.7 Gb, well within the memory capacity of a well-equipped
server. In reality, there may not be a clear bound to the number of distinct
terms and there may be more than 10 million terms. However, the scalability
of the integrated representative approach is still very good as it stores only
a small constant number of quantities for each term regardless of how many
databases may contain the term. In contrast, in nonintegrated representatives,
the number of pieces of information stored for each term is a constant factor of
the number of databases. In summary, our integrated representative approach
is highly scalable in both computation and storage.

Intuitively, a database selection method is effective if the most desired docu-
ments are contained in a relatively small number of databases selected by this
method. In Section 5, we conduct experiments to evaluate the effectiveness of
our method based on more rigorous measures. The proposition below shows that
for any single-term query (which constitutes about 30% of all Internet queries
[Jansen et al. 1998]), the local databases selected by the integrated representa-
tive are guaranteed to contain the m most similar documents in all databases
with respect to the query when m ≤ r.

PROPOSITION 2. For any single-term query, if the number of documents de-
sired by the user, m, is less than or equal to r (the number of adjusted maximum
normalized weights stored in the integrated representative for the query term),
then all of the m documents most similar to the query are contained in the r local
databases whose adjusted maximum normalized weights for the query term are
stored in the integrated representative.

PROOF. Note that the maximum normalized weight of the (single) query
term in each database is also the similarity of the most similar document in
the database with respect to the query. This means that for any single term
query, if we rank the databases in descending order of the maximum normalized
weights of the term, the databases will be ranked optimally for the query. Note
that the order based on the maximum normalized weights will be identical to
that based on the adjusted maximum normalized weights as the two types of
weights differ only by the gidf weight of the term. However, for a single term,
the gidf weight is a constant for all documents. Since the r adjusted maximum
normalized weights stored in the integrated representative for the query term
are the largest, the corresponding r databases will be ranked ahead of other
databases. Meanwhile, the m most similar documents with respect to the query
will be contained in no more than m databases. Since r ≥ m, the r databases
must contain the m documents most similar to the query.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 323

Please note that the gidf weights are useful only when there are multiple
terms in a query.

4.3 Combining Terms

The above estimation is based on the assumption that terms are independently
distributed. This assumption is not entirely realistic. For example, the two
terms “computer” and “algorithm” may appear together more frequently in
documents in a database containing computer science literature than would
be expected if the two terms were independently distributed in the database.
In this subsection, we introduce a method to remedy this assumption through
the incorporation of one type of dependency between two adjacent terms. Note
that most phrases consist of two terms.

This method works as follows. When a multiterm query q is received, we
first examine if certain adjacent term pairs can be combined and treated as a
single term. This process is described below. First, we generate all candidate
term pairs from the terms in q. Precisely, (ti, tk) is a candidate term pair if after
stopwords are removed, ti and tk are next to each other (it does not matter
whether ti precedes tk or tk precedes ti). Each candidate term pair is a potential
phrase. Next, for each local database D, we determine whether a candidate
term pair (ti, tk) is combinable. Suppose a document has normalized weight nwi
for ti and normalized weight nwk for tk . The (adjusted) maximum normalized
weight for the combined term (if the two terms ti and tk are combined) is defined
to be:

mnwik = max
d∈D
{gidfi ∗ nwi + gidfk ∗ nwk}. (4)

The estimated (adjusted) maximum normalized weight for the combined
term assuming the two terms are independent is:

emnwik = max{gidfi ∗mnwi + δ, gidfk ∗mnwk + δ}, (5)

where mnwi and mnwk are the maximum normalized weights of ti and tk , re-
spectively, and δ is a small positive constant. Ideally, emnwik should involve the
average normalized weights of terms ti and tk , but since they are not stored in
the integrated database representative, a small positive constant δ is used. One
way to implement δ is to let it be the average of the average normalized weights
of all terms. Now (ti, tk) is said to be combinable if mnwik > emnwik . That two
terms are combinable indicates that the two terms are worth combining.

Now for each local database D, we determine whether a combinable pair
(ti, tk) should be combined. A combinable pair is not always combined. For ex-
ample, suppose term tu involves two combinable pairs (ti, tu) and (tu, tk). In this
case, only one pair will be actually combined and the choice is made based on
which pair, if combined, yields more benefit. We consider the following cases.

Case 1: (ti, tk) is the only combinable pair in a query. In this case, (ti, tk) should
be combined.

Case 2: A list of combinable term pairs (t1, t2), (t2, t3), . . . , (ts, ts+1) exists in
a query. We first identify the most worthy combinable pair. Let diffik =

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

324 • W. Meng et al.

mnwik − emnwik be the difference between mnwik and emnwik for term
pair (ti, tk), i = 1, . . . , s and k = i + 1. Let diffxy be the largest difference,
y = x + 1, 1 ≤ x ≤ s. Then (tx , ty) is the most worthy combinable pair. Now
we first combine (tx , ty) and then repeat Case 1 or Case 2 for two sublists
(t1, t2), . . . , (tx−2, tx−1) and (ty+1, ty+2), . . . , (ts, ts+1).

Suppose it is decided that two terms ti and tk should be combined for local
databases D1, . . . , Dn. The integrated representative will be modified as fol-
lows. First, a new term (i.e., the combined term) tik will be created. Second, the
r largest (adjusted) maximum normalized weights (mnwiks) for D1, . . . , Dn will
be stored in the integrated representative under the combined term.

To incorporate combined terms into the query evaluation process, certain
adjustments need to be made. Let q be a query under consideration.

1. When selecting databases to compute ranking scores, both combined terms
and uncombined terms will be considered. As an example, suppose q has
two terms (ti, tk) and the two terms are combined for some databases but not
combined for other databases. In this case, the query is treated as having
three terms in this step, namely, ti, tk , and the combined term tik . For each
term, a set of r databases that have the r largest adjusted maximum nor-
malized weights is identified from the integrated representative. Now we
compute the ranking scores for only those databases that appear in at least
one of the sets.

2. When computing the ranking score of a database D with respect to q, we
have two cases: if no terms in q need to be combined for D j , then Formula
(3) is used directly to compute rs(q, D j); and if two terms in q, say ti and
tk , are combined into a new term tik , then Formula (3) needs to be modified
slightly before being used. Specifically, the two components corresponding
to ti and tk , namely, qi ∗ami, j and qk ∗amk, j , are replaced by qik ∗mnwik, j ,
where qik is the weight of the combined term tik in the query after ti and
tk are replaced by tik , and mnwik, j is the (adjusted) maximum normalized
weight of tik in database D j .

In practice, it may be too slow to determine whether two terms in a query
should be combined on the fly. We suggest using the following solution to ad-
dress this issue. First, common phrases can be compiled in advance and stored
in an online dictionary. (We assume that there is a precise process to recog-
nize phrases. See, for example, Lima and Pedersen [1999]). Each phrase can be
treated as a candidate combined term and whether it really should be combined
in each local database is determined offline following the procedure discussed
above. When a user query is received, it is first examined to see if it contains
a known phrase. If yes, then for databases where the phrase is treated as a
combined term, the modified formula is used to compute their ranking scores;
for databases where the phrase is not treated as a combined term, the original
formula is used. Next, for phrases that are not in the dictionary, a learning pro-
cess can be implemented. We can keep track of user queries submitted to the
system and identify new phrases that have occurred in a number of previous
queries. For example, if two adjacent terms appearing in some query have been

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 325

submitted to the system at least p times for some small integer p, then the two
terms may be treated as a potential phrase. These potential phrases, if combin-
able, can be added to the dictionary to benefit future queries that contain them.

5. EXPERIMENTAL RESULTS

In this section, we report some experimental results. 221 databases are used in
our experiments. These databases are obtained from five TREC document col-
lections created by NIST (National Institute of Standards and Technology of the
US). The five collections are CR (Congressional Record of the 103rd Congress),
FR (Federal Register 1994), FT (articles in The Financial Times from 1992 to
1994), FBIS (articles via Foreign Broadcast Information Service), and LAT (ran-
domly selected articles from 1989 and 1990 in The Los Angeles Times). These
collections are partitioned into databases of various sizes ranging from 222 doc-
uments (about 2 Mb) to 7,760 documents (about 20 Mb). A total of more than
558,000 documents (≈2 Gb in size) are in these databases. There are slightly
over 1 million distinct terms in these databases. Generating test databases by
partitioning TREC collections to evaluate database selection algorithms has
also been used in French et al. [1998, 1999].

1,000 Internet queries by real users are used in our experiments. These
queries were collected at Stanford University and were used to evaluate the
performance of the gGlOSS database selection method [Gravano and Garcia-
Molina 1995]. The 1,000 queries used in our experiments are the first 1,000
queries, each having no more than six terms, from among about 6,600 queries
available. Among the 1,000 queries, 2 queries have no terms (after stopwords
are removed), 343 queries are single-term queries, 323 queries have two terms,
185 queries have three terms, 94 queries have four terms, 29 queries have five
terms, and 24 queries have six terms. The average length of these queries is
about 2.21. The query length distribution of the 1,000 test queries matches very
well with that of over 50,000 queries submitted to the Excite search engine and
analyzed in Jansen et al. [1998]. Another observation made in Jansen et al.
[1998] is that about 97% of all Internet queries have no more than six terms.
TREC collections come with about 400 queries. The reason that we did not use
TREC queries is that their average length is much longer than that of typical
Internet queries.

The performance measures of a method to search for the m most similar
documents in a set of databases are given as follows. The first two measures
indicate the effectiveness (quality) of retrieval while the last two measures
reflect the efficiency of retrieval.

1. The percentage of correctly identified databases, that is, the ratio of the num-
ber of databases that contain one or more of the m most similar documents
and are searched by the method over the number of databases that contain
one or more of the m most similar documents. This percentage is denoted by
cor iden db.

2. The percentage of correctly identified documents, that is, the ratio of the
number of documents retrieved among the m most similar documents over
m. This percentage is denoted by cor iden doc.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

326 • W. Meng et al.

Fig. 1. Result for cor iden db.

3. The database search effort is the ratio of the number of databases searched
by the algorithm over the number of databases that contain one or more of
the m most similar documents. This ratio is denoted by db effort.

4. The document search effort is the ratio of the number of documents received
by the metasearch engine over m. This is a measure of the transmission cost.
This ratio is denoted by doc effort.

For a given set of queries, the measures reported in this article are averaged
over all queries in the set that contain at least one real term. In all experiments,
r = m is used, where m is the number of documents desired by the user and r is
the number of adjusted maximum normalized weights stored in the integrated
representative for each term.

We also experimented with the following parameter β. The original algo-
rithm OptDocRetrv terminates when at least m documents have been re-
turned to the metasearch engine by local search engines (see Section 3). We use
β to control when to terminate algorithm OptDocRetrv. Specifically, β could
be chosen to be greater than m, the number of desired documents. For exam-
ple, when β = 2m, the algorithm will not stop until at least 2m documents
have been returned to the metasearch engine by local search engines. From
these 2m (or more) documents, the most similar m documents are presented to
the user. By experimenting with different β, we would like to see whether more
desired documents can be retrieved when larger β values are used and what
are the trade-offs.

We first show the experimental results when combined terms are not used
(see Figures 1 to 4). The results can be summarized as follows.

1. When β = m, as m varies from 2 to 20, on the average, 86.4 to 92.3% of
correct databases are identified and 86.4 to 92.7% of correct documents
are identified while the number of databases searched is no more than
the number of databases containing all desired documents and the num-
ber of documents retrieved is only at most 1.1% beyond the desired number
of documents. The performance tends to improve for all measures when
m increases.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 327

Fig. 2. Result for cor iden doc.

Fig. 3. Result for db effort.

Fig. 4. Result for doc effort.

To appreciate the good performance of this method, let us consider the
case when m = 2. The user wants to find the 2 most similar documents
from more than 558,000 documents stored in 221 databases for each
query. Our method searches approximately only 2 databases and trans-
mits approximately only 2 documents to the metasearch engine for each

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

328 • W. Meng et al.

query on the average. Yet 86.4% of the desired documents are found by
our method.

2. When β increases, more correct databases and documents can be identi-
fied at the expense of searching more databases and retrieving more docu-
ments. Specifically, comparing the performance of β = m, when β = 1.5m,
approximately 2 more percentage points of correct databases and docu-
ments can be identified on the average while searching approximately 27%
more databases and retrieving approximately 45% more documents. When
β = 2m, approximately 3.5 more percentage points of correct databases and
documents can be identified on the average while searching approximately
50% more databases and retrieving approximately 80% more documents.
For applications where finding a high percentage of correct documents is
essential, searching a small number of additional databases and retrieving
a small number of additional documents may be worthwhile.

3. From Figure 3, we observe that db effort can be less than 1. This means that
the average number of databases searched can be less than the number of
databases containing all the most similar documents. The reason for this
phenomenon is explained as follows. Note that databases are ranked based
on their ranking scores (see Formula (3)). Since the ranking may be imper-
fect, the databases may not be ranked optimally. As a result, a nondesired
database (i.e., it does not contain one of the m most similar documents), say
D′, may be ranked ahead of some desired database(s). Let d ′ be the most
similar document in D′ with an actual global similarity s′. According to
algorithm OptDocRetrv, when D′ is encountered documents from all pre-
viously examined databases (including D′) that have similarities ≥s′ will be
returned to the metasearch engine. Since d ′ is not a desired document, its
similarity s′ can be rather low and as a result, it is possible to find m or more
documents from previously examined databases with similarities ≥s′. This
causes the retrieval algorithm to terminate prematurely without searching
other databases (including desired databases ranked behind D′). If all the
desired databases are ranked ahead of all other databases, then db effort
will be at least 1.

4. From Figure 4, we observe that when β = 2m, doc effort is less than 2. This
is due to the fact that for a number of queries, very few documents in the
entire collection have positive similarities with these queries. In general, if
for each query there are at least β documents with positive similarities in
the searched databases, then we should have doc effort ≥ 2.

The above experimental results indicate that our database selection and
document retrieval method can achieve close to the ideal performance as though
all documents were at one site and in one database.

Figures 5 through 8 show the experimental results when combined terms
are used. When comparing the results shown in Figures 5 and 6 to those shown
in Figures 1 and 2, we can see that the use of combined terms further improves
the retrieval performance. More specifically, when β = m, as m varies from
2 to 20, on the average, 95.4 to 97.7% of correct databases are identified and
95.3 to 97.6% of correct documents are identified. The improvements over the

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 329

Fig. 5. Result for cor iden db with combined terms.

Fig. 6. Result for cor iden doc with combined terms.

Fig. 7. Result for db effort with combined terms.

cases when combined terms are not used vary from 5.3 to 8.8 percentage points
for cor iden db and from 5.2 to 8.9 percentage points for cor iden doc. When
β = 2 ∗ m, as m varies from 2 to 20, on the average, 97.2 to 99.0% of correct
databases are identified and 97.1 to 98.7% of correct documents are identified.
This is very close to the ideal performance. Again, the performance tends to
improve for all measures when m increases.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

330 • W. Meng et al.

Table I. Results for Queries of Different Lengths with m = β = 10 when
Combined Terms Are Not Used

Query
Length

No.
Queries

cor iden db cor iden doc db effort doc effort

1 235 1.00 1.00 1.00 1.00
2 321 0.94 0.94 0.99 1.00
3 183 0.85 0.85 0.96 1.01
4 93 0.80 0.81 0.95 1.01
5 29 0.71 0.71 0.88 1.00
6 24 0.74 0.75 0.93 1.05

Table II. Results for Queries of Different Lengths with m = β = 10 when
Combined Terms Are Used

Query
Length

No.
Queries

cor iden db cor iden doc db effort doc effort

1 235 1.00 1.00 1.00 1.00
2 321 1.00 1.00 1.00 1.00
3 183 0.96 0.96 0.99 1.00
4 93 0.90 0.91 0.99 1.01
5 29 0.85 0.87 0.95 1.00
6 24 0.83 0.85 0.95 1.01

Fig. 8. Result for doc effort with combined terms.

From Proposition 2 we know that our proposed method will guarantee the
correct retrieval of the m most similar documents for single-term queries if
m ≤ r. Our experimental results indicate that our method performs very well
even for multiterm queries. In general, our method tends to perform better
for shorter queries. Tables I and II list the results for queries of different
lengths (i.e., the number of terms in a query) when m = 10 and β = m.
The results for other cases are very similar. The total number of queries in
these tables is 885 instead of 1,000. The reason is that 115 of the original
1,000 queries do not share any common terms with the databases used in
our experiments.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 331

Fig. 9. Cover page of CSams

6. A PROTOTYPE SYSTEM

Based on the metasearch algorithm we described in the previous sections,
we have implemented a demonstration prototype metasearch engine called
CSams (Computer Science Academic MetaSearch engine; URL: http://www.
data.binghamton.edu:8080/CSams/). The system has 104 databases with each
containing Web pages from a Computer Science department in a US university.
These Web pages are fetched using a Web spider (robot) we implemented. Du-
plicate Web pages are identified and removed. Each database is treated like a
search engine in the demo system.

From the Web interface (see Figure 9), the user can enter search terms.
The user can also indicate how many documents are desired, whether he or
she wants search statistics (e.g., cor iden db and cor iden doc) to be reported,
whether he or she wants the combined-term method to be used, and whether
he or she wants an online dictionary to be used to replace the combined-term

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

332 • W. Meng et al.

method (see the discussion at the end of Section 4). The dictionary employed by
CSams is expanded from an online dictionary on computing (FOLDOC) from
http://wombat.doc.ic.ac.uk/foldoc/contents.html. This dictionary currently has
close to 7,000 two-term phrases in computer science.

After a query is processed, the resulting page will display the desired num-
ber of most similar documents found by our metasearch algorithm. For each
retrieved document, its rank, document id, corresponding database id, global
similarity, and the URL will be displayed. In addition, when the option “Dis-
play Search Statistics” is selected, some rank numbers will be displayed in bold
red color but some rank numbers will not have any color. This is explained as
follows. Suppose a user wants to retrieve the 10 most similar Web pages (across
all databases). A number in red indicates that the corresponding Web page is
indeed among the actual 10 Web pages most similar to the query based on the
ideal ranking. Ideal ranking is obtained based on all documents being placed
into a single collection and every document in the collection being ranked. When
a query is received by CSams and when the option “Display Search Statistics” is
selected, two evaluations are actually performed: one based on the metasearch
engine approach (i.e., database selection and collection fusion are performed)
and the other based on the ideal ranking. The effectiveness of the metasearch
engine is good if the rank numbers of all or nearly all returned documents
are red.

7. CONCLUDING REMARKS

In this article, we proposed a new method to solve the database selection
problem in a large scale metasearch engine environment where tens of thou-
sands or more special-purpose search engines may be used. The new approach
significantly improved the scalability of previous methods in both computation
and space. Specifically, the new method uses a new measure to rank databases
and employs an integrated database representative. By keeping only informa-
tion associated with a small constant number of most important databases for
each potential query term, the new representative can scale to a virtually un-
limited number of databases and also permit efficient selection of promising
databases for any given query. In addition, a method is described to incorpo-
rate certain dependencies among terms into our solution. Experimental results
indicate that very good retrieval accuracy can be achieved by the proposed
solution. A prototype system based on the proposed method has been imple-
mented (see http://www.data.binghamton.edu:8080/CSams/).

This article focuses on finding the most similar documents for a given query.
However, documents with high similarities are not necessarily relevant (useful),
especially when the user query is short. This is because the particular meaning
of a term in a short query often cannot be identified correctly. Several methods
exist to remedy this problem. One is to incorporate the importance of a docu-
ment as determined by linkages between documents (e.g., PageRank [Page et al.
1998]) with the similarity of the document to define the degree of relevance of
the document [Yu et al. 2001a]. With an appropriate database representative, it
is possible to estimate the degree of relevance of the most relevant document in

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 333

a database. This enables the retrieval of the most relevant documents [Yu et al.
2001a]. Another method is to associate databases with concepts [Fan and Gauch
1999; Ipeirotis et al. 2001; Meng et al. 2001a; Wang et al. 2000]. When a query
is received by the metasearch engine, it is first mapped to a number of appro-
priate concepts and then those databases associated with the mapped concepts
are used for database selection. The concepts associated with a database/query
are used to provide some contexts for terms in the database/query. As a result,
the meanings of terms can be more accurately determined.

We are currently working on incorporating the above remedies into our
metasearch engine solution. Another issue we are studying is how to adopt
the query sampling technique in Callan et al. [1999] to estimate the adjusted
maximum normalized weight of a term from uncooperative search engines. A
pilot study has been carried out to estimate a related statistic (the maximum
normalized weight) and the preliminary results indicate that the technique is
promising [Liu et al. 2001a].

ACKNOWLEDGMENTS

We would like to thank L. Gravano and H. Garcia-Molina for providing us with
the set of Internet queries used in the experiments. We also would like to thank
the anonymous reviewers for their valuable suggestions.

REFERENCES

ARMS, W., BOWMAN, C., FUHR, N., GRAVANO, L., KAPIDAKIS, S., KOVACS, L., LAGOZE, C.,
LEVAN, B., PAPAZOGLOU, M., AND SMEATON, A. 1999. Resource Discovery in a Globally-
Distributed Digital Library. Digital Library Collaborative Working Groups Report, http://www.
iei.pi.cnr.it/DELOS/NSF/resourcediscovery.htm.

BAUMGARTEN, C. 1997. A probabilistic model for distributed information retrieval. In Proceedings
of the ACM SIGIR Conference (Philadelphia, July), 258–266.

BAUMGARTEN, C. 1999. A probabilistic solution to the selection and fusion problem in distributed
information retrieval. In Proceedings of the ACM SIGIR Conference (Berkeley, Calif., August),
246–253.

BERGMAN, M. 2000. The Deep Web:Surfacing the Hidden Value. BrightPlanet, www.
completeplanet.com/Tutorials/DeepWeb/index.asp.

BHARAT, K. AND BRODER, A. 1998. A technique for measuring the relative size and overlap of public
web search engines. In Proceedings of the Seventh World Wide Web Conference (Brisbane, April),
379–388.

CALLAN, J., CONNELL, M., AND DU, A. 1999. Automatic discovery of language models for text
databases. In Proceedings of the ACM SIGMOD Conference (Philadelphia, June), 479–490.

CALLAN, J., LU, Z., AND CROFT, W. 1995. Searching distributed collections with inference networks.
In Proceedings of the ACM SIGIR Conference (Seattle), 21–28.

DREILINGER, D. AND HOWE, A. 1997. Experiences with selecting search engines using metasearch.
ACM Trans. Inf. Syst. 15, 3 (July), 195–222.

FAN, Y. AND GAUCH, S. 1999. Adaptive agents for information gathering from multiple, distributed
information sources. In Proceedings of the 1999 AAAI Symposium on Intelligent Agents in Cy-
berspace (Stanford University, March), 40–46.

FRENCH, J., POWELL, A., CALLAN, J., VILES, C., EMMITT, T., PREY, K., AND MOU, Y. 1999. Comparing
the performance of database selection algorithms. In Proceedings of the ACM SIGIR Conference
(Berkeley, Calif., August), 238–245.

FRENCH, J., POWELL, A., AND VILES, C. 1998. Evaluating database selection techniques: A testbed
and experiment. In Proceedings of the ACM SIGIR Conference (Melbourne, August), 121–129.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

334 • W. Meng et al.

GAUCH, S., WANG, G., AND GOMEZ, M. 1996. Profusion: Intelligent fusion from multiple, distributed
search engines. J. Universal Comput. Sci. 2, 9, 637–649.

GRAVANO, L. AND GARCIA-MOLINA, H. 1995. Generalizing gloss to vector-space databases and broker
hierarchies. In Proceedings of the International Conferences on Very Large Data Bases (Zurich,
September), 78–89.

GRAVANO, L. AND GARCIA-MOLINA, H. 1997. Merging ranks from heterogeneous internet sources.
In Proceedings of the International Conferences on Very Large Data Bases (Athens, August),
196–205.

HAWKING, D. AND THISTLEWAITE, P. 1999. Methods for information server selection. ACM Trans.
Inf. Syst. 17, 1 (Jan.), 40–76.

IPEIROTIS, P., GRAVANO, L., AND SAHAMI, M. 2001. Probe, count, and classify: Categorizing hidden-
web databases. In Proceedings of the ACM SIGMOD Conference (Santa Barbara, Calif.),
67–78.

JANSEN, B., SPINK, A., BATEMAN, J., AND SARACEVIC, T. 1998. Real life information retrieval: A study
of user queries on the web. ACM SIGIR Forum 32, 1, 5–17.

KIRK, T., LEVY, A., SAGIV, Y., AND SRIVASTAVA, D. 1995. The information manifold. In AAAI Spring
Symposium on Information Gathering in Distributed Heterogeneous Environments.

KIRSCH, S. 1998. Internet search: Infoseek’s experiences searching the internet. ACM SIGIR
Forum 32, 2, 3–7.

LAWRENCE, S. AND LEE GILES, C. 1998a. Inquirus, the neci meta search engine. In Proceedings of
the Seventh International World Wide Web Conference (Brisbane, April), 95–105.

LAWRENCE, S. AND LEE GILES, C. 1998b. Searching the world wide web. Science 280, 98–100.
LAWRENCE, S. AND LEE GILES, C. 1999. Accessibility of information on the web. Nature 400, 107–

109.
LIMA, E. AND PEDERSEN, J. 1999. Phrases recognition and expansion for short, precision-biased

queries based on a query log. In Proceedings of the ACM SIGIR Conference (Berkeley, Calif.
August), 145–152.

LIU, K., YU, C., AND MENG, W. 2001a. Discovering the representative of a search engine. Tech.
Rep., DePaul University.

LIU, K., YU, C., MENG, W., WU, W., AND RISHE, N. 2001b. A statistical method for estimating the
usefulness of text databases. IEEE Trans. Knowl. Data Eng. (to appear).

LIU, L. 1999. Query routing in large-scale digital library systems. In Proceedings of the IEEE
International Conference on Data Engineering. (Sydney, March), 154–163.

MANBER, U. AND BIGOT, P. 1997. The search broker. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems (Monterey, Calif., December), 231–239.

MENG, M., LIU, K., YU, C., WANG, X., CHANG, Y., AND RISHE, N. 1998. Determine text databases to
search in the internet. In Proceedings of the International Conferences on Very Large Data Bases,
(New York, August), 14–25.

MENG, M., LIU, K., YU, C., WU, W., AND RISHE, N. 1999a. Estimating the usefulness of search
engines. In Proceedings of the IEEE International Conference on Data Engineering (Sydney,
March), 146–153.

MENG, W., WANG, W., SUN, H., AND YU, C. 2001a. Concept hierarchy based text database catego-
rization. Int. J. Knowl. Inf. Syst. (to appear).

MENG, W., YU, C., AND LIU, K. 2001b. Building effective and efficient metasearch engines. ACM
Comput. Surv. (to appear).

MENG, W., YU, C., AND LIU, K. 1999b. Detection of heterogeneities in a multiple text database
environment. In Proceedings of the Fourth IFCIS Conference on Cooperative Information Systems
(Edinburgh, September), 22–33.

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1998. The pagerank citation ranking: Bring
order to the web. Tech. Rep., Stanford University.

SALTON, G. AND MCGILL, M. 1983. Introduction to Modern Information Retrieval. McGraw-Hill,
New York.

SELBERG, E. AND ETZIONI, O. 1995. Multi-service search and comparison using the metacrawler.
In Proceedings of the Fourth World Wide Web Conference (Boston, December), 195–208.

SELBERG, E. AND ETZIONI, O. 1997. The metacrawler architecture for resource aggregation on the
Web. IEEE Expert 12, 1, 8–14.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

A Highly Scalable Method for Metasearch • 335

SPARCK JONES, K. 1972. Statistical interpretation of term specificity and its application in re-
trieval. J. Doc. 28, 1, 11–20.

SUGIURA, A. AND ETZIONI, O. 2000. Query routing for web search engines: Architecture and exper-
iments. In Proceedings of the Ninth World Wide Web Conference (Amsterdam, May), 417–429.

VOORHEES, E., GUPTA, N., AND JOHNSON-LAIRD, B. 1995. Learning collection fusion strategies. In
Proceedings of the ACM SIGIR Conference (Seattle, July), 172–179.

WANG, W., MENG, W., AND YU, C. 2000. Concept hierarchy based text database categorization in
a metasearch engine environment. In Proceedings of the First International Conference on Web
Information Systems Engineering (Hong Kong, June), 283–290.

XU, J. AND CALLAN, J. 1998. Effective retrieval with distributed collections. In Proceedings of the
ACM SIGIR Conference (Melbourne, Australia), 112–120.

XU, J. AND CROFT, B. 1999. Cluster-based language models for distributed retrieval. In Proceedings
of the ACM SIGIR Conference (Berkeley, Calif., August), 254–261.

YU, C. AND MENG, W. 1998. Principles of Database Query Processing for Advanced Applications.
Kaufmann, San Francisco.

YU, C., LIU, K., MENG, W., WU, Z., AND RISHE, N. 2001b. A methodology for retrieving text documents
from multiple databases. IEEE Trans. Knowl. Data Eng. (to appear).

YU, C., LIU, K., WU, M., W., W., AND RISHE, N. 1999a. Finding the most similar documents across
multiple text databases. In Proceedings of the IEEE Conference on Advances in Digital Libraries
(Baltimore, May), 150–162.

YU, C., MENG, W., LIU, K., WU, W., AND RISHE, N. 1999b. Efficient and effective metasearch for a
large number of text databases. In Proceedings of the Eighth ACM International Conference on
Information and Knowledge Management (Kansas City, November), 217–224.

YU, C., MENG, W., WU, W., AND LIU, K. 2001a. Efficient and effective metasearch for text databases
incorporating linkages among documents. In Proceedings of the ACM SIGMOD Conference (Santa
Barbara, Calif., May), 187–198.

YUWONO, B. AND LEE, D. 1997. Server ranking for distributed text resource systems on the in-
ternet. In Proceedings of the fifth International Conference On Database Systems For Advanced
Applications (Melbourne, Australia, April), 391–400.

Received April 2001; revised May 2001; accepted July 2001

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.

