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Abstract

Spammers intend to increase the PageRank of certain spam pages by creating a large number of links
pointing to them. We propose a novel method based on the concept of personalized PageRank that detects
pages with an undeserved high PageRank value without the need of any kind of white or blacklists or
other means of human intervention. We assume that spammed pages have a biased distribution of pages
that contribute to the undeserved high PageRank value. We define SpamRank by penalizing pages that
originate a suspicious PageRank share and personalizing PageRank on the penalties. Our method is
tested on a 31 M page crawl of the.de domain with a manually classified 1000-page stratified random
sample with bias towards large PageRank values.

1 Introduction

Identifying and preventing spam was cited as one of the top challenges in web search engines in a 2002 paper
[24]. Amit Singhal, principal scientist of Google Inc. estimated that the search engine spam industry had
a revenue potential of $4.5 billion in year 2004 if they had been able to completely fool all search engines
on all commercially viable queries [36]. Due to the large and ever increasing financial gains resulting from
high search engine ratings, it is no wonder that a significant amount of human and machine resources are
devoted to artificially inflating the rankings of certain web pages.

In this paper we concentrate on identifying pages backlinked by a large amount of other pages in order
to mislead search engines to rank their target higher. Our main goal is to compute for each Web page a
SpamRank value that measures the amount of the undeserved PageRank [32] of a page. Note that by the
nature of our methods we make no distinction between fair or malicious intent and our algorithm will likely
rank pages with a large amount of low quality backlinks as spam.

In order to understand the nature of link spam, we first consider the characterization of an “honest” link
by Chakrabati et al. [11]:

“hyperlink structure contains an enormous amount of latent human annotation that can be ex-
tremely valuable for automatically inferring notions of authority.”

∗Support from NKFP-2/0017/2002 project Data Riddle and various ETIK, OTKA and AKP grants
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Note that their notion of an authority plays similar role as a page with high PageRank value. In this sense
the existence of a hyperlink should affect ranking only if it expresses human annotation. As examples for
different uses of hyperlinks we refer to the article of Davison [13] that shows how to determine intra-site
links that may serve both navigational and certain spam purposes. In [22] more examples are given, among
others spamming guest books with links or mirroring with the sole purpose of the additional links to spam
targets.

We believe that identifying email spam or web content spam byhuman inspectionis relative easy and
automated methods cannot, in any case, perform as good as human judgement. Györgyi and Garcia-Molina
[22] list a few methods that confuse users including term hiding (background color text); cloaking (different
content for browsers and search engine robots) and redirection; some of these techniques can still be found
by inspecting the HTML code within the page source. Detecting redirection may already require certain
expertise: we found quite a number of doorway spam pages which used obfuscated JavaScript code to
redirect to their target.

Web link spam, in contrast, appears to be much harder to catch. As an example of a page that we ranked
high for spam, 2way.handyfritz.de looks like an “innocent” site for mobile logos and tones while a large
number of its backlinks are in fact spam messages in guestbooks. As a side effect we penalize pages often
cited in blogs and lists, for example to www.golem.de/0501/35735.html. Certain forms of a link spam are
however visible to Web users as well: thethema- ?.de clique contains no useful content, only long list of
links to itself and to various eBay.de auctions and pop-up ads fill its pages. The misuse of the Scout24.de
affiliate program is also quite popular among the German spammers.

We also see frequent examples of non-spam with undeserved PageRank. For example for affiliate pages,
link spamming is not always the purpose, but it is always a side-effect as they get paid to redirect traffic
to certain sites. Since we make no analysis of content, we cannot adopt a more restrictive notion of spam
favored by the search engine optimization community. Depending on the actual query where a page re-
ceives high PageRank, one may refer to techniques to attain the high rank asboostingif the page content
is otherwise relevant to the query, see e.g. [22]. Our method, in this sense, could be called de-boosting
with the purpose of assisting users to find pages where the maintainer has a lower budget on Search Engine
Optimization (SEO).

Preferred notions of Web link or content spam could be the following. In [22] a content is called spam if
it is completely irrelevant for the given search terms. However when implementing a search engine one aims
to use ranking methods that select the most relevant highest quality content irrespective to the amount of
search engine optimization for similar, but possibly lower quality content. In another definition [34] search
engine spam consists of features that maintainers would not add to their sites if search engines didn’t exist.
Link spam however could act even without the presence of a search engine by misleading users to visit
certain pages, in particular for the purpose of misusing affiliate programs.

An example of a site with quality content that we penalize high is city-map.de. Such sites are distributed
to so many pages across a large number of domain names that attain undeserved PageRank for these pages.
While methods such as HostRank [17] and the site boundary detection of Davison [13] also handle these
sites, we also notice their undeserved PageRank value by giving penalties for these sites. The natural idea
of combining methods is beyond the scope of the current report.

1.1 Our method: Where does your PageRank come from?

We assume that spammed pages have a biased distribution ofsupporterpages that contribute to the unde-
served high PageRank value. As described in detail in Section 2, a node’s PageRank is equal to the average
of its personalized PageRank where personalization is over all Web pages. By the recent algorithm of [21]
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Algorithm 1: Overall Structure of SpamRank Algorithm

for all Web pagesi do
Supporti,· ← empty sparse vector of reals

Phase 1: Supporter Generation
generate nodes into vector Supporti,· that have high contribution in the PageRank ofi

Phase 2: Penalization
for all Web pagesi do

give Penaltyi based on irregular behavior of PageRank over Supporti,·
Phase 3: SpamRank as Personalized PageRank (PPR) over Penalties

SpamRank← PPR(Penalty)

we are able to approximately compute all these values1 in order to deduce a large fraction of the origin of
the node’s PageRank value.

PageRank distribution in your neighborhood: looks honest or spam? Our key assumption is that
supporters of an honest page should not be overly dependent on one another, i.e. they should be spread
across sources of different quality. Just as in the case of the entire Web, the PageRank distribution of an
honest set of supporters should be power law. Particular examples that raise suspicion when a page receives
its PageRank only from very low ranked pages (and then from a very large number of them); such a page
has little quality support that makes the fairness of the large number of low-quality supporters questionable.
Another example is a set of supporters, all with PageRank values falling into a narrow interval. In this case
the large number of similar objects raise the suspicion that they appear by certain means of a cooperation.

The two key observations in detecting link farms, colluding pages or other means of PageRank boosting
in the neighborhood of a page are the following:

• Portions of the Web are self-similar; an honest set of supporter pages arise by independent actions
of individuals and organizations that build a structure with properties similar to the entire Web. In
particular, the PageRank of the supporters follows a power law distribution just as the case for the
entire Web.

• Link spammers have a limited budget; when boosting the PageRank of a target page, “unimportant”
structures are not replicated.

A perfect form of a link spam is certainly a full replica of the entire Web that automatic link based methods
are unable to distinguish from the original, honest copy. Our method hence targets at finding the missing
statistical features of dishonest page sets. In our experiment the power law distribution acts as this feature;
we remark that (i) other features may perform well and (ii) our algorithm can be fooled by targeting a link
farm towards the particular statistical property we employ, hence in a practical application a large number
of features should be combined that should probably include non-link based methods as well.

Our algorithm to define SpamRank, a value that measures the amount of undeserved PageRank score
of a Web page, consist of three main steps; the overall structure is given in Algorithm 1. First we select
the supporters of each given page by a Monte Carlo personalized PageRank simulation as described in
Section 2. Then in the second phase we penalize pages that originate a suspicious PageRank share, i.e. their

1Approximate personalized PageRank values are stored space-efficiently in a sparse matrix
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personalized PageRank is distributed with bias towards suspicious targets. This step is performed target
by target; we measure the similarity of the PageRank histogram of sources to an ideal power law model
suggested by [5, 27]. Then in the third step we simply personalize PageRank on the penalties. This last
step concentrates suspicious activities to their targets; in another way to state, we determine SpamRank by
a back-and-forth iteration between targets and sources.

1.2 Related work

With the advent of search engines web spamming appeared as early as 1996 [12, 2]. The first generation
of search engines relied mostly on the classic vector space model of information retrieval. Thus web spam
pioneers manipulated the content of web pages by stuffing it with keywords repeated several times.

Following Google’s success all major search engines quickly incorporated link analysis algorithms such
as HITS [26] and PageRank [32] into their ranking schemes. The birth of the highly successful PageRank
algorithm [32] was indeed partially motivated by the easy spammability of the simple in-degree count.
However Bianchini et al. [7] proved that for any link farm and any target set of pages such that each target
page is pointed to by at least one link farm page the sum of PageRank over the target set’s nodes is at least
large as a linear function of the number of pages in the link farm.

Bharat and Henzinger [6] improved HITS to reduce its sensitivity to mutually reinforcing relationships
between hosts. Generally, [31, 8, 35] discuss the (negative) effects of dense subgraphs (known as tightly-knit
communities, TKCs) on HITS and other related algorithms.

Section 7 of [29] and the references therein give an overview of the theoretical results underlying the
TKC effect that indicate a very weak TKC-type spam resistance of HITS and a somewhat better but still
unsatisfying one of PageRank. The results show that HITS is unstable, its hub and authority ranking values
can change by an arbitrary large amount if the input graph is perturbed. On the other hand, PageRank values
are stable, but the ranking order induced by them is still unstable.

Davison [13] applied a decision tree trained on a broad set of features to distinguish navigational and
link-spam (dubbed as nepotistic) links from the good ones. To the best of our knowledge Davison’s work is
the first openly published research paperexplicitlydevoted to the identification of link spam. More recently
Amitay et al. [3] extracted features based on the linkage patterns of web sites. Clustering of the feature
space produced a decent amount clusters whose members appeared to belong to the same spam ring.

Recently Fetterly et al. [18] demonstrated that a sizable portion of machine generated spam pages can be
identified through statistical analysis. Outliers in the distribution of various web page properties – including
host names and IP addresses, in- and out-degrees, page content and rate of change – are shown to be mostly
caused by web spam.

Eiron et al. [17] gives evidence that HostRank – PageRank calculated over the host graph – is more
resilient against link spam. HostRank’s top list contained far fewer questionable URLs than PageRank’s
because of the relatively reduced weight given to link farm sites. This finding is in good agreement with the
before mentioned linear spammability of PageRank [7].

Gyöngyi et al. [23] show that spam sites can be further pushed down in HostRank ordering if we person-
alize HostRank on a few trusted hub sites. Their method is semi automatic, the trusted 180 seed pages were
carefully hand picked from 1250 good hub pages distilled automatically using Inverse PageRank2. From the
same authors, [22] gives a detailed taxonomy of current web spamming techniques.

Zhang et al. [39] argue that the PageRank of colluding nodes (i.e. pages within the same dense, cliquish

2Although [23] makes no citation on Inverse PageRank, computing PageRank on the transposed web graph for finding hubs has
been independently introduced previously in [14, 20].
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subgraph) is highly correlated with1/ε, whereε denotes the teleportation probability. Their method in-
creases the probability of jump from nodes with large correlation coefficients. The resulting Adaptive Ep-
silon scheme is shown to be resistant against artificial, hand-made manipulations implanted by the authors
to a real world web graph crawled by the Stanford WebBase project. Baeza-Yates et al. [4] improve Zhang
et al.’s analysis and experimentally study the effect of various collusion topologies.

Wu and Davison [38] identify a seed set of link farm pages based on the observation that the in- and
out-neighborhood of link farm pages tend to overlap. Then the seed set of bad pages is iteratively extended
to other pages which link to many bad pages; finally the links between bad pages are dropped. Experiments
show that a simple weighted indegree scheme on the modified graph yields significantly better precision for
top ten page hit lists than the Bharat-Henzinger HITS variant. Moreover link farm sites with not too high
original HostRank suffer a drastic loss when HostRank is calculated over the pruned graph.

As for a broader outlook, email spam is thoroughly discussed in the proceedings of the recently set up
conference [16]. The sensitivity of e-commerce collaborative filtering algorithms to spam attacks is analyzed
empirically in [28]. Dwork et al. [15] present spam resistant algorithms for rank aggregation in meta search
engines.

2 Preliminaries

In this section we briefly introduce notation, and recall definitions and basic facts about PageRank. We also
describe the Monte Carlo simulation for Personalized PageRank of [21].

Let us consider the web as a graph: let pages form a vertex set and hyperlinks define directed edges
between them. LetA denote the stochastic matrix corresponding to random walk on this graph, i.e.

Aij =
{

1/outdeg(i) if pagei points toj,
0 otherwise.

ThePageRankvectorp = (p1, . . . ,pN ) is defined as the solution of the following equation [9]

pi = (1− ε) ·
N∑

j=1

pjAji + ε · ri ,

wherer = (r1, . . . , rN ) is the teleportation vector andε is the teleportation probability. Ifr is uniform,
i.e. ri = 1/N for all i, thenp is the PageRank. For non-uniformr the solutionp is called personalized
PageRank; we denote it by PPR(r). It is easy to see that PPR(r) is linear inr [25]; in particular

pi =
1
N

∑
v

PPRi(χv)(1)

whereχv is the teleportation vector consisting of all 0 except for nodev whereχv(v) = 1.
By equation (1) we may say that the PageRank of pagei arises as the contribution of personalization

over certain pagesv where PPRi(χv) is high. We say that pagev supportsi to the above extent.
As noticed independently by [20, 25], the (personalized) PageRank of a vertex is equal to the probability

of a random walk terminating at the given vertex where the length is from a geometric distribution: we
terminate in stept with probabilityε · (1− ε)t. To justify, notice that PageRank can be rewritten as a power
series

PPR(r) = ε ·
∞∑

t=0

(1− ε)tr ·At.(2)
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The termr ·At corresponds to a random walk of lengtht andε · (1− ε)t is the probability of termination.
The fact that PageRank can be computed as the probability over certain random walks gives rise to the

following algorithm [21] that we use in our procedure. We generate large enough number of random walks
starting at vertexj and add up probabilitiesε(1 − ε)t for their endpointsi; based on the counts we get
Supportj,i as an unbiased estimator of PPR(χj)i. Experiments in [21] suggest that a thousand simulations
suffice in order to distinguish high and low ranked pages. The overall idea is summarized in Algorithm 2;
we use the implementation described in [21] that differs from the above simplified description in two key
aspects. First, for efficiency random walks are generated edge by edge; in one iteration each random walk is
augmented by an edge. For such an iteration the set of random walks is sorted by their endvertex; then the
iteration can be performed in a single edge scan of the Web graph. Finally we need a last sort over the set of
random walks by endvertex; then for a single endvertexi all vertices are collected that support vertexi.

Algorithm 2: Phase 1 outline for finding supporters by Monte Carlo simulation. Actual implementation uses
external sort [21].

for all Web pagesi do
for ` = 1, . . . , 1000 do

t← random value from geometric distribution with parameterε
j ← endvertex of a random walk of lengtht starting ati
Supportj,i ← Supportj,i + ε(1− ε)t

3 Algorithm

We define SpamRank, a measure of undeserved PageRank share of Web page, through a three-phase algo-
rithm (Algorithm 1). The algorithm first identifies candidate sources of undeserved PageRank scores. In
Phase 1 we select the supporters of each page by the Monte Carlo simulation of [21]. Then in Phase 2
pages receive penalties based on how many potential targets are affected and how strong is the influence
on their PageRank values. Finally in Phase 3 we defineSpamRankas PageRank personalized on the vector
of penalties, in a similar way as, by folklore information, Google’s BadRank [1] is computed (on the Web
graph with reverse edge direction) personalized on identified spam.

In Phase 1 (Algorithm 2) we compute the approximate personalized PageRank vector of all pagesj.
We use the Monte Carlo approximation of [21]; this algorithm under practically useful parameter settings
computes a set of roughly 1,000 nodesi together with a weight Supporti,j . This weight can be interpreted
as the probability that a random PageRank walk starting atj will end in i.

Before proceeding with the penalty computation in Phase 2, we invert our data (by an external sort) and
for each pagei we consider the list of pagesj such thati is ranked high when personalized onj; the strength
is given by Supporti,j as above. Notice that Supporti,j arises from a Monte Carlo simulation and hence its
value is 0 for allj where the actual personalized PageRank value is negligible.

For a fixed pagei, penalties are defined by considering the PageRank histogram of alli with Supporti,j >
0 for pages that receive enough supporters. Pages with less thann0 supporters (in our experimentn0 =
1000) are ignored; supporter pages that spread their personalized PageRank to targets with less thann0

incoming paths are of little spamming power anyway.
In the heart of our algorithm we find the method of identifying irregularities in the PageRank distribution

of a page’s supporters. Given such a measureρ ≤ 1 whereρ = 1 means perfect regularity, we proceed by
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Algorithm 3: Phase 2 Penalty Calculation for Web pages, two variants.

Initialize vector Penalty by all 0
for all Web pagesi with at leastn0 supportersj with nonzero Supporti,j do

ρ← regularity of the supporters ofi
if ρ < ρ0 then

for all Web pagesj with Supporti,j > 0 do

Penaltyj ← Penaltyj +
{

(ρ0 − ρ) {Variant I}
(ρ0 − ρ) · Supporti,j {Variant II}

{we useρ0 = 0.85}
for all Web pagesi do

if Penaltyi > 1 then
Penaltyi ← 1

penalizing all the supporter pages proportional to(ρ0 − ρ) if the measure is below a thresholdρ0. In our
experiments the variant where penalties are also proportional to the strength of the support, Supporti,j ,
proves slightly more effective. Also we put an upper limit of 1 for the penalties of a single page; penalties
are otherwise accumulate for pages that participate in several irregular supporter sets.

3.1 Global properties of the Web graph

The fully automatic detection of irregular sets of supporters forms crucial part of our algorithm, hence we
briefly describe the intuition behind our method. Key ingredients are

• Rich get richer evolving models: The in-degree and the PageRank of a broad enough set of pages
should follow power law distribution.

• Self-similarity: A large-enough supporter set should behave similar to the entire Web.

We build on widely known models of the evolution of the Web [5, 27] that describe global properties
such as the degree distribution or the appearance of communities. These models indicate that the overall
hyperlink structure arises by copying links to pages depending on their existing popularity, an assumption
agreeing with common sense. For example in the most powerful model [27] pages within similar topics
copy their links that result in “rich gets richer” and we see a power law degree distribution.

The distribution of PageRank behaves very similar to that of the indegree as noticed among others
in [33]. In all Web crawls considered by experiments PageRank has a power law distribution. Clearly
PageRank and in-degree should be related as each page has itsε/N teleportation share of PageRank and
propagates this value through out-links. Figures about PageRank and in-degree correlation vary; some
claim a value close to 0 but typically a moderate value close to 0.5 is reported; as an example, the authors
of [30] corrected their initial low correlation value to 0.34 in personal communication.

When looking at individual pages, models could in theory completely lose all their predictive power. In
practice however strong self-similarity of various portions of the Web is observed [5] that may indicate that
the PageRank in a neighborhood should have the same statistical properties as in the entire Web.

Stating in an opposite way, we argue that the neighborhood of a spam page will look different from an
honest one. The neighborhood of a link spam will consist of a large number of artificially generated links.
These links likely come from similar objects; the same fine granularity obtained by the rich gets richer
principle is harder to be locally replicated.
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3.2 Phase 2: Penalty generation

We are ready to fill in the last detail (Algorithm 4) of our SpamRank algorithm. Firstly for a pagei we
may consider the histogram of either the PageRank of all of its supporter pagesj with Supporti,j > 0 or
the product Supporti,j · PageRankj for all pages. While the latter variant appears more sophisticated, in our
experiments we find Variant A perform slightly better.

Algorithm 4: Irregularity Calculation for Web pagei, two variants.

Create a list of buckets fork = 0, 1, . . .
for all Web pagesj with Supporti,j > 0 do

r =
{

PageRankj {Variant A}
Supporti,j · PageRankj {Variant B}

Add j to bucketk with a · bk−1 < r ≤ a · bk {we usea = 0.1, b = 0.7}
for all nonempty bucketsk = 0, 1, . . . do

Xk ← k, Yk ← log(|bucketi|)
ρ← Pearson-correlation(X, Y )

Given the PageRank histogram as above, we use a very simple approach to test its fit to a power law
distribution. We split pages into buckets by PageRank; we let bucket boundary values grow exponentially as
a · bk. We usea = 0.1 andb = 0.7; the choice has little effect on the results. If the PageRank values follow
a power law distribution such that the`-th page in order has rank proportional toc · `−α, then the theoretic
size of bucketk should be∫ a·bk+1

a·bk
c · `−α d` = c′(bk·(−α−1) − b(k+1)·(−α−1))

= c′′bk·(−α−1).

Hence logarithm of the theoretical count within bucketk is linear in k. In our algorithm we penalize
proportional to the Pearson correlation coefficient between the index and the logarithm of the count within
the bucket as one possible measure for testing a line fit over the data.

4 Experiments

4.1 Data set

Torsten Suel and Yen-Yu Chen kindly provided us with the web graph and the set of URLs extracted from
a 31.2 M page crawl of the.de domain. The crawl was carried out by the Polybot crawler [37] in April
2004. This German graph is denser than the usual web graphs, it has 962 M edges, which implies an average
out-degree of 30.82.

While all the algorithms mentioned in Section 3 can be implemented both in external memory and in
a distributed network of workstations, we applied a trivial graph compression method to speed our exper-
iments up by using internal memory. The compressed graph size is 1.3 GB. Computing the Monte Carlo
Personalized PageRank for all the nodes took 17 hours, creating the inverted PPR database required 4 hours
and resulted in a 14 GB database. Determining SpamRank’s personalization vector took 20 minutes, which
was followed by another 20 minutes of PageRank computation by simple power method. All programs were
ran on a single Pentium 4 3.0 GHz machine with Linux OS.
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Weborg 0.8%

Ad 3.7%

7.9%
Non-existent

Empty 0.4%
Alias 0.3%

Unknown 0.4%

70.0 %

Reputable

Spam 16.5%

Figure 1: Distribution of categories in the evaluation sample

4.2 Results

To evaluate the signals given by SpamRank we chose a subset of the methods presented in [23]. Firstly we
ordered the pages according to their PageRank value and assigned them to 20 consecutive buckets such that
each bucket contained 5% of the total PageRank sum with bucket 1 containing the page with the highest
PageRank. From each bucket we chose 50 URLs uniformly at random, resulting in a 1000 page sample
heavily biased toward pages with high PageRank. Three of the authors received a 400 page subset of the
sample, which we manually classified into one of the following categories: reputable, web organization,
advertisement, spam, non-existent, empty, alias, and unknown (see [23] for detailed definition of the cate-
gories).

We observed a poor pairwiseκ value [10] of 0.45 over the 100 pairs of common URLs. The majority of
disagreements could be attributed to different rating of pages in affiliate programs and certain cliques. This
shows that assessing link spam is nontrivial task for humans as well. By considering all remarks available
concerning the judgements over the common set of URLs and using the experience gathered so far, one of
the authors revised the classifications for the full 1000 page sample.

We observe relative fast changes among sample pages over time, in particular spam pages changing to
non-existent. Judgements after final revision reflect the state as of April 2004.

Figure 1 shows the distribution of categories among the sample. Throwing away the non-existent, empty,
unknown and alias pages gave us a usable 910 page sample. Note that the proportion of spam pages in our
sample is somewhat higher than in previous studies [23, 18]. We attribute this to the denser web graph and
the known notoriousness of spammers over the .de domain [19]. Because of the abundance of pages from
the eBay.de domain – 0.8 M pages in the dataset – and due to the misuse of its affiliation program, we
decided to treat pages from eBay.de as a separate subcategory in the next two figures.
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Figure 2: Distribution of categories among PageRank buckets

Figure 2 depicts the distribution of each category conditioned on the PageRank bucket. It can clearly be
seen that a large amount of spam pages made it to the top two PageRank buckets where the percentage of
spam is even higher than in the full sample.

Using the SpamRank ordering we again assigned each page to one of the 20 SpamRank buckets, the
ith SpamRank bucket having exactly the same number of pages in it as theith PageRank bucket. Figure 3
demonstrates that the first four SpamRank buckets contain a very large amount of spam; these buckets are
low in truly reputable non-eBay content.

It is important to note that the ordering induced by SpamRank is very different from PageRank, therefore
we cannot assess the properties of SpamRank using traditional precision/recall curves calculated over the
original sample as it was drawn according to the PageRank distribution. We refrained from classifying a
complete new sample according to the SpamRank distribution, instead we only drew a new random sample
of 5× 20 pages from the top 5 SpamRank buckets. As it can be seen in Figure 4 the top SpamRank buckets
are rich in spam pages, though more than half of the pages in these buckets are not spam. Manual inspection
of the non-spam pages revealed that they are predominantly pages from sites with dense, templatic internal
structure such as forums, online retail catalogues and structured document archives. In terms of PageRank,
the machine generated internal link structure of these sites behaves exactly like a large link farm, therefore
we believe it is justified to mark them as pages with artificially inflated PageRank value.

Finally in Figure 5 we plotted the average difference between the PageRank and SpamRank bucket
number of pages separately for spam and reputable pages (including eBay.de) in each PageRank bucket.
The average demotion in SpamRank compared to PageRank is significantly higher for reputable pages. The
(small) positive demotion for spam pages is explained by the fact that the top SpamRank buckets contain a
number of fresh, either spammy or cliquish pages (see Figure 4) not included in the original sample.
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Figure 3: Distribution of categories among SpamRank buckets. Sampling is stratified using PageRank.
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5 Conclusions

We presented SpamRank, a three-stage, scalable Monte Carlo algorithm for computing a personalized Page-
Rank vector biased toward link spam pages. Our experiments demonstrated that SpamRank is indeed ca-
pable of differentiating among spam and non-spam pages. A number of questions left to subsequent work
are as follows. Explore the effects of parameters and assess variants of the algorithm (e.g. penalty depen-
dent on the PageRank of a suspicious target page). Produce a ranking that retains the reputable part of
PageRank. Incorporate SpamRank into a ranking function and measure its effect on precision for popular
or financially lucrative queries. Lastly compare and evaluate SpamRank against Adaptive Epsilon [39] and
Wu and Davison’s method [38], the other publicly known PageRank schemes designed to be spam-resistant
without human effort.
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