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Abstract

R is a free software environment for statistical computing and graphics. It compiles and runs on almost every UNIX platform,
Windows, and Mac OS.

In this paper, we report on several R packages built for the analysis of neuroimaging data in the context of functional Magnetic
Resonance Imaging, Diffusion Tensor Imaging, and Dynamic Contrast-Enhanced Magnetic Resonance Imaging. We will review
their methodology and give an overview over their capabilities for neuroimaging. Finally, we summarize some of the current
activities in the area of neuroimaging software in R in general.

Introduction

The rapid progress of research in the neuroscience and neu-
roimaging fields has been accompanied by the development of
many excellent analysis software tools. These are implemented
in a variety of computer languages and programming environ-
ments, such as Matlab, IDL, Python, C/C++ and others. This
diversity has developed over time through a combination of
user preferences and the strengths/weaknesses of the computing
environments. Many of these software tools are freely avail-
able, like SPM (Ashburner et al., 2008), AFNI (Cox, 1996),
FSL (Smith et al., 2004), Freesurfer, or BrainVISA, some are
commercial like BrainVoyager, and Analyze. Typically, the
software tools can be extended by the user to fit their needs in
the data analysis. The NIPY (Millman and Brett, 2007) project
e.g. is written in Python and a explicitely allows for the inte-
gration, modification and extension of code.

R is a free software environment for statistical computing
and graphics (R Development Core Team, 2010). It com-
piles and runs on almost every UNIX platform, Windows,
and Mac OS. Access to R is provided via the Comprehensive
R Archive Network (CRAN, http://cran.r-project.org)
and R-Forge (http://r-forge.r-project.org). R pro-
vides a wide range of statistical (linear and nonlinear regres-
sion modelling, classical statistical tests, time-series analysis,
classification, clustering, etc...) and graphical techniques, and
is highly extensible. As of November 2010, the CRAN package
repository features over 2600 separate packages contributed by
R users. A recent community website (http://crantastic.
org) provides the facilities to search for, review and tag CRAN
packages. Several mailing lists are maintained in order to pro-
vide updates and access to literally thousands of R users. This
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is in addition to a complete set of open-access manuals about
the R language.

Why is it worthwhile to consider just another programming
environment for neuroimaging? R is the free and platform-
independent quasi-standard computational environment within
the statistics community. R grants access to many well-
developed statistical tools needed for the analysis of neuroimag-
ing data. R easily integrates, other software can be used from
within R and R can be used within a more general workflow.
Finally, special R packages for neuroimaging provide enhanced
functionality which is not available elsewhere.

In this paper, we report on several R packages built for the
analysis of neuroimaging data in various context. We will
shortly review the methodology of each package to give an im-
pression of their capabilities for neuroimaging. The paper is
organized by the type of data which is to be analyzed and cov-
ers functional Magnetic Resonance Imaging (fMRI), Diffusion
Tensor Imaging (DTI), and Dynamic Contrast-Enhanced MRI
(DCE-MRI). In the discussion we want to summarize some of
the activities in the area of neuroimaging software in R in gen-
eral.

On features of R

R is a high-level programming environment which is typ-
ically used by its command-line interface (though Graphical
User Interfaces (GUI) do also exist). It allows for interactive
data analysis as well as easy creation of scripts for bulk data
processing. R is the quasi-standard environment for the devel-
opment of new statistical methods, often overtaking commer-
cial statistical packages. Yet its matrix computational capabili-
ties also compare well with those e.g. in Matlab.

The concept of packages as extensions to the R base system is
one of its greatest strengths. R easily integrates compiled code
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written in low-level languages like C/C++, or FORTRAN pro-
viding the ground for efficient programming of computationally
expensive algorithms combined with an easy-to-use interface at
the scripting level.

One of the major difficulties when using R with neuroimag-
ing datasets is R’s memory usage. By default R stores data in
computer main memory. Data are usually retained in double
precision. R has no reference type, and therefore usually gen-
erates a copy of the data every time a function is called. This
can, in case of inefficient programming, lead to several copies
of the data in memory and a situation where demand exceeds
the available memory. This can be avoided by calls to low-level
languages.

Regardless of largely increased memory in recent years, there
are also several projects and packages for R to overcome the
limitations for huge datasets and grant access to it as fast and
easy as in memory. One of them is the ff (Adler et al., 2010)
which provides flexible data structures that are stored on disk
but behave (almost) as if they were in RAM by transparently
mapping only a section (pagesize) in main memory. Another
project is the BigMemory project (http://www.bigmemory.
org) which supports the creation, storage, access, and manip-
ulation of massive matrices. On mid-term these technologies
will be included in the packages described in this paper.

R supports modern concepts like object-oriented program-
ming, which is provided as implementation of so-called S4-
classes and methods (Chambers, 2008). While not as strict as
in low-level languages like C/C++ it allows for class/method
definition, data encapsulation, polymorphism, etc.

The analysis of huge datasets with sophisticated methodol-
ogy comes at the cost of large computational expenses. R pro-
vides the possibility to parallelize code natively in R, or within
the C/C++ code. It is also possible to include computation on a
graphic card (GPU) instead of CPU, which in appropriate cases
may benefit by orders of magnitude from the speed of modern
GPU’s.

Data Input/Output

The industry standard format, for data coming off a clinical
imaging device, is DICOM (Digital Imaging and Communica-
tions in Medicine). The DICOM “standard” is very broad and
very complicated. Roughly speaking each DICOM-compliant
file is a collection of fields organized into two four-byte se-
quences (group,element) that are represented as hexadecimal
numbers and form a tag. The (group,element) combination an-
nounces what type of information is coming next. There is no
fixed number of bytes for a DICOM header.

The packages oro.dicom (Whitcher, 2010), fmri (Tabelow
and Polzehl, 2010c) and tractor.base (Clayden, 2010b) provide
R functions that read DICOM files and facilitate their conver-
sion to ANALYZE or NIfTI format.

Although the industry standard for medical imaging data is
DICOM, another format has come to be heavily used in the im-
age analysis community. The ANALYZE format was originally
developed in conjunction with an image processing system (of

the same name) at the Mayo Foundation (Biomedical Imaging
Resource, 2001). An Analyze (7.5) format image is comprised
of two files, the “img” and “hdr” files, that contain the data and
information about the acquisition itself. A more recent adaption
of this format is known as NIfTI-1 and is a product of the Data
Format Working Group (DFWG) from the Neuroimaging Infor-
matics Technology Initiative (NIfTI). The NIfTI-1 data format
is almost identical to the ANALYZE format, but offers a few
improvements: merging of the header and image information
into one file (.nii), re-organization of the 348-byte fixed header
into more relevant categories and the possibility of extending
the header information.

The packages AnalyzeFMRI (Marchini and Lafaye de
Micheaux, 2010), fmri, tractor.base, and dcemriS4 (Whitcher
et al., 2010a) all provide functions that read/write ANALYZE
and NIfTI files.

Additionally fmri provides capabilities to read and write AF-
NIs HEAD/BRIK files.

Functional MRI

Functional Magnetic Resonance Imaging (fMRI) has become
the most informative tool for in-vivo examination of human
brain function on small spatial scales. It is nowadays utilized
both in research as well as in clinical applications such as diag-
nosis and treatment of brain lesions.

Package AnalyzeFMRI

AnalyzeFMRI is a package originally written by J. Mar-
chini (Marchini, 2002) for the processing and analysis of
large structural and functional MRI data sets under the ANA-
LYZE format. It has been updated to include new functional-
ity: conversion from ANALYZE to NIfTI, complete NIfTI in-
put/output, functions to obtain spatial coordinates from voxel
indices and vice-versa, various geometrical utilities, cross-
platform visualization based on Tcl/Tk components, and spa-
tial/temporal ICA (Independent Component Analysis) via a
graphical user interface (GUI), see figure 1.

Independent component analysis is a statistical technique
that can recover hidden underlying source signals from an ob-
served mixture of these sources. The only hypothesis made to
solve this problem (known as the blind source separation prob-
lem) is that the sources are statistically mutually independent
and not Gaussian. ICA is now used to analyze fMRI data since
the late 1990’s (McKeown et al., 1998) and has been detailed
in many papers (see e.g. Stone, 2002; Thomas et al., 2002).
Note that ICA can be defined in two dual approaches: spatial
ICA (sICA) and temporal ICA (tICA), the latter being not really
used in fMRI studies due to computational difficulties in diag-
onalizing the huge data correlation matrix in this case. This
is why, as far as we know, tICA has never been applied on the
whole functional brain data but only on a few slices of the brain,
or on a very reduced portion of it (Calhoun et al., 2001; Seifritz
et al., 2002; Hu et al., 2005). Yet, supposing that we have tem-
porally independent source signals can be seen as natural in
several fMRI studies. The R package AnalyzeFMRI uses a
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Figure 1: Visualization of temporal ICA results. Bottom left: One of the extracted temporal components. Right: Its associated spatial map of activations. Top left:
corresponding anatomical image

nice property of the singular value decomposition that permits
one to obtain the non-zero eigenvalues of the aforementioned
correlation matrix, and their associated eigenvectors. It then
becomes feasible to perform tICA for fMRI data on the whole
brain volume. All the theoretical details, as well as a complete
analysis of simulated and real data, can be found in (Bordier
et al., 2011).

tICA results presented in figure 1 have been obtained very
easily using the R function f.icast.fmri.gui() (included in
the package AnalyzeFMRI) which displays a GUI where one
has to select the original ANALYZE/NIfTI file, and eventually a
mask file. Visualization of the extracted temporal components,
as well as their associated spatial maps, is performed by means
of the function f.plot.volume.gui(). The specific fMRI
experiment performed here was a block design visual experi-
ment, and the third temporal component was the one found to
be mostly correlated with the signal of the stimulus. Note that
our GUI visualization tool also displays the anatomical images,
thus enabling via a cross-cliking link with ICA spatial maps,
the anatomical localization of the most active voxels. They are
located in the occipital part of the cortex.

Package fmri

The R-package fmri adopts the common view, (Friston et al.,
1995; Worsley et al., 2002), of a linear model for the time series
Yi in each voxel i

Yi = Xβi + εi, (1)

where X denotes the design matrix and εi the error vec-
tor (Polzehl and Tabelow, 2007). The package requires motion

correction, registration, and normalization to be performed by
third-party tools. Note, that within the workflow using the pack-
age smoothing is not considered as a pre-processing step. Such
a pre-processing is prone to a loss in detailed information that is
needed in the structural adaptation approaches employed within
the package. The fMRI data should therefore not be smoothed
in advance.

The package includes functions for input/output of data in
some standard imaging formats (ANALYZE, NIfTI, AFNI, DI-
COM). Linear modeling of the data according to Eq. (1) in-
cludes the description of temporal correlations with an au-
toregressive AR(1) model. The estimated correlation param-
eters are bias corrected (Worsley et al., 2002) and can be
smoothed (Worsley, 2005). The linear model of the pre-
whitened data results in a statistical parametric map (SPM)
which is a voxelwise array of estimated parameter β and its
estimated variance. This information is then used to perform
a structural adaptive smoothing method (Tabelow et al., 2006).
The result of this algorithm is twofold: it improves the esti-
mates for β by reducing their variance and it simplifies the in-
herent multiple test problem by introducing a specified smooth-
ness under the null hypothesis. The package then uses Ran-
dom Field Theory to determine thresholds for the test statistics.
The method allows for a significant signal enhancement and
reduction of false positive detections without reducing the ef-
fective spatial resolution, in contrast to traditional non-adaptive
smoothing methods. This has been demonstrated in a series of
papers (Voss et al., 2007; Tabelow et al., 2008b), especially for
the analysis of high-resolution functional MRI (Tabelow et al.,
2009). Note, that the smoothing method (Tabelow et al., 2006)
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Figure 2: Signal detection using the package fmri using different smoothing methods (multiple test corrected p = 0.05): a) signal detection using Gaussian
smoothing, b) signal detection using structural adaptive smoothing (Tabelow et al., 2006) with signal detection by Random Field Theory, c) results using structural
adaptive segmentation. Since the algorithm provides only two segments (activation/no-activation) additional information can be overlayed in color. Here the
estimated β is shown. For more details, see Polzehl et al. (2010).

accounts for the intrinsic spatial correlation of the data.
In a recent contribution (Polzehl et al., 2010) the structural

adaptive smoothing algorithm has been refined and now inte-
grates both the smoothing and the signal detection step. It is
based on a multiscale test performed in the iterative smoothing
procedure. The algorithm has been named structural adaptive
segmentation since it divides the region of interest into a seg-
ment of no activation and a segment where the null hypotheses
has been rejected. The algorithm is implemented in the package
fmri. Figure 2 shows the signal detection results using differ-
ent smoothing methods. The images were produced using the
packages fmri and adimpro (Tabelow and Polzehl, 2010a).

It is worth noting that the computational time for a com-
plete single-subject fMRI analysis including linear modeling,
smoothing signal detection and graphical output is usually in
the order of one minute only. Although the structural adaptive
smoothing algorithm is in principle computationally expensive
through its iterative nature, the fact that it operates on the esti-
mated SPM rather than the single volumes makes it very effi-
cient.

Diffusion Tensor Imaging (DTI)

While functional MRI focuses on the brain grey matter func-
tionality, diffusion weighted imaging (DWI) measures direc-
tional water diffusion, which is highly anisotropic in the brain
white matter. Among the models for DWI data is the widely
used diffusion tensor model, where the directional dependence
is described by a local diffusion tensor. The anisotropy can be
directly associated with the anatomical structure in the brain;
mainly (but not solely) the white matter fiber structure.

Package dti

The R-package dti (Tabelow and Polzehl, 2010b) has been
written for the analysis of diffusion weighted MR data. Using
a Gaussian model of diffusion, the data can be described by a
rank-2 diffusion tensorD, which is represented by a symmetric
positive definite 3 × 3 matrix:

D =

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (2)

Assuming homogeneity within a voxel diffusion weigthed im-
age intensities S b associated with a gradient direction ~g a b-
value b are related to unweighted image intensities S 0 by

S b = S 0e−b~g>D~g. (3)

This model is known as diffusion tensor imaging (DTI, Basser
et al., 1994a,b).

The package dti uses the package fmri for reading diffusion
weighted data from DICOM or NIfTI files. The package pro-
vides estimation of diffusion tensors using non-linear regres-
sion (Polzehl and Tabelow, 2009) or a linearization of Eq. (3).
Inference on the diffusion tensor is provided by estimating ro-
tationally invariant tensor characteristics like mean diffusivity,
fractional anisotropy, main diffusion direction, and others. The
package can be used (combined with the R-package adimpro
and ImageMagick) to create publication ready images of color-
coded directional FA maps or 3D tensor visualizations in com-
mon image formats like JPEG, PNG, and many others.

One key feature of the package is the implementation of a
structural adaptive smoothing method for the analysis of diffu-
sion weighted data in the context of the DTI model. Due to its
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Figure 3: Application of the structural adaptive smoothing algorithm in (Tabe-
low et al., 2008a) to a brain scan: color coded directional map weighted with
FA of an axial slice obtained by voxelwise analysis of the DWI data consisting
of 55 diffusion weighted images (a). Directional map resulting from structural
adaptive smoothing (b). In all images, black regions inside the brain denote
areas in which at least one of the eigenvalues was negative. The color coding is
red for RL, green for AP, and blue for IS. For more details, see Tabelow et al.
(2008a).

edge preserving properties these smoothing methods are capa-
ble of reducing noise without compromising significant struc-
tures (e.g., fiber tracts) (Tabelow et al., 2008a). Smoothing is
performed directly on the diffusion weighted images using in-
formation from the low-dimensional space of diffusion tensors
for adaptation of weights. In each iteration step the diffusion
tensor is re-estimated from the smoothed diffusion weighted
images. The iteration is performed from small to larger scales.
In contrast to other smoothing methods based on PDE (Ding
et al., 2005) the method exhibits an intrinsic stopping criterion.
See figure 3 for color-coded FA images of one slice before and
after smoothing.

The package dti provides methods for analysis of HARDI
data (Tabelow et al., 2010). The reconstruction of the orien-
tation distribution function (ODF) from a spherical harmonics
expansion of the diffusion weighted data can be performed as
well as the estimation of mixed tensor models and the expan-
sion of the weighted ODF into central angular Gaussian dis-
tribution functions. The package also implements a streamline
fiber tracking algorithm for tensor and mixed tensor models.
3D visualization using OpenGL is also included.

The package is completely written using the S4 object ori-
ented model. As for the package fmri the implementation of
structural adaptive smoothing methods is potentially computa-
tionally expensive through its iterative nature. A typical DTI
analysis including structural adaptive smoothing takes about 30
minutes on common hardware. However, as the amount of data
for diffusion weighted imaging is rather large, large memory is
advisable. This issue will be solved in future versions of the
package by using efficient memory usage using ff or bigmem-
ory. For a more complete survey on algorithmic and computa-
tional details we refer to Polzehl and Tabelow (2009).

The TractoR project
The TractoR (Tractography with R) project provides tools

for working with diffusion MRI and fibre tractography, with

a strong focus on groupwise analysis. The project is cur-
rently built upon four R packages, but also provides an inter-
face for performing common tasks without direct interaction
with R. Full source code is available at the project web site,
http://code.google.com/p/tractor.

The tractor.base package provides data structures and func-
tions for reading images from DICOM, ANALYZE or NIfTI
storage formats, visualizing and manipulating images—for ex-
ample, by thresholding or masking—and writing images back
to file. The second package, tractor.utils, provides various
utility functions, primarily for use by the project interface.
The tractor.session package provides a file hierarchy abstrac-
tion, designed to facilitate working with large numbers of data
sets; and also provides R interfaces to third-party image analy-
sis software packages, including the FMRIB Software Library
(FSL) and Camino (Cook et al., 2006; Smith et al., 2004).
Finally, the tractor.nt package provides reference implemen-
tations of “neighbourhood tractography” methods, which use
anatomical prior information and probabilistic models to seg-
ment white matter structures in groups, with high robustness
and consistency.

Neighbourhood tractography overcomes a number of prob-
lems with standard diffusion tractography methods, particularly
the difficulty of choosing suitable seed points to initialise track-
ing, by introducing anatomical prior information in the form
of reference tracts (Clayden et al., 2006, 2007; Muñoz Man-
iega et al., 2008). In this way, high levels of reproducibility
and consistency can be achieved for diffusion-based measure-
ments within white matter tracts, without time-consuming and
error-prone manual intervention (Clayden et al., 2009b). Fi-
nally, the approach of explicitly modelling tract shape variabil-
ity across individuals offers a natural solution to the common
problem of false positive pathways generated by tractography
methods (Fig. 4; Clayden et al., 2009a). The statistical pedi-
gree of R makes it an ideal environment in which to develop
and apply machine learning techniques for neuroimaging.

Figure 4: Rejection of false positive streamlines using a predefined reference
tract and statistical shape model, as described in Clayden et al. (2009a). After
“pruning” (right) the main curve of the arcuate fasciculus appears without any
superfluous branching structures.

Dynamic Contrast-Enhanced MRI (DCE-MRI)

The dcemriS4 package contains a collection of functions
to perform quantitative analysis from a dynamic contrast-
enhanced MRI (DCE-MRI) acquisition on a voxel-by-voxel ba-
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sis. Patients undergoing a DCE-MRI acquisition have several
minutes of T1-weighted scans performed, with a typical tempo-
ral resolution between 3-15 seconds, where a bolus of gadolin-
ium is injected after a sufficient number of pre-contrast scans
have been acquired. Assuming that the biology is explained by
a system of linear differential equations, the model of contrast
agent concentration over time is given by a sum of exponentials
convolved with an arterial input function.

The workflow may be defined by the following steps: mo-
tion correction and/or co-registration, T1 estimation, conver-
sion of signal intensity to gadolinium contrast-agent concentra-
tion and kinetic parameter estimation. The S4 object classes for
common medical image formats, specifically ANALYZE and
NIfTI, are provided by the oro.nifti package (Whitcher et al.,
2010b) along with the ability to extend the NIfTI data format
header via extensions. Users are allowed to add extensions to
newly-created NIfTI S4 objects using various functions and the
XML package (Temple Lang, 2010). All operations that are
performed on a NIfTI object will generate a so-called audit trail
that consists of an XML-based log. Each log entry contains in-
formation not only about the function applied to the NIfTI ob-
ject, but also various system-level information; e.g., version of
R, user name, date, time, etc. When writing NIfTI-class objects
to disk, the XML-based NIfTI extension is converted into plain
text and saved appropriately (ecode = 6).

The estimation of voxel-wise T1 relaxation, and subsequent
conversion of the signal intensity to contrast agent concentra-
tion for the dynamic acquisition, has been implemented us-
ing the relationship between signal intensity and flip angle for
spoiled gradient echo (SPGR) sequences and fitting the non-
linear curve to all available flip-angle acquisitions (Buckley and
Parker, 2005). The estimated T1 values are then used to con-
vert signal intensity into contrast agent concentration Ct(t) for
the dynamic acquisition using

[Gd] =
1
r1

(
1
T1
−

1
T10

)
, (4)

where r1 is the spin-lattice relaxivity constant and T10 is the
spin-lattice relaxation time in the absence of contrast media
(Buckley and Parker, 2005). For computational reasons, we
follow the method of Li et al. (2000).

Whereas quantitative PET studies employ arterial cannula-
tion on the subject to characterize the arterial input function
(AIF) directly, it has been common to use literature-based AIFs
in the DCE-MRI literature. Examples include

Cp(t) = D
(
a1e−m1t + a2e−m2t

)
, (5)

where D is the dose of the contrast agent and θ =

(a1,m1, a2,m2) are parameters taken from the literature (Wein-
mann et al., 1984; Tofts and Kermode, 1984; Fritz-Hansen
et al., 1996). There has been progress in measuring the AIF
using the dynamic acquisition and fitting a parametric model
to the observed data. The dcemriS4 package has incorporated
these literature-based models and a data-driven model given by

Cp(t) = ABte−µBt + AG

(
e−µG t + e−µBt

)
(6)

(Orton et al., 2008), which is applied to the observed data using
nonlinear regression using the Levenberg-Marquardt algorithm.

A common parametric model for DCE-MRI data is the “ex-
tended Kety model” given by

Ct(t) = vpCp(t) + Ktrans
[
Cp(t) ⊗ exp(−kept)

]
, (7)

where Ct(t) is the concentration of the contrast agent in tis-
sue as a function of time t, vp is the volume of contrast agent
in the plasma, Ktrans is the transfer rate constant from plasma
to EES (extravascular extracellular space) and kep is the rate
parameter for transport from the EES to plasma (Parker and
Buckley, 2005). The parametric model (7) may be applied
to all voxels in a pre-specified region of interest (ROI), in-
dependently, using two distinct procedures: nonlinear regres-
sion with the Levenberg-Marquardt algorithm, using the min-
pack.lm package (Elzhov and Mullen, 2009), and Bayesian es-
timation (Schmid et al., 2006).

Figure 5: Perfusion characteristic Ktrans, the transfer rate constant from plasma
to extravascular extracellular space, estimated via non-linear regression in a
dynamic contrast-enhanced MRI acquisition. Displayed values are in the range
[0, 0.15] min−1.

An illustration of the parametric model is provided via the
National Biomedical Imaging Archive (http://cabig.nci.
nih.gov/tools/NCIA). Figure 5 displays the estimated Ktrans

values for a region-of-interest (ROI) approximately covering a
brain tumor. The uptake of the contrast agent varies drastically
across the tissue in the ROI, exhibiting a hypovascular response
in the core of the tumor and a potentially hypervascular re-
sponse in the tumor rim. While statistical images provide an
invaluable tool for exploratory data analysis, longitudinal as-
sessment of disease progression or treatement response would
have to be evaluated using a suitable scalar summary of the tu-
mor ROI; e.g., using hierarchical models (Schmid et al., 2009).
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Discussion

A number of packages specific to medical imaging, and in
particular neuroimaging, have been developed within the R-
Community. In this paper we concentrate on packages that
have reached a level of maturity that guarantees that the de-
scribed functionality is likely to be stable. New functionality
is expected to be added and the underlying code is expected to
be improved, especially concerning memory management and
speed, over time. The packages described in the present paper
cover functional Magnetic Resonance Imaging (fMRI), Diffu-
sion Tensor Imaging (DTI), and Dynamic Contrast-Enhanced
MRI (DCE-MRI). However, there is much more activity con-
cerning NeuroImaging in R. Information on this is collected in
the Medical Imaging task view at http://cran.r-project.
org/web/views/MedicalImaging.html. This website pro-
vides a brief overview over existing packages and a classifica-
tion with respect to their main area of application without going
into methodological or implementational detail.

In Table 1 we summarize the main features of the packages
described in the present papers and give the applicable license.

Finally, we want to draw attention to additional packages and
activities which are not covered by this paper.

NeuroImage (within the neuroim project on R-Forge, http:
//neuroim.r-forge.r-project.org/) provides an object-
oriented approach for handling multi-dimensional images. The
Rniftilib (Granert, 2010) package provides read/write capa-
bilities for the NIfTI-1 format. It provides a R-interface to
the C reference library provided by the Neuroimaging Infor-
matics Technology Initiative. In contrast to other R-packages
supporting the ANALYZE and NIfTI-1 format, this package
comes without additional functions for data processing and is
restricted to functions for data handling as provided by the
C reference library. The aim of the package is to serve as a
common basis for the work with multi-dimensional volumetric
(neuro)imaging data.

PTAk (Principal Tensor Analysis on k modes) is an R pack-
age that uses a multiway method to decompose a tensor (array)
of any order (Leibovici, 2010), as a generalisation of a singular
value decomposition (SVD) also supporting non-identity met-
rics and penalisations. A 2-way SVD with these extensions
is also available. The package also includes additional mul-
tiway methods: PCAn (Tucker-n), PARAFAC/CANDECOMP
and FCAk (multiway correspondence analysis).

Activated Region Fitting (ARF) is a program for functional
magnetic resonance imaging (fMRI) data analysis. The R-Forge
project arf uses Gaussian shape spatial models to parameterize
active brain regions (Weeda et al., 2009).

As already mentioned R is also capable of making use of
parallel computing techniques, CPU as well as GPU based.
Compute Unified Device Architecture (CUDA) is a software
platform for massively parallel high-performance computing on
NVIDIA GPUs. cudaBayesreg (Ferreira da Silva, 2010) pro-
vides a CUDA implementation of a Bayesian multilevel model
for the analysis of brain fMRI data. The CUDA program-
ming model uses a separate thread for fitting a linear regression
model at each voxel in parallel. The global statistical model im-

plements a Gibbs Sampler for hierarchical linear models with
a normal prior. This model has been proposed by Rossi et al.
(2005, Chapter 3) and is referred to as “rhierLinearModel” in
the R-package bayesm.

Finally we want to mention the package RNiftyReg (Clay-
den, 2010a) which provides an interface to the NiftyReg
(http://sourceforge.net/projects/niftyreg/) image
registration tools.

Conclusions

R provides an excellent environment for all levels of analysis
with neuroimaging data, from basic image processing to ad-
vanced statistical techniques via the current list of contributed
packages in the Medical Imaging task view. These packages
can assist user-guided data analysis for fMRI, DCE-MRI, and
DWI data as well as automated bulk analysis of imaging data.
The user is free to create additional data structures or analy-
sis routines using the programming environment in R—making
it easily customized. It is very easy to link R to compiled
C/Fortran code for speed improvements. R may be run in either
interactive or batch-processing modes in order to scale with the
application, and may be combined with other computing envi-
ronments (e.g., Matlab or NIPY) to allow even greater flexibil-
ity.
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Adler, D., Gläser, C., Nenadic, O., Oehlschlägel, J., Zucchini, W., 2010. ff:

memory-efficient storage of large data on disk and fast access functions. R
package version 2.2-1.
URL http://CRAN.R-project.org/package=ff

Ashburner, J., Chen, C. C., Flandin, G., Henson, R., Kiebel, S., Kilner, J.,
Litvak, V., Moran, R., Penny, W., Stephan, K., Hutton, C., Glauche, V.,
Mattout, J., Phillips, C., oct. 2008. The SPM8 Manual. Functional Imaging
Laboratory, Wellcome Trust Centre for Neuroimaging, Institute of Neurol-
ogy, UCL, London.
URL http://www.fil.ion.ucl.ac.uk/spm/

Basser, P. J., Mattiello, J., LeBihan, D., 1994a. Estimation of the effective self-
diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance
103, 247–254.

Basser, P. J., Mattiello, J., LeBihan, D., 1994b. MR diffusion tensor spec-
troscopy and imaging. Biophysical Journal 66, 259–267.

Biomedical Imaging Resource, 2001. Analyze Program. Mayo Foundation.
Bordier, C., Dojat, M., Lafaye de Micheaux, P., 2011. Temporal and spatial

independent component analysis for fmri data sets embedded in a p̊ackage.
Journal of Statistical Software ?? (??), ??–??

Buckley, D. L., Parker, G. J. M., 2005. Measuring contrast agent concentration
in T1-weighted dynamic contrast-enhanced MRI. In: Dynamic Contrast-
Enhanced Magnetic Resonance Imaging in Oncology. Springer, pp. 69–80.

Calhoun, V. D., Adali, T., Pearlson, G. D., Pekar, J. J., 2001. Spatial and tempo-
ral independent component analysis of functional mri data containing a pair
of task-related waveforms. Human Brain Mapping 13 (1), 43–53.

Chambers, J. M., 2008. Software for Data Analysis: Programming with R.
Springer, New York.

7



Package Data type Main features Licence

oro.nifti, oro.dicom general Reading/writing DICOM and NIfTI files BSD

AnalyzeFMRI fMRI sICA/tICA analysis for fMRI data GPL ≥ 2

fmri fMRI Linear modeling, structural adaptive smoothing, signal
detection for single subject fMRI data

GPL ≥ 2

dti DWI Diffusion tensor analysis for diffusion weighted MR data,
structural adaptive smoothing, Modelling of HARDI data

GPL ≥ 2

tractor DWI Diffusion tensor analysis for diffusion weighted MR data,
probabilistic tractography, segment specific tracts

GPL

dcemriS4 DCE-MRI Voxel-wise quantitative analysis of dynamic contrast-
enhanced or diffusion-weighted MRI data

BSD

Table 1: Main features and licenses of the packages described in this paper.

Clayden, J., 2010a. RNiftyReg: Medical image registration using the NiftyReg
library. R package version 0.2.0.
URL http://CRAN.R-project.org/package=RNiftyReg

Clayden, J., 2010b. tractor: Magnetic resonance imaging and tractography with
R. Version 1.6.0.
URL http://code.google.com/p/tractor

Clayden, J. D., Bastin, M. E., Storkey, A. J., November 2006. Improved seg-
mentation reproducibility in group tractography using a quantitative tract
similarity measure. NeuroImage 33 (2), 482–492.

Clayden, J. D., King, M. D., Clark, C. A., 2009a. Shape modelling for tract
selection. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C.
(Eds.), Medical Image Computing and Computer-Assisted Intervention. Vol.
5762 of Lecture Notes in Computer Science. Springer-Verlag, pp. 150–157.

Clayden, J. D., Storkey, A. J., Bastin, M. E., November 2007. A probabilistic
model-based approach to consistent white matter tract segmentation. IEEE
Transactions on Medical Imaging 26 (11), 1555–1561.
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