
Pagerank Increase under Different Collusion Topologies

Ricardo Baeza-Yates
ICREA-Univ.Pompeu Fabra

and University of Chile
ricardo.baeza@upf.edu

Carlos Castillo
Dept. of Technology

Universitat Pompeu Fabra
carlos.castillo@upf.edu

Vicente Ĺopez
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Abstract

We study the impact of collusion –nepotistic linking– in a
Web graph in terms of Pagerank. We prove a bound on the
Pagerank increase that depends both on the reset probabil-
ity of the random walkε and on the original Pagerank of
the colluding set. In particular, due to the power law dis-
tribution of Pagerank, we show that highly-ranked Web
sites do not benefit that much from collusion.

1 Introduction

This paper studies the effects of different linking topolo-
gies in the ranking function induced by the Pagerank algo-
rithm [13]. The Pagerank algorithm receives as input an
adjacency matrixLN×N, whereN is the number of Web
pages, and renormalizes each row ofL to sum 1, generat-
ing a transition matrixA. This transition matrix is slightly
modified by adding a “random jump”, i.e.: a transition
from each node to each of the other nodes using the uni-
form transition matrix – a matrixU such thatui j = 1/N.

P = (1− ε)A+ εU (1)

The Pagerank algorithm calculates the probabilitiespi

of the stationary state of the Markovian process induced
by matrix P. That is, the eigenvectorx corresponding to
the largest eigenvalue (which in the case of this matrix is
λ1 = 1) of the matrixP:

PTx = x

The Pagerank value of a page is used as an estimator
of the quality of a Web page based on properties of the
Web graph. The rationale for this estimation is that a high
quality page is a page with many in-links coming from
other high-quality pages.

This algorithm is expected to work much better than
simply counting in-links, as it might be more resistant
to what is called a “Sybil attack” [5]. A Sybil attack is
an attempt of altering a recommendation system by creat-
ing multiple identities; in this context, this means creating
multiple pages pointing to a single page.

The resistance of Pagerank to a Sybil attack comes from
the fact that the pages created for the attack can only in-
herit the reputation they are currently receiving. However,
in the case of Pagerank, the minimum is not zero, as even
without in-links a page gets a minimum score ofε

N .
The strategy of creating many pages pointing to a single

page is actually used on the Web, in fact, currently there
are thousands or millions of Web pages created specifi-
cally for the objective of deceiving the ranking function of
search engines [6]. “Because the Web environment con-
tains profit seeking ventures, attention getting strategies
evolve in response to search engine algorithms. For this
reason, any evaluation strategy which counts replicable
features of web pages is prone to manipulation”[13].

To the best of our knowledge, Pagerank by itself is not
used as the sole indicator of quality by any of the larger
search engines, but it is still an important part of the rank-
ing function of some of them.

In this paper:

• We present an analysis for collusion under a more
general case than the one presented in [15], this is,
we consider the original links that the colluding set
has.

• We prove that for a single page there is always some-
thing to win by colluding with other pages.

• We prove that the expected returns from collusion are
lower for highly-ranked pages.

The rest of this paper is organized as follows:Section2
summarizes previous work in this area, andSection3
presents an analysis predicting the increase of Pagerank
by using a collusion strategy.Section4 validates these
predictions in a synthetic graph, andSection5 studies a
real Web graph. Finally,Section6 presents our conclu-
sions and avenues for future work.
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2 Previous Work

Several authors have observed the presence of spam pages
on the Web. Fetterlyet al. [7] showed that most of the out-
liers when observing statistics of Web page collections are
machine-generated spam pages –these pages may be de-
signed both to increase citation counts and to provide mul-
tiple “doorway” pages. Hence, the divergence between
the expected and the observed values can be used in some
cases to detect spam pages.

Eiron et al. [6] studied a 100-million page sample and
found that 11 of the top 20 URLs by Pagerank were porno-
graphic, and in all cases the specific technique used was
taking the Pagerank from random teleportation in many
pages and concentrate it into a single page by using links.

Zhanget al.[15] study the following collusion strategy:
pick a series of nodes with adjacent rankings, remove all
their out links and add links from each node to the node
before and after it in the list of nodes sorted by Pagerank.
They also prove the following upper bound on any collu-
sion strategy; letxorig be the original Pagerank of a page,
andxnew the Pagerank this page obtains after it colludes
is:

xnew

xorig
<

2
ε

They also prove that this bound is near 1/ε if M � N,
as a typical value forε is 0.15, the amplification factor
is roughly 7. They do not take into account the starting
Pagerank of the colluding set. We prove a tighter bound
that shows that colluding works mostly for pages with low
starting Pagerank.

Meyer [11] proved that if the second eigenvalue of an
irreducible Markov chain is small, then the chain is not
overly sensitive to small variations. Haveliwala and Kam-
var [9] proved that the second eigenvalue ofP is 1− ε,
therefore, a largeε produces a more stable matrix. Nget
al. [12] prove a similar result using a different approach:
as long asε is not too small, small variations in the matrix
do not generate large variations of Pagerank.

Agogino and Ghosh [1] studied a reinforcement learn-
ing method for automatically finding a linking strategy for
increasing the combined Pagerank of a set of domains.
Their strategy relies on a utility function that considers
the impact of every learner in the total Pagerank achieved
by the colluding group.

Clausen [3] studied the cost of an attack on Pagerank
considering that creating a new Web site requires a pay-
ment. In the same paper there is an analysis on how to
lump pages together for Pagerank calculation, disregard-
ing the internal link structure of each group.

In a recent article, Gÿongyi and Garcia-Molina [8]
study optimal structures for “link spam farms” and combi-
nations of them. A spam farm is an arrangement of links

with the objective of increasing the ranking of a single
target page. They prove that the optimal structure for a
spam farm is a series of pages pointing to and only to the
target page, while the target page points to some of all of
them. In this optimal structure, if there are other external,
“hijacked” links, they should also point to the target page.

3 Impact of Collusion in Pagerank

A group of nodes can collude to get a higher Pagerank by
manipulating the out-links of the group. We will assume
that the group’s objective is to maximize itstotal Pagerank
value.

Let N be the total number of nodes in Web graphG, M
the number of colluding nodes in sub-graphG′ – we will
assumeM�N. Let x be the total Pagerank of the collud-
ing nodes, so 1−x is the total Pagerank of the rest of the
graph. All the links in this graph are shown inFigure1.

Figure 1: Variables used in the analysis.

The total Pagerank entering the colluding nodesPRin is
given by the sum of three terms representing links from
random jumps, links from the non-colluding nodes and
internal links between colluding nodes. This is the same
approach taken by Clausen [3] to “lump” a set of pages
into a single node for Pagerank computation.

Pagerankin = Pjump+Pin +Psel f

For calculatingPin, we first take the sum over all nodes
pointing to the colluding set, instead of on all the links:

Pin = ∑
(a,b):(a,b)∈Ein

PRa

deg(a)

= ∑
a:a∈G−G′

PRap(a)

Wherep(a) is the fraction of links from nodea pointing
to the colluding setG′, and it can be zero if no link from
nodea points toG′.
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Now, let:

p = ∑a:a∈G−G′ PR(a)p(a)
∑a:a∈G−G′ PR(a)

= ∑a:a∈G−G′ PR(a)p(a)
1−x

So p is a weighted average ofp(a) over G−G′, in
which the weights are the Pagerank values of the nodes
in G−G′. The important issue is thatp cannot be con-
trolled by the colluding nodes, and will remain constant
whatever strategy is used. We can now write the equation
for Pin as:

Pin = (1− ε)(1−x)p

For Psel f we make a similar replacement. Ifs(b) is the
fraction of links from nodeb∈G′ pointing to the collud-
ing setG′, then let:

s = ∑b:b∈G′ PR(b)s(b)
∑a:a∈G′ PR(b)

= ∑b:b∈G′ PR(b)s(b)
x

Sos represents a weighted average ofs(a) overG′, and
this yields:

Psel f = (1− ε)xs

Now we can write the equation for the sum of the Page-
rank of the colluding nodes as:

Pagerankin = ε
M
N

+(1− ε)(1−x)p+(1− ε)xs

Solving the stationary statePagerankin = x yields:

xorig =
εM
N +(1− ε) p

(p−s)(1− ε)+1

The only thing the colluding nodes can do is to link
more internally than externally. This means thats→ s′,
with s′ > s, and the ratio between the resulting Pagerank
and the original Pagerank is:

xnew

xorig
= 1+

s′−s

p−s′+ 1
1−ε

(2)

A trivial observation is that ifs′ > s then:

xnew

xold
> 1

That is, there is always something to win by colluding
with other nodes. In particular, colluding by forming a

clique meanss′ → 1, and the ratio between the resulting
Pagerankxnew and the original Pagerank is:

xnew

xold
= 1+

1−s
p+ ε

1−ε
(3)

This ratio is inversely proportional to the Pagerank that
originally entered the colluding nodes. Therefore, if the
colluding set has a high connectivity at the beginning, the
returns from colluding will be poor, and viceversa.

For instance, if the starting set has very few, or no in-
links from the rest of the graph,p = 0, and at the begin-
ning s= 0 (originally all the out-links went to the rest of
the graph), then:

xnew

xold
=

1
ε
≈ 7

If the starting Pagerank is very good, and has all the
links from the non-colluding set we havep = 1, but has
no internal links at the beginning, then:

xnew

xold
= 2− ε

However, this situation is very unlikely, because if the
colluding set has all the in-links from the rest of the graph,
then it should also have some links from itself. In fact, if
we assume that in the original situation, the fraction of
links going to the colluding nodes was the same for all
nodes in the graph, thens= p, and the change in Pagerank
value is given by the following equation:

xnew

xold
=

1
p(1− ε)+ ε

(4)

The graph of Pagerank change forε = 0.15 and varying
values ofp is shown inFigure2. We can see that while the
starting fraction of links received remains roughly below
1% the returns are still maximum.
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Figure 2: Expected change of Pagerank values under different
starting conditionsp, usingε = 0.15.
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Focus on a single page In this section we have dis-
cussed the issue of increasing theaverage Pagerankof a
set of pages. This is not the same as increasing the Page-
rank of a single page as in the link spam farm structures
studied in [8]. A simple, brute-force strategy of creating
M (unlinked) pages, each with a single link pointing to a
target page yields a Pagerank for the latter of at most:

xbrute− f orce(M) =
ε
N

+(1− ε)ε
M
N

=
ε+ εM− ε2M

N

≈ ε
M
N

(M � 1;ε� 1)

This is, an individual page can get a increase of Page-
rank larger than in our analysis, but the average amplifi-
cation of all the pages in the colluding set will be as de-
scribed byEquation4.

4 Experiments with a Synthetic
Web Graph

We obtained a synthetic graph using a generative model
described by Kumaret al. [10]:

• Nodes are added one at a time.

• Each time a node is added,d links are added. For
adding a link, the source and destination nodes are
chosen as follows:

– With probabilityβ the source node is chosen at
random, and with probability 1−β the source
node is chosen with probability proportional to
the current out-degree of nodes.

– With probabilityα the destination is chosen at
random, and with probability 1−α the destina-
tion is chosen with a probability proportional to
the current in-degree of nodes.

We usedd = 7, α = 0.2 andβ = 0.45, parameters ex-
perimentally determined by Panduranganet al. [14] that
produce graphs simultaneously fitting the distributions of
in-degree, out-degree and Pagerank to the values observed
in real Web graphs. The parameters for the power-law in
the center part of the distributions are -2.1 for in-degree
and Pagerank, and -2.7 for out-degree.

It is very important to remove the disconnected nodes
from the resulting graph, as they affect the Pagerank nor-
malization factor. This is specially critical for groups of
pages with very low starting ranking, as they will cer-
tainly include the disconnected nodes, and those nodes
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Figure 3: Distribution of Pagerank values in the synthetic
graph.

will become connected after the collusion, modifying the
number of nodes involved in the total Pagerank calcula-
tion. Using the generative model described above, we cre-
ated a 125,000-nodes graph and then removed all the dis-
connected nodes to obtain a connected graph of roughly
106,000 nodes. We also made preliminary experiments
with a 10,000-nodes graph and the results were very sim-
ilar.

Instead of sampling according to the number of nodes,
we sampled according to the amount of Pagerank. We
divided the nodes in the Web graph into 10 segments,
each segment having 1/10th of the total Pagerank. Note
that because of the distribution of Pagerank, shown in
Figure3, these segments represent sets exponentially de-
creasing in size.

Inside each segment, we picked a group ofM = 100
nodes at random –except in the last segment, as the top
10% of Pagerank was found in only 50 nodes. We labeled
these groups 1. . .10.

In the following, we denote byPagerank valuesthe ac-
tual probabilities given by the Pagerank algorithm, this is,
the resulting values of the vectorx. We denote byranking
the order in which a page appears when pages are sorted
by Pagerank values. This number is normalized so 0 is the
last page and 1 is the top page by Pagerank value.

The original Pagerank values of the pages inside each
group, as well as the group averages, are shown inFig-
ure4.

As the distribution of the Pagerank values is very
skewed, the distribution of the rankings inside each of
these groups appears as shown inFigure4. Note that most
of the pages in group 1 have the same Pagerank value, so
their ranking is distributed uniformly in the 0.0-0.5 inter-
val, meaning that the bottom 50% of the pages have in
total just 10% of the Pagerank.
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Figure 4: Pagerank values and rankings, in both the original
and the modified graphs, using a clique inside each group.

4.1 Collusion via a complete sub-graph

The first strategy we tested was to create a clique (a com-
plete sub-graph) inside each group. Unlike the experi-
ments by [15], we did not remove any outgoing links, as
that is very easy to detect and can be penalized by search
engines. The rationale is that if within a group the number
of internal links outnumbers the number of external links
then that group will preserve its Pagerank.

Figure4 compares the Pagerank values before and after
the collusion.

Figure 5 plots the variation in both Pagerank values
and ranking after collusion. Clearly the bound 1/ε is too
coarse for medium to highly ranked pages, in those cases,
the starting incoming links should be considered, as in
Equation4.

Note that a factor of 3 in the Pagerank ranking is a very
large increase for a page. As shown inFigure5, all of the
pages from group one get a new ranking in the top 10%
by colluding. Moreover, all of the pages inside each group
get roughly the same ranking.
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Figure 5: Relative variation of Pagerank value and ranking us-
ing a clique inside each group. Link spamming only yields
returns for pages with low starting Pagerank values.

4.2 Collusion via a partial sub-graph

It might not be necessary to create all links, just enough
links to keep most of the Pagerank inside the colluding
set. We tested varying amounts of linking in the synthetic
graph. The amplification factor obtained by colluding is
shown inFigure6.
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Figure 6: Pagerank change under varying amounts of internal
links.

In most cases, adding just 50% of the links yields high
returns, and in the case of the group with the lower starting
Pagerank, even 30% of the links results in an increase of
Pagerank by a factor of 5.
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4.3 Other collusion strategies

We also tested collusion strategies involvingO(M) inter-
nal links instead ofO(M2) as is the case with cliques. The
two topologies we studied were a star and a ring, as de-
picted inFigure7.

Figure 7: Studied linking topologies.

In the case of the star, to avoid a positive bias in the
choice of the center of the star, we picked a new node
originally without in-links as the center of the star. The
comparison between the results under these two topolo-
gies is shown inFigure 8. There is a slight advantage
of forming a star instead of a ring for the lowly-ranked
sites, but for the other groups both strategies yield simi-
lar returns, and those are much lower than in the case of
cliques.
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Figure 8: Pagerank under other linking topologies; both the
star and ring topologies yield much lower returns than forming
a clique.

5 Experiments with a Real Web
Graph

We started with a collection of 16 million pages from
Spanish Web sites obtained during 2004. In this case, we
are interested in complete Web sites instead of individual
pages, so we first converted multiple links between pages
in different Web sites, into a single link between two Web
sites. Two sitess1,s2 are linked iff there is at least one
page on sites1 pointing to a page ins2.

We obtained a graph with 310,486 Spanish sites and
3,037,913 directed links between them.

We calculated the Pagerank (or Hostrank [4]) values of
each Web site, and the corresponding ranking induced by
this value. Note that this is not the same as the sum of the
page-wise Pagerank for each page in the Web site, because
there may be multiple links between two Web sites [2].
The distribution of values for the Hostrank is shown in
Figure9.
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Figure 9: Distribution of Hostrank values in the Spanish Web
sites graph. There are a number of Web sites already colluding.

Comparing this with the distribution of Pagerank in the
synthetic graph, shown inFigure3, we can see that while
both exhibit a Zipf’s law with roughly the same parameter,
in the real Web there is a significant number of outliers.
Manual inspection of these outliers showed that most of
them are Web sites that can be considered as spam, for in-
stance, we found several groups of dozens of Web sites
with names such ashttp://cityname.company.es/,
in which cityname is the name of a Spanish city and
company is a tour operator or hotel company.

We modified this graph with the strategies we have dis-
cussed so far and computed the new Pagerank values after
each strategy. The objective of these strategies is to in-
crease the ranking of a small set of 242 sites (0.08% of the
total number of sites). The target sites for this experiments
were obtained from the directory of an agency certifying
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the quality of Spanish Web sites, and are expected to be
sites that adhere to certain standards of coding, content,
etc.

The average ranking of the Web sites in the selected
group is 0.75. Note that this only takes into account the
Pagerank value, while the quality of a site may come from
very different factors.

Table 1: Linking strategies.

Strategy Average ranking

Disconnect group 0.75
Normal 0.77

Central site 0.82
Ring, alphabetical 0.93

Ring, inverted 0.93
Star 0.96

Clique 0.99

Table 1 lists the linking strategies used. We started
by disconnecting all the links between the participating
nodes, that yields a minimum of ranking without collu-
sion at all. After that, we returned to the normal situation.
Then we added a central site that lists all the participat-
ing sites, then a ring of all the sites in alphabetical order,
and then an inverted ring. Finally, we also added a star
and a clique.Figure10 lists the resulting rankings under
different strategies.
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Figure 10: Relative rankings under different strategies. Each
dot represents a site.

Clearly, creating a complete subgraph is the best strat-
egy, as all of the sites in the group get very high positions.
We noted that the star strategy gets a similar average to
the ring strategy, but much lower variability.

Finally, we explored the possibility of adding less than
50% of the links of a complete subgraph. InFigure11, a
varying amount between 5% and 50% of the links in the
complete subgraph are added randomly.
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Figure 11: Relative rankings when adding a fraction of the
links of a complete subgraph.

We observe that even adding 5% of the links of a com-
plete subgraph, i.e.: each of the Web sites in the group
links to 5% of the other sites (in this case, roughly 10 Web
sites each one), then the average position (0.985) is higher
than all the strategies based on other topologies. After
adding about 20% of the links of the complete subgraph,
the gains increase linearly with the number of links.

6 Conclusions and Future Work

While any group of nodes can increase their Pagerank by
forming a tightly-connected sub-graph of the Web, the in-
crease they obtain by doing so is inversely related to their
starting Pagerank. This means that the Pagerank algo-
rithm is particulary vulnerable to Sybil attacks from the
nodes with low Pagerank. As the distribution of Pagerank
is very skewed, even a modest increase in Pagerank value
may imply a large increase in the ranking of a page.

Collusion strategies have never been studied in a more
microscopic scale. For instance, we noted slight differ-
ences when creating a ring of pages in two different or-
derings. There is an optimum ordering for forming a ring,
and we are interested in studying different strategies under
a limited “budget” in terms of links.

As future work, we would like to study other forms of
ranking calculation such as a two-level ranking scheme
that ranks entire Web sites and then Web pages.

While this article is mainly descriptive, we are also in-
terested in developing ways of detecting deceptive linking
practices to improve reputation algorithms. There is not
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a trivial answer to this problem. Finding regular struc-
tures [7] may not be enough as spammers can random-
ize their link spam farms. Measuring the ratio between
the total Pagerank of a group of pages and the Pagerank
they receive externaly [15] may detect groups of pages
that are strongly linked among them for legitimate rea-
sons. An open question is if the current linking practices
used amongst “good sites” should be used –and accepted–
or not.
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