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Abstract 
In this paper, the defining properties of any valid measure of the dependence 
between two continuous random variables are revisited and complemented with two 
original ones, shown to imply other usual postulates. While other popular choices are 
proved to violate some of these requirements, a class of dependence measures 
satisfying all of them is identified. One particular measure, that we call the Hellinger 
correlation, appears as a natural choice within that class due to both its theoretical 
and intuitive appeal. A simple and efficient nonparametric estimator for that quantity 

is proposed, with its implementation publicly available in the R package HellCor. 

Synthetic and real-data examples illustrate the descriptive ability of the measure, 
which can also be used as test statistic for exact independence testing. 
Keywords: Dependence, Measure, Copula, Hellinger distance, Nearest-Neighbor 

1 Introduction 

A large part of science is about understanding the dependence between 

several factors that may influence each other, for instance to disentangle 

genetics and environmental risk factors for individual diseases. Hence 

statistics, the art of turning empirical evidence into information, has always 

kept dependence modelling at its core. Characterising the dependence 

between two variables includes two main tasks: (i) testing the null hypothesis 

H0 that the two variables are independent; and (ii) measuring the strength of 

any dependence that may exist between the two variables. 

These two tasks are often amalgamated, for instance when a dependence 

measure is used as the test statistic in an independence testing procedure, or 

when the observed value of the test statistic is interpreted as a quantification 

of the underlying dependence. This may seem natural, however there are 

good reasons to approach them separately. Indeed a measure is expected to 

be a fair quantification of the strength of the involved dependence. In a case 

of weak but non-null dependence, we would expect a reliable measure of 
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dependence to take a value accordingly low. By contrast, independence 

testing aims at making a binary decision as to the presence of dependence. 

As such, a powerful test should be based on a statistic that takes values as 

large as possible (i.e., very different than under H0) as soon as dependence is 

present, regardless of its strength. Consequently, using an interpretable 

dependence measure as a test statistic might result in some loss of power for 

the resulting test, while a test statistic designed for guaranteeing high power 

for the resulting test might lack a bit of finesse for accurately quantifying the 

strength of the dependence. We illustrate the former point in Section 5.5 

through a small simulation study. The latter can be understood through the 

observation made in Section 3.2, that some popular ‘measures’ may take 

arbitrarily large values even in some situations of ‘near-independence’, 

e.g. when the dependence is very low but of specific type. In such scenarios, 

those quantities, used as independence test statistics, would certainly achieve 

very high power. However, they do not measure accurately the real level of 

dependence involved. See also Reimherr and Nicolae (2013), Sun and 

Zhao (2014) for related comments. This paper focuses on meaningfully 

measuring dependence, without explicitly giving a central role to concepts 

inspired by dichotomous testing procedures, such as power. 

The literature on quantifying dependence has long been monopolised by the 

historical measures, such as Pearson’s correlation, Spearman’s ρ, Kendall’s τ 

and Hoeffding’s D. Yet, the interest in modern alternatives has recently made 

an impressive upsurge. Among others, one can cite distance correlation 

(Székely et al, 2007), maximal information criterion (Reshef et al, 2011), 

Hilbert-Schmidt independence criterion (Gretton et al, 2005, Pfister et 

al, 2018), sign covariance (Bergsma and Dassios, 2014), G-squared (Wang et 

al, 2017) and symmetric rank covariance (Weihs et al, 2018), along with a 

renewed enthusiasm for the mutual information (Kinney and 

Atwal, 2014, Zeng et al, 2018, Berrett and Samworth, 2019). 

Through this abundance resurfaces the question of the criteria discriminating 

sensible measures from others. Far from new, it was already addressed by 

Rényi (1959), who formulated 7 axioms that a valid dependence measure 
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between two variables, say X1 and X2, should satisfy. However, the only 

measure known to fulfil them all is the maximal correlation coefficient, 

viz.  
1 2

1 2 1 1 2 2
,

( , ) sup | ( ), ( ) |S X X X X
 

   , where (·,·)  is Pearson’s correlation 

and the supremum is taken over all Borel functions 1 2, :   . Yet, that 

measure is computable only in very particular cases, and it may return, and 

often does so, its maximal value 1 2( , ) 1S X X   even in the absence of any 

obvious strong dependence between X1 and X2 (Bell, 1962). This evidences 

that some of Renyi’s axioms may be unsuitable for general use. As a result, 

different sets of amended axioms have been proposed in the subsequent 

literature, see e.g., Schweizer and Wolff (1981), Lancaster (1982), Granger et 

al (2004) or Balakrishnan and Lai (2009, Section 4.3). Among those 

propositions, five properties, labelled (P1)–(P5) hereafter, seem difficult to 

dispute, while others are more prone to discussion. Below, we complement 

those 5 mainstream postulates with two original ones (P6)–(P7), and justify at 

length their reason-of-being. We show that they are more fundamental than 

other usually posited properties, while more natural intuitively. 

2 Renyi’s axioms and beyond 

2.1 Dependence 

We call dependence between two random variables X1 and X2 whatever 

remains to be specified for entirely reconstructing the joint distribution F12 of 

(X1, X2) once their marginal distributions F1 and F2 are known. The strength of 

dependence is thus the size (in an appropriate sense) of that missing link. As 

such, X1 and X2 are as dependent as can be when F12 is as different as can 

be to the independence base case 1 2F F . If both X1 and X2 are continuous, this 

is characterised by F12 being singular with respect to 1 2F F  (Silvey, 1964). In 

the discrete case, though, such singularity is impossible. This illustrates why 

measuring dependence may be a structurally different problem in the 

continuous and in the discrete cases (Hoeffding, 1942). In particular, it is 

known that approaches based on copulas, warranted in the continuous 

setting, are doomed to failure for analysing dependence between discrete 

variables (Genest and Neslehová, 2007). This justifies to study the two 
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situations separately; this paper considers the continuous case only. 

Perspectives of extension of the below discussion to the discrete setting are 

provided in Section 7. 

2.2 Postulates 

Let X1 and X2 be two continuous random variables defined on the same 

probability space. It is widely accepted that a valid measure D of the 

dependence between them should be such that: 

(P1) (existence) 1 2( , )D X X  is defined, whatever the variables X1 and X2; 

(P2) (symmetry) 1 2 2 1( , ) ( , )D X X D X X ; 

(P3) (normalisation) 1 20 ( , ) 1D X X  ; 

(P4) (characterisation of independence) 1 2( , ) 0D X X     X1 and X2 are 

independent ( 1 2X X ); 

(P5) (weak Gaussian conformity) If (X1, X2) is a bivariate Gaussian vector, 

then 1 2( , )D X X  is a strictly increasing function of 1 2| ( , ) |X X . 

‘Existence’ (P1) is a minimal requirement. Though, many popular measures 

do not satisfy it. For instance, Pearson’s correlation and distance correlation (

dCor ) are only defined if X1 and X2 have finite second moment. 

Defined as the void between F12 and 1 2F F  (Section 2.1), the dependence in 

(X1, X2) is evidently invariant to permutation of X1 and X2, making ‘symmetry’ 

(P2) unquestionable as well. Note that asymmetric measures, arguments in 

favour of which may sometimes be found in the literature, explicitly target 

directional notions such as ‘regression dependence’ (Dette et al, 2013) or 

causal relationships (Janzing et al, 2013), hence are of a different nature and 

do not measure dependence as defined hereinabove. 

‘Normalisation’ (P3) only aims to provide benchmarks – any candidate 

measure can be made comply with it through renormalisation. Importantly, 

though, it implies that 1 2( , )D X X  is an unsigned number. Any signed measure, 
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whose sign is meant to be informative about the ‘direction’ of the association (

1 2( , ) 0D X X  : positive association, X1 and X2 tend to vary in the same 

direction; 1 2( , ) 0D X X  : negative association, X1 and X2 tend to vary in 

opposite direction) is meaningful only when explicitly looking for such 

monotonic association. Dependence, as defined in Section 2.1, is a much 

broader concept and cannot generally be categorised as ‘positive’ or ‘negative

’. For instance, among the scatter-plots shown in Figure 5.2 below, none (but 

[7]) exhibits any sense of ‘positive’ or ‘negative’ association between X1 and 

X2 while all (but [6]) involve dependence between them. Hence a general 

dependence measure must be unsigned. Then it seems only natural to ask 

the measure to be null in the case and only in the case of no dependence 

(P4). 

Finally, ‘weak Gaussian conformity’ (P5) is unavoidable. In a bivariate 

Gaussian vector, Pearson’s correlation ρ uniquely specifies the joint 

distribution once the marginals are fixed. Hence dependence (as defined in 

Section 2.1) is unequivocally characterised by Pearson’s correlation, and any 

measure disagreeing with it in a bivariate Gaussian vector cannot be valid. 

Mostly dictated by common sense, these (P1)–(P5) can be found under this 

form or slightly amended in most of the related references. Here, we complete 

this list with the following two original requirements which, by contrast, offer 

novel perspectives on what characterises valid dependence measures. 

(P6) (characterisation of pure dependence) 1 2( , ) 1D X X   if and only if 

there exists a Borel function 2:[0,1]   such that 1 2( , ) ( )X X U  for 

[0,1]~U U  and C , the image of   in 2 , is such that 
1 1 2 2( ) ( ) 0dF x dF x



C ; 

(P7) (generalised Data Processing Inequality) If X1 and X3 are conditionally 

independent given X2 ( 1 3 2|X X X ), then 

1 3 1 2 2 3( , ) min{ ( , ), ( , )}D X X D X X D X X . 

Analogously to (P4), 1 2( , )D X X  should be maximum if and only if there exists 

some sort of perfect dependence between X1 and X2. Yet, a universally 
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accepted definition of what perfect dependence is, has proved elusive. Our 

interpretation of it, which we refer to as pure dependence and leads to (P6), 

aligns closely with Hoeffding (1942)’s and Silvey (1964)’s conception as 

described in Section 2.3. The rationale for (P7) is detailed in Section 2.4 and 

is shown to have wide implications. 

2.3 Pure dependence versus predictability 

One can view a vector (X1, X2) whose components are independent as a 

random system with two degrees of freedom, in the sense that X1 and X2 are 

allowed to vary totally freely. By contrast, any degree of dependence between 

X1 and X2 necessarily restrains, to some extent, their free variation, reducing 

de facto the associated number of degrees of freedom for (X1, X2) to strictly 

smaller than 2. This number can be thought of as the (possibly fractional) 

number of latent variables able to reproduce in principle the joint behaviour of 

(X1, X2). From that perspective, the opposite of ‘independence’ is thus when 

(X1, X2) has only one degree of freedom, that is, when one single latent 

variable, say U, is able to generate the full covariation of X1 and X2. Formally, 

this means that there is a function 2:[0,1]   such that 1 2( , ) ( )X X U . 

Although we are to see two variables X1 and X2, the underlying probabilistic 

process is fed by one single source of variability, and X1 and X2 are just the 

two sides of the same coin. This is essentially what we refer to as pure 

dependence. The concept is strongly related to Hoeffding (1942)’s ‘c-

dependence’, and is akin to the joint distribution F12 being singular with 

respect to the product 1 2F F  of its margins (Silvey, 1964), although not exactly 

equivalent (Durante et al, 2013). 

Indeed, the condition 
1 1 2 2( ) ( ) 0dF x dF x



C  in (P6) implies that C  must be a ‘

proper curve’, in the specific sense that the intersection of C  with any line 

1x t  or 2 ,x t t  , consists almost surely of at most finitely many points. In 

particular, it excludes the situations where, although seeded by one single 

random variable U, 1 2( , ) ( )X X U  defines a couple of independent random 

variables. Clearly, this is the case when   defines a constant function of 

either X1 or X2, making X1 or X2 a degenerate variable hence independent of 
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any other. It is also the case, for instance, when   is a space-filling curve 

such as the Peano or the Hilbert curve. Those are known to be surjective and 

continuous functions from the unit interval [0,1]I  onto the unit square 2I ; 

hence, as u varies from 0 to 1, ( )u  visits every single point of 2I  (see 

Figure 5.3 below). In addition, they have the bi-measure-preserving property 

(Steele, 1997, Section 2.7): for any Borel set 1 2, ( ) ( ( ))   A I A A , where 

for q = 1, 2, λq is the Lebesgue measure on q . In theory, it is thus possible to 

generate a bivariate uniform vector (X1, X2) on the unit square, hence 

1 2X X , by letting U run on I  and defining 1 2( , ) ( )X X U  (Steele, 1997, 

p. 43). Of course, by definition the image of this function is the whole 2I , and 

2 1 1 2 2( ) ( ) 1dF x dF x I  which violates our definition of pure dependence (P6). 

Those space-filling curves are special cases of fractal constructions, and the 

observed independence of X1 and X2 is actually induced by the inherent 

chaos in the fractal  . A fractal is obtained as the limit of a series of iterations 

reproducing a certain regular pattern at finer and finer resolution. ‘Shuffles of 

Min’ constructions (Kimeldorf and Sampson, 1978, Mikusínski et al, 1992) are 

of the same nature, while Zhang (2019) constructed a similar example based 

on a ‘bisection expanding cross’ (Figure 5.4 below); see also Sejdinovic et 

al (2013, p. 2287) who consider sine curves of higher and higher frequencies. 

Denote by d  the approximation of the fractal   at resolution d  , and 

2

d C  its image. For any finite d, 
1 1 2 2( ) ( ) 0

d

dF x dF x C , so that defining 

1 2( , ) ( )dX X U  would produce a couple of purely dependent variables 

according to (P6). Now, in the limit d  , their pure dependence suddenly 

turns into independence, meaning that one can approach arbitrarily closely, in 

a certain sense, distributions showing independence by distributions showing 

pure dependence. This ostensible paradox is the core of the discussion in 

Zhang (2019). 

This, however, is very similar to the following simple case of a degenerate 

bivariate Gaussian distribution: let 1 ~ (0,1)X N  and 2 1X aX , for 0a  . Then 

1 2| ( , ) | 1X X   (pure dependence), including for a arbitrarily small. Yet, when a 

= 0, 1 2( , ) 0X X   (independence). As 0a , one would thus approach 
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independence arbitrarily closely by pure dependence. The above described 

paradox of contiguity between pure dependence and independence is thus 

well understood. 

Rényi (1959)’s original Axiom E) requires D to be maximum under ‘strict 

dependence’, defined as when there exists a Borel function 1 :   such 

that 2 1 1( )X X , or a Borel function 2 :   such that that 1 2 2( )X X ; 

that is Axiom 3 in Granger et al (2004) as well. In other words, one of the 

variables should be deterministically predictable from the other, that is, what 

Lancaster (1963) defined as ‘complete dependence’. Yet X2 may be a 

deterministic function of X1 while giving very little information on X1; e.g., 

2 1sin( )X X  (ψ1 is many-to-one). Clearly asymmetric, this concept seems 

hardly reconcilable with (P2). In an attempt to symmetrise it, one can request 

the existence of two functions ψ1 and ψ2 such that 2 1 1( )X X  and 

1 2 2( )X X , that is, a one-to-one relationship between X1 and X2. This would 

reduce any sense of perfect dependence to ‘mutual complete dependence’ 

(Lancaster, 1963) or even ‘monotone dependence’ (Kimeldorf and 

Sampson, 1978), which appears too restrictive. All in all, if some dependence 

between X1 and X2 may usually help for predicting X2 from X1 or vice-versa, 

the concepts of predictability and dependence are indeed distinct. 

Note that the characterisation of ‘pure dependence’ in (P6) is symmetric in X1 

and X2, and it admits deterministic predictability as a particular case, in the 

sense that if 2 1 1( )X X , one can write 

1 1

1 2 1 1 1 [0,1]( , ) ( ( ), ( ( ))) ( ),  for ~ .X X F U F U U U   U  

Generally, though, it does not require any of the two variables to be 

predictable from the other. We note that many popular dependence measures 

fail to satisfy (P6). In particular, Pearson’s correlation and distance correlation 

(dCor) take their maximum value only in the case of perfect linear relationship 

between X1 and X2, while rank-based measures such as Spearman’s ρ, 

Kendall’s τ or Hoeffding’s D are maximum only in the case of ‘monotone 

dependence’ (deterministic monotonic relationship). 
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2.4 Generalised Data Processing Inequality, equitability, margin-freeness and copulas 

The Data Processing Inequality is an important information-theoretic concept 

(Cover and Thomas, 2006, Section 2.8). It carries the intuitively clear idea that 

information cannot be gained when a signal goes through a noisy channel. 

Specifically, if X1, X2 and X3 are three random variables such that X1 and X3 

are independent conditionally on X2 ( 1 3 2|X X X ), it establishes that 

1 3 1 2( , ) ( , )I X X I X X  where ( , )i jI X X  is the Mutual Information between Xi 

and Xj ( , {1,2,3}i j  ). Concretely, if X2 is a signal containing some information 

about X1 and we are only able to see X3, a version of X2 diluted in white noise, 

then the noisy version X3 is necessarily less informative about X1 than X2. It 

seems fair to paraphrase this as ‘there is less dependence between X1 and X3 

than between X1 and X2’, making it reasonable to ask a dependence measure 

to satisfy the ‘generalised Data Processing Inequality’ (P7). 

The implications of (P7) are actually very deep. In particular, we have the 

following result: 

Proposition 2.1. A dependence measure D satisfying (P7) is such that 

1 2 1 1 2 2( , ) ( ( ), ( ))D X X D X X   (2.1) 

for any Borel functions ψ1 and ψ2 such that 1 2 1 1| ( )X X X  and 

1 2 2 2| ( )X X X . 

Proof. 1 2 1 1 1 2 1 1 2| ( ) ( , ) ( ( ), )X X X D X X D X X    , by (P7). Given X1, 

1 1( )X  is degenerated, so independent of any other random variable. Thus 

1 1 2 1( ) |X X X   and 1 1 2 1 2( ( ), ) ( , )D X X D X X  , again by (P7). Hence 

1 1 2 1 2( ( ), ) ( , )D X X D X X  . The second part follows identically, as 

1 2 2 2 1 1 2 2 2| ( ) ( ) | ( )X X X X X X     . □ 

This property is strongly related to the concept of equitability, which recently 

came to light for discriminating between dependence measures. In short, a 

dependence measure is equitable if it returns the same value to equally noisy 

relationships of different nature. After it was empirically outlined by Reshef et 

al (2011), several formal definitions were proposed (Kinney and 
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Atwal, 2014, Reshef et al, 2016, Ding et al, 2017), and (2.1) is actually a slight 

generalisation of Kinney and Atwal (2014)’s definition of self-equitability. The 

conditional independence assumptions 1 2 1 1| ( )X X X  and 

1 2 2 2| ( )X X X  essentially mean that the whole dependence between X1 

and X2 can be captured by the functions ψ1 and/or ψ2, and the dependence 

measure should reflect that. This is the case, for instance, under the 

regression model 2 1 1( )X X   , where 1X  . Then (2.1) implies that 

1 2 1 1 2( , ) ( ( ), )D X X D X X , meaning that the value of D is only driven by the 

signal-to-noise ratio, irrespective of the nature or shape of ψ1. 

Note that the set of functions 1 2,   such that 1 2 1 1| ( )X X X  and 

1 2 2 2| ( )X X X  is necessarily non-empty. In particular, all strictly monotonic 

Borel functions ψ1 and ψ2 are such functions, as in that case, conditioning on 

1 1( )X  or on 2 2( )X  is equivalent to conditioning directly on X1 or X2, 

respectively. Thus, (2.1) implies that D is invariant to monotonic 

transformations of X1 and X2, i.e., 

1 1 2 2 1 2( ( ), ( )) ( , )D X X D X X    (2.2) 

for any two strictly monotonic Borel functions 1 2, :   . This has often 

been presented as a fundamental trait of any valid dependence measure: it is 

Axiom F) in Rényi (1959)’s original paper and Axiom 6 in Granger et al (2004), 

for instance. A dependence measure satisfying (2.2) is said margin-free, given 

that the marginal distributions can be arbitrarily distorted by ψ1 and ψ2 without 

affecting its value. It so appears that (P7) is actually a more fundamental 

property than ‘margin-freeness’, given that (P7)   (2.1)   (2.2). 

Margin-freeness is typically associated to copulas. The copula C12 of the 

continuous vector (X1, X2) is the distribution of 1 1 2 2( ( ), ( ))F X F X  on the unit 

square 2I , and is known to capture all the characteristics of F12 which are 

invariant to monotonic transformations of its margins (Schweizer and 

Wolff, 1981). Thus, any dependence measure which is explicitly copula-

based, e.g., Spearman’s ρ, Kendall’s τ or Hoeffding’s D, is margin-free in the 

continuous setting. Conversely, for X1 and X2 continuous, any margin-free 
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dependence measure 1 2( , )D X X  must admit a representation involving only 

the copula of (X1, X2). Many popular measures of dependence are not copula-

based hence they are not margin-free. Besides the obvious example of 

Pearson’s correlation, it is the case of the distance correlation dCor (Székely 

et al, 2007) and the Hilbert-Schmidt independence criterion HSIC (Gretton et 

al, 2005), among others. Problems that this creates were implicitly 

acknowledged by Székely and Rizzo (2009, Section 4.3) as they briefly 

mentioned basing empirical estimation of dCor on the ranks of the 

observations instead of on the original observations. Likewise, Póczos et 

al (2012) suggested a copula version of HSIC. Here it is stressed that, beyond 

margin-freeness, the real issue with measures not copula-based is that they 

violate (P7), whose legitimacy seems difficult to contest. 

3  -dependence measures 

3.1 Definition and properties 

A measure of the dependence in (X1, X2) should quantify how much different 

is the joint distribution F12 from the product 1 2F F  of its marginals; see Section 

2.1. Natural candidates for this task are the  -divergences (Ali and 

Silvey, 1966) between F12 and 1 2F F , viz. 

2

12 1 2
12 1 2 1 1 2 2

1 1 2 2

( , )
( || ) ( ) ( )

( ) ( )

dF x x
F F F dF x dF x

dF x dF x
 

 
   

  (3.1) 

for some convex function   such that (1) 0  . The  -divergence family 

includes most of the common statistical distances between distributions (Liese 

and Vajda, 2006), hence (3.1) includes many familiar dependence measures. 

For instance, ( ) logt t t   yields the Kullback-Leibler divergence between F12 

and 1 2F F , which is the Mutual Information 1 2( , )I X X . 

Provided that we allow the Radon-Nikodym derivative 12 1 2/dF dFdF  to be 

infinite in case of singularity (see discussion in Silvey (1964) and Remark 3.1 

below), 12 1 2( || )F F F  is always defined and ‘existence’ (P1) is guaranteed. ‘

Symmetry’ (P2) is obvious from the definition. ‘Weak Gaussian conformity’ 

(P5) is what Ali and Silvey (1965) established. ‘Generalised Data Processing 
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Inequality’ (P7) holds by Theorem 4 of Kinney and Atwal (2014), which makes 

any measure (3.1) automatically margin-free. Indeed, with X1 and X2 both 

continuous, one has the copula form 

 
2 2

12 1 2
12 1 2 1 2 12 1 2 1 2

1 2

( , )
( || ) ( , ) ,

dC u u
F F F du du c u u du du

du du
  

 
    

 I I
 (3.2) 

through Probability Integral Transform ( )k k ku F x , k = 1, 2, where C12 is the 

copula of (X1, X2) and c12 its density. 

Remark 3.1. The copula density c12 is obviously defined when C12 is 

absolutely continuous. If C12 is singular or has a singular component, then one 

can think of c12 as infinite on the singularity, and defined as the limit of the 

densities of a sequence of absolutely continuous copulas converging to C12 in 

an appropriate sense (Ding et al, 2017, p. 9). 

There remain (P3), (P4) and (P6), compliance to which depends on   as 

follows. 

Proposition 3.1. Let : (0, )    be convex with (1) 0  , and call 

*

0 0
0 0

lim ( ), lim (1/ )
t t

t t t   
 

   and *

0 0    . Then, 
12 1 2( || )F F F  in (3.1) is 

such that 
12 1 20 ( || )F F F    . In addition, if   is strictly convex at t = 1, then 

12 1 2( || ) 0F F F   if and only if 1 2X X  and, provided that 

12 1 2, ( || )F F F      if and only if X1 and X2 are purely dependent in the 

sense of (P6). 

Proof. This follows from Theorem 5 in Liese and Vajda (2006). □ 

‘Characterisation of independence’ (P4) is thus granted as soon as   is 

strictly convex at t = 1. If    , then ‘normalisation’ (P3) is achieved by 

obvious linear rescaling 12 1 2 12 1 2( || ) (1/ ) ( || )F F F F F F  å , and ‘

characterisation of pure dependence’ (P6) for 12 1 2( || )F F F
å  follows straight 

from Proposition 3.1. On the other hand, if    , then, even though one can 

still enforce (P3) through a non-linear transformation, (P6) cannot be made 

true: there are cases in which 12 1 2( || )F F F  is infinite while X1 and X2 do not 
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show any sense of strong dependence (see Section 3.2). In short, a  -

dependence measure fails to comply with (P6) when its baseline version (3.1) 

can be infinite – see comments in Micheas and Zografos (2006) (in particular, 

their Axiom 9) – which has also serious implications when empirically 

estimating such a measure (Ding et al, 2017, Section 3.1). 

3.2 Common choices 

If one takes 2( ) ( 1)t t   , for which choice 
12 1 2, ( || )F F F     is Pearson’s 

Mean Square Contingency coefficient 2

1 2( , )X X , allowed to be infinite. It is 

usually re-normalised as 2 1/2

1 2 1 2 1 2( , ) ( , ) / (1 ( , )) [0,1]X X X X X X   å  so as 

to agree with | |  in the Gaussian case (Rényi, 1959). However, in general 

this may equal 1 even when X1 and X2 do not show any sense of strong 

relationship. Indeed, in the form (3.2), 
2

2 2

1 2 12 1 2 1 2( , ) ( ( , ) 1)X X c u u du du  I , 

and it is known that the copula density c12 is not square-integrable as soon as 

there is the slightest level of tail dependence between X1 and X2 

(Beare, 2010, Theorem 3.3). This observation was already used by 

Hoeffding (1942, p. 150) for calling into question the usefulness of 2  as a 

measure of dependence. 

Likewise, for ( ) logt t t  , one gets    , and indeed the Mutual Information 

1 2( , )I X X  can be infinite. It can be re-normalised as 

 
1/2

1 2 1 2( , ) 1 exp( 2 ( , )) [0,1]I X X I X X  å  so as to agree again with | |  in the 

Gaussian case (Linfoot, 1957). Yet, it cannot unequivocally characterise pure 

dependence. For instance, for some (0,1)a  and m , consider the copula 

density 

2

2

1
 if ( , ) [0,1 )

1

( , )  if ( , ) [1 ( 1) / ,1 / ) , 1,2, , ,

0 elsewhere.

u v a
a

m
c u v u v a a m a a m m

a
  


  




        





 

Then it can be checked that 
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21 2 1 2 1 2 1 2( , ) ( , ) log ( , ) (1 ) log(1 ) log log .I X X c u u c u u du du a a a a a m      I  

As 0a , the copula density is constant over a set arbitrarily close to the 

whole 2I , suggesting a situation of near-independence. However, 1 2( , )I X X  

can be made arbitrarily large by growing m such that loga m . 

By contrast, the choice ( ) | 1|t t    yields 2    . The associated (rescaled) 

dependence measure 
12 1 2 12 1 2( || ) (1/ 2) ( || )F F F F F F   å  consequently satisfies 

(P1)–(P7). It is actually Silvey (1964)’s Δ, renamed ‘robust copula 

dependence’ measure in Ding et al (2017) when in copula form (3.2). 

However, no root-n consistent estimator of that measure seems available. In 

the next section, we explore a particular measure which lies at the intersection 

between two common families of  -divergences (see Appendix A), and we 

provide a simple root-n consistent estimator. 

4 The Hellinger correlation 

If one takes 1/2 2( ) ( 1)t t   , for which 2    , the corresponding (rescaled) 

measure 

 

2

2

2

12 1 2
12 1 2 1 1 2 2

1 1 2 2

2
2

12 1 2 1 1 2 2 1 2

( , )1
( || ) 1 ( ) ( )

2 ( ) ( )

1
( , ) ( ) ( ) ( , )

2

dF x x
F F F dF x dF x

dF x dF x

dF x x dF x dF x X X



 
   

 

 





å

H

 (4.1) 

satisfies (P1)–(P7). We denote this measure 2

1 2( , )X XH , or simply 2H , as it is 

the squared Hellinger distance between F12 and 1 2F F . Under the copula form 

(3.2), it is 

 2 2

2
2

12 1 2 1 2 12 1 2 1 2

1
( , ) 1 1 ( , ) 1 ,

2
c u u du du c u u du du     I I

H B  (4.2) 

where B  is the Bhattacharyya affinity coefficient (Bhattacharyya, 1943) 

between the copula density c12 and the independence copula density 

identically equal to 1 on 2I . 
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In the bivariate Gaussian case, it can be checked that 

2 2 1/4 2 1/21 (2(1 ) ) / (4 ) ( )h     H , a strictly increasing function of the 

correlation ρ – in agreement with ‘weak Gaussian conformity’ (P5). This 

suggests to consider the measure on the transformed scale 1 2( )h  H . As 

1h  is a bijection from [0,1]  to [0,1] , it preserves all (P1)–(P7) for η. Direct 

algebra yields 

 
1/22 4 4 1/2(2 / ) (4 3 ) 2 ,    B B B  (4.3) 

our proposed measure of dependence. We call 1 2( , )X X   the Hellinger 

correlation between X1 and X2, given that it is defined so that | |   in the 

bivariate Gaussian case (‘strong Gaussian conformity’). This greatly facilitates 

interpretation as the value of η can easily be appreciated on the familiar 

Pearson’s correlation scale: a Hellinger correlation η equal to 0 [0,1]   

represents a dependence of the same strength as in a bivariate Gaussian 

vector whose Pearson’s correlation is 0  . 

5 Empirical estimation 

5.1 Background 

Measuring dependence by 2H  has been considered before, e.g., by Granger 

et al (2004) who proposed an estimator based on kernel density estimation 

and numerical integration – see also Su and White (2008). However, the 

obtained estimate heavily depends on the bandwidths used in the kernel 

estimators (Skaug and Tjøstheim, 1996), an appropriate choice of which in 

practice remaining problematic. Rosenblatt (1975), Hong and White (2005) 

and Ding et al (2017) face the same issue when estimating their proposed 

measure; see also comments in Zeng et al (2018). Of course, difficulty in 

estimating a measure from empirical data seriously limits its practical reach. 

Now, if knowledge of dF12, dF1 and dF2 in (4.1), or of the copula density c12 in 

(4.2), implies knowledge of 2H , the contrary is not true: one cannot recover 

dF12, dF1 and dF2 or c12 from 2H  alone. Empirical estimation of 2H  (or any 

function thereof, such as B  or η) should thus not be based on the more 

difficult task of estimating the individual densities. Indeed it has been known, 
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at least since Kozachenko and Leonenko (1987), that one can consistently 

estimate some  -divergences without consistently estimating the underlying 

distributions; Berrett et al (2018) offer a recent review of such ideas for 

entropy estimation. Below we suggest a simple estimator of 12c B  along 

that line, subsequently producing an estimator of η through (4.3). 

5.2 Basic estimator and asymptotic properties 

Let 1{ , , }nX X , where 2

1 2( , )i i iX X X , be a random sample from F12. For 

{1, , }i n  , call 1 2 1 1 2 2( , ) ( ( ), ( ))i i i i iU U F X F X U , the corresponding 

observations from the copula C12, and 1 2 ,1 1 ,2 2
ˆ ˆ ˆ ˆ( , ) ( ( ), ( ))i i i n i n iU U F X F X U  the ‘

pseudo’-observations obtained from 
 ,

1

ˆ ( ) (1/ ( 1))
ik

n

n k X x

i

F x n




  1 , k = 1, 2, as 

is customary in the copula literature. Let 2min || ||i j i j iR  U U , the Euclidean 

distance between iU  and its closest neighbour, and its ‘pseudo’-version 

2
ˆ min || ||j ii j iR  U U . 

Our first simple and entirely data-based estimator for B , not involving any 

user-defined parameter, is 

1

2 1 ˆ ,
n

i

i

n
R

n 


 B  (5.1) 

which is the feasible version of the oracle estimator 
1

(2 1 / )
n

i

i

n n R


 B . See 

Leonenko et al (2008, Remark 3.1) for the motivation behind this estimator. In 

terms of measuring dependence, the intuition is the following. In case of pure 

dependence ( 0B ), the iU ’s fall exactly on a curve. The Ri’s are then 

essentially univariate spacings, known to be of order 1( )PO n  (Pyke, 1965). 

This yields 0B  in probability. Now gradually relaxing dependence amounts 

to allowing some play around that curve for the iU ’s. As these get more and 

more room to move apart, the Ri’s globally increase, and so does B . 

Ultimately, when the iU ’s get totally free (independence, 1B ), they 

uniformly cover 2I  and maximally occupy their allowed space. The Ri’s are 

globally as large as can be, and so is B . The latitude given to the iU ’s for 
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covering 2I  reflects the number of degrees of freedom in (X1, X2); see 

Section 2.3. 

The L2-consistency of B  follows straight from Leonenko et al (2008, Section 

3.1). Aya Moreno et al (2018, Lemma 1) and Ebner et al (2018, Theorems 1 

and 2) further establish the root-n consistency and the asymptotic normality of 

B , if the copula density c12 is bounded on 2I . In Appendix B we show how to 

relax this restrictive assumption by combining marginal transformations 

(Geenens et al, 2017) and results of Singh and Póczos (2016). 

Deheuvels (2009, Lemmas 2.1 and 2.2) help to establish that 1/2( )PO n B B

, meaning that the above root-n consistency of the oracle estimator B  carries 

over to the feasible B . 

5.3 Normalisation 

In finite samples, however, B  suffers from two serious defects (as would B ). 

First, it is heavily biased due to the boundedness of the support 2I  of C12 

(Liitiäinen et al, 2010). Second, although 2
12 12( ) 1c c   B  by 

Cauchy-Schwarz, it may happen that 1B , implying a meaningless negative 

estimate of 2H  and precluding ulterior estimation of η. 

Now, evidently 2
12 2( )c L I . Hence from any orthonormal basis of 2 ( )L I , 

say 0 1{ ( ), ( ), }b u b u   with 0 ( ) 1b u  , one can form a tensorised orthonormal 

basis for 2

2 ( )L I  and write the expansion 12 1 2 1 2

0 0

( , ) ( ) ( )k k

k

c u u b u b u
 

 

 , 

where 
2 12 1 2 1 2 1 2( , ) ( ) ( )k kc u u b u b u du du  I . In particular, see that 00B . 

Similarly to (5.1), 

1 2

1

2 1ˆ ˆ ˆ ˆ( ) ( ), , ,
n

k i k i i

i

n
Rb U b U k

n





   (5.2) 

is a root-n consistent estimator of k  (Aya Moreno et al, 2018, Lemma 1). For 

appropriate cut-off values K and L, define 12 1 2 1 2

0 0

ˆ( , ) ( ) ( )
K L

k k

k

c u u b u b u
 

  an 
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orthogonal series estimator for 12c , and see that 

 2

2
2

12 1 2 1 2

0 0

ˆ( , )
K L

k

k

c u u du du 
 

I . This suggests to re-normalise 
00̂B  as 

1/2

2

0 0

ˆ ./
K L

KL k

k


 

 
   

B B  (5.3) 

Not only this shrinkage guarantees [0,1]KL B  always, it reduces the variance 

and mostly takes care of the boundary effect as well. Intuitively, when iU  is 

close to the boundary of 2I , its neighbourhood is empty of data on one side 

and ˆ
iR  tends to be larger than what it should be. This makes (5.1) 

overestimate B  and induces bias. But then (5.2) overestimates each k  to 

the same extent, and the induced biases mostly cancel each other out in the 

ratio (5.3). Finally, (5.3) is plugged into (4.3) to define the estimator 

 
1/2

1/2
2 4 4

ˆ (2 / ) 4 3 2 , , .KL KL KLKL K L
 

     
 

B B B  (5.4) 

The following simulation showcases the performance of this estimator. 

Random samples of size n = 500 were generated from a bivariate Gaussian 

distribution with correlation 0.4   and 0.8  . On each of them, the basic 

estimator 0̂ , obtained by plugging B  in (4.3), was computed, together with 

normalised versions 11 22
ˆ ˆ,   and 33̂ . The basis 0 1{ ( ), ( ), }b u b u   was formed by 

the normed Legendre polynomials shifted to [0,1] . The returned estimates are 

shown by the boxplots in Figure 5.1. In the case 0.4  , though, around 56% 

of the initially returned estimates B  were found greater than 1, precluding 

estimation of η. So the boxplot at the extreme left only represents the 44% of 

the estimates which could be computed. 

The reduction in both bias and variance brought by the normalisation is 

obvious. For 0.4  , one extra term in each direction ( 1K L  ) in the 

expansion for 12c  is enough, as 12c  is rather flat and well approximated by 

a low-degree polynomial. For 0.8  , slightly more terms should be included 

as 12c  tends to peak in the corners of 2I . In order to keep the estimator 

totally data-driven, we suggest in Appendix C a novel and explicit cross-
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validation criterion easy to minimise. The estimator computed with the values 

of K and L minimising that criterion is marked CV̂  in Figure 5.1. The proposed 

cross-validation criterion consistently identifies the suitable level of 

approximation K and L and produces a reliable estimator of η. Estimators 

(5.2)-(5.3)-(5.4), as well as the suggested cross-validation procedure, have 

been efficiently implemented in the freely available R package HellCor. 

For comparison, the empirical Pearson’s correlation ̂  was computed on the 

same samples, being here the ‘gold standard’ given that in the considered 

bivariate Gaussian vectors,   . Interestingly, it is seen that 
CV̂  is only 

marginally dominated by ̂ , the classical estimator specifically designed for 

capturing the dependence of linear nature peculiar to bivariate Gaussian 

vectors. 

Naturally, the Hellinger correlation would capture dependence of any other 

nature as well. This is illustrated in Figure 5.2, showing 15 random samples of 

size n = 500 generated from the 15 scenarii considered in Heller et al (2016, 

Figure 4). The estimator CV̂  with expansion in the Legendre basis and cross-

validation cut-offs, from now on denoted simply ̂ , was computed on each of 

them. The estimated values of η are shown on top of each plot, attesting an 

interesting descriptive ability. In Appendix D, these 15 examples, placed in a 

much broader framework, are the basis of a comprehensive study of the 

accuracy of our proposed estimator ̂  of η and the power of an independence 

testing procedure based on it. 

Finally, we generated random samples of size n = 500 and n = 5, 000 on the 

Peano curve (Figure 5.3) and on Zhang (2019)’s ‘bissection expanding cross’ 

(Figure 5.4), at increasing resolution d (see Section 2.3). For any finite d, the 

joint distribution of (X1, X2) is concentrated on a curve (in the sense of (P6)) 

and hence exhibits perfect dependence (population Hellinger correlation η = 

1). However, that dependence is harder and harder to detect empirically as 

the resolution increases: for the same sample size, the length of the ‘curve’ 

increases, hence the points are more distant to one another and it becomes 

difficult to capture their perfect alignment. This explains why the empirical 
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Hellinger correlation tends to fade as d increases (for n fixed). Increasing the 

sample size pushes the empirical Hellinger correlation towards η = 1 for any 

finite d, and towards η = 0 for d    – as explained in Section 2.3, X1 and X2 

are indeed independent at the limit d   . For comparison, we have also 

computed the empirical distance correlation (dCor ) for each of those samples. 

The observed values of dCor  remain very low across all scenarii, actually 

close to its value for the independent sample ( d   ), even for n = 5, 000. The 

observed value is significantly different to 0 (at level 0.05  ) only for 

resolution d = 1, and d = 2 for n = 5, 000 in the ‘bissection expanding cross’ 

case (obtained from 200 permutations, from dcor.test in the R package 

energy). We also computed a variety of other dependence measures or 

dependence test statistics (not shown), such as Hoeffding’s D 

(Hoeffding, 1948), HSIC (Pfister et al, 2018), or the HHG test statistic (Heller 

et al, 2016), with essentially the same results: none is able to detect 

dependence beyond resolution d = 1. The power of ̂  to do so is showcased 

in Section 5.5. 

5.4 Accuracy of empirical estimation 

Figure 5.2 illustrates the descriptive ability of ̂  on a given sample, however it 

does not allow us to judge the accuracy of that empirical estimator for the 

population value η. Indeed, in those 15 scenarii, the underlying copula (hence 

its density) is not known, and the ‘true’ value η is not available. So, to 

investigate how close our proposed estimator ̂  is to η, we consider here nine 

common one-parameter copula families (see Figure 5.5) whose distributions 

are available in closed form: the respective true values of B  can be computed 

by direct numerical integration in (4.2), and then plugged into (4.3) to obtain 

the true η’s. (For this task we used the R package copula, and we double-

checked the results with Mathematica. We requested a relative accuracy of 

410  for η.) Figure 5.5 shows the value of η as a function of the parameter θ 

classically parameterising each of those copula families. Naturally, the 

function ( )   for the Gaussian copula is the absolute value function, as the 

Hellinger correlation η has been calibrated for this to be the case (θ is 

Pearson’s correlation for the Gaussian copula). Other notable observations 
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can be made from Figure 5.5, e.g., the fact that the Student-t copula can 

never describe independence. 

For the below simulation, we chose one particular value of θ for each family, 

so that, overall, we have a wide range of associated values for η, from ‘low’ to 

‘high’; see Table 5.1. 

For each of these copulas, we generated M = 1, 000 samples of sizes n = 

100, 250, 500 and 1, 000 from which we computed ̂ . The associated 

boxplots are shown in Figure 5.6, empirically confirming the aptitute of the 

proposed estimator ̂  for accurately approximating η as the sample size 

increases. A slight positive bias for small values of n is also apparent for the 

cases considered here. Further results of this type are provided in Appendix 

D. 

5.5 Significance and independence testing 

The exact statistical significance of the empirical Hellinger correlation 

computed on a given data set can easily be obtained for any sample size by 

Monte-Carlo simulations. Indeed, if X1 and X2 are independent, then C12 is 

bivariate uniform on 2I . One can then simulate a large number of bivariate 

uniform samples of any size n and compute ̂  on each of those, which would 

allow arbitrary close approximation to the exact sampling distribution of ̂  for 

that n in the case of independent variables (η = 0). For instance, from M = 10, 

000 independent bivariate uniform samples of size n = 500 and n = 5, 000, we 

have obtained, respectively, critical values c 0.146   and c 0.048   (exact 

up to Monte Carlo error) at significance level 0.05  . All the observed 

empirical Hellinger correlations in Figure 5.2 are thus statistically significant, 

except under the ‘4 clouds’ scenario [6] in which case X1 and X2 are indeed 

independent (Heller et al, 2016). For the Peano and ‘bissection expanding 

cross’ scenarii (Figures 5.3 and 5.4), dependence is detected up to resolution 

d = 3 for n = 500. At that sample size, it becomes hardly possible to visually 

make any distinction between the samples for d = 4, 5 and d    

(independence), indeed. For n = 5, 000, on the other hand, dependence is 
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detected up to resolution d = 5. This can be contrasted to the observations 

made at the end of Section 5.3 about other tests or measures. 

Naturally, checking the significance (i.e., non-nullity) of a measure of 

dependence is in many ways akin to testing for independence. Now, bearing 

in mind the discussion in Section 1, it seems clear that ̂  might not be a test 

statistic leading to the most powerful test. Yet, the previous results indicate 

that, in some situations, the Hellinger correlation may still show some 

interesting ability to highlight dependence compared to other, more classical 

choices of dependence measure. We investigate this further here. 

We generated M = 10, 000 samples of increasing sizes for the Peano (d = 4) 

and ‘bissection expanding cross’ (d = 3) structures of dependence, 

respectively (see Figures 5.3 and 5.4). From these samples, we computed the 

(empirical) power of independence tests using for test statistics: (i) 0̂ , the ‘

raw’ empirical Hellinger correlation, without any normalisation; and (ii) ̂ , its 

properly normalised version (with expansion in the Legendre basis and cross-

validation cut-offs), as described in Section 5.3. Exact critical values (as 

opposed to asymptotic or based on permutations) for these two tests were 

obtained for all n as described above. We compared these powers to those of 

five popular competitors, namely dCov: distance correlation (Székely et 

al, 2007); HHG: Heller et al (2012); G2: Wang et al (2017); RCD: robust 

copula dependence (Ding et al, 2017); GMR: Granger et al (2004). The 

results are shown in Tables 5.2 and 5.3. 

For the Peano scenario, all competitors stay stuck at the marginal power 

(~5%), even for ‘large’ samples (n = 500). For the ‘bissection expanding cross’ 

scenario, dCov and G2 fail to detect any dependence again, while RCD, GMR 

and to a lesser extent HHG manage to do so, although with a power much 

lower than the test based on 0̂ . Note that the resolution d = 4 for Peano 

being higher than for ‘bissection expanding cross’ (d = 3), the dependence in 

this second scenario is more obvious than in the first one, which explains 

higher power altogether across the table. 
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What appears clearly is that the test based on 0̂  (non-normalised version of 

the Hellinger correlation) is the most powerful here, and by far. In particular, it 

has a much higher power than the test based on the normalised one ̂  (which 

is still more powerful overall than most of the competitors). This illustrates our 

point, discussed in Section 1, that a good measure of dependence does not 

necessarily produce a good test, at least not the best test: the normalisation 

was introduced in Section 5.3 for stabilising the variance of the ‘raw’ estimator 

0̂  and forcing it to belong to [0,1] , hence for producing a much more 

meaningful measure – but this apparently comes at the price of a lower power 

when it comes to test for independence. 

The above scenarii are two of ‘pure dependence’ – although their particular 

structure makes it very difficult to detect. In Appendix D we provide a more 

comprehensive power study where different levels of dependence are 

considered. Indeed the tests based on 0̂  and ̂  are not always the most 

powerful, but they consistently rank in the best options overall. 

6 Real data applications 

6.1 Coral fish, seabirds and reef productivity 

We consider data from a recent study on coral reef productivity described in 

Graham et al (2018). The density of some species of seabirds and coral reef 

fish around n = 12 islands of the Chagos Archipelago (British Indian Ocean 

Territory) was recorded; see Table 6.1. Those seabirds forage and feed in the 

open ocean, far from reefs, and their number around a given island largely 

depends on the presence or absence of rats on it. So they belong to a 

different ecosystem to the fish. Indeed, empirical Pearson’s correlation 

between the densities of seabirds and fish around the 12 islands under study 

is ˆ 0.374  , not significantly different to 0 (p = 0.231). Likewise, the empirical 

distance correlation (Székely et al, 2007) is dCor 0.526 , not significant (p = 

0.159 based on 200 permutations, from dcor.test in the R package energy). 

This failure to evidence any significant dependence goes, however, against 

the report of Graham et al (2018), whose main finding is that the two 
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ecosystems are in fact connected. Nutrients, in particular nitrogen, leach from 

seabird guano onshore to nearshore marine systems through rainfall, among 

others. With this extra nutrient supply, benthic algae develop more on coral 

reefs adjacent to islands where seabirds are abundant, making the reef-fish 

communities there more abundant as well, given that fish mostly feed on 

those algae. 

The nitrogen input, as described in Graham et al (2018), is thus a latent 

variable, positively associated to both seabird and fish densities. Now, by 

design (see Section 2.3), the Hellinger correlation should be particularly 

effective at highlighting dependence when induced by such a hidden effect. 

Indeed the empirical Hellinger correlation (5.4), with Legendre basis and K = 1 

and L = 1 determined by cross-validation in (5.3), is here ˆ 0.744  . The exact 

p-value of significance, obtained from M = 10, 000 independent bivariate 

uniform samples of size n = 12, as described in Section 5.5, is found to be 

0.045. So, at the typical significance level 0.05  , the Hellinger correlation is 

able to highlight the dependence between ‘seabirds’ and ‘fish’, even from 

such a small sample, corroborating Graham et al (2018)’s findings. 

One can also build a bootstrap confidence interval for η by resampling from 

the empirical beta copula (Segers et al, 2017). The conventional bootstrap 

(sampling the pairs with replacement from 1{ , , }nX X ) is not appropriate here 

as the bootstrap resamples would typically include several times the same iX . 

The associated ˆ
iR  would then be 0, which would lead to gross 

underestimation of B  in (5.1). Indeed it is known that the conventional 

bootstrap is inconsistent in case of estimators being non-smooth functional of 

F12, like estimators involving nearest-neighbour distances. On the other hand, 

sampling from the empirical beta copula can be regarded as a variant of the ‘

smoothed’ bootstrap (Kiriliouk et al, 2019). The empirical beta copula being 

continuous, the bootstrap resamples do not contain any repeated observation, 

leading to a consistent procedure. The variance of estimator (5.1) is not easily 

tractable, though (Ebner et al, 2018, p. 235). Hence we opt for the double 

bootstrap procedure described in Karlsson and Löthgren (2000). The 
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produced two-sided bootstrap-t confidence intervals are known to be second-

order accurate (Hall, 1992, Section 3.5). For the current data set, the obtained 

95%-confidence interval for η is [0.547,1] . 

6.2 World demographics 

As a second example we study the dependence between 1X   ‘death rate’ 

and 2X   ‘birth rate’ in 229 countries and territories around the world in the 

first trimester of 2020.1 These two variables are the number of births and 

deaths per year per 1,000 individuals in the country. We may, indeed, expect 

a rather strong association between these two variables; however Figure 6.1 

tells that this relationship is complex, with the cloud of points showing a clear 

C-shape. In fact, there seems to be two opposite effects. First, an ‘decreasing’ 

effect, from ‘moderate’ birth rate to ‘low’ birth rate as death rate increases, for 

the industrialised countries (mostly North America, Europe, East Asia, 

Australia); and second, an ‘increasing’ effect, from ‘moderate’ birth rate to ‘

high’ birth rate as death rate increases, mostly for the African countries – this 

second effect being more diffused than the first one, though. 

The strength of this non-linear structure of dependence is hardly captured by 

Pearson’s correlation ( ˆ 0.13   , not significant at level 0.05  ). On the 

other hand, we get ˆ 0.69   (p = 0), with 95% confidence interval 

[0.474,0.746]  obtained by the bootstrap procedure described in the previous 

section. This illustrates the benefit of using a meaningful measure of 

dependence able to capture non linear relationships. 

7 Perspectives 

The Hellinger correlation coefficient defined in this paper only applies to the 

case of univariate marginal distributions. A natural generalisation is to 

consider the case of multivariate marginals. Specifically, let 1

1

d
X  and 

2

2 1 2, , 1
d

d d X , with continuous distributions F1 and F2 respectively. Let 

1 1 1( )FU X  and 2 2 2( )FU X  (componentwise), their copula transforms. Let 

c12 be the 1 2d d -dimensional copula density of 1 2( , )X X  on 1 2d d
I  (joint 

density of 1 2( , )U U ), c1 be the d1-dimensional copula density of 1X  on 1d
I  
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(joint density of 1U ) and c2 be the d2-dimensional copula density of 2X  on 2d
I  

(joint density of 2U ). Then a marginal-free measure of dependence between 

the vectors 1X  and 2X  is the Hellinger distance between the copula C12 and 

the product of the marginal copulas 1 2C C , i.e., 

 
1 2

2
2

12 1 21 2 1 2 1 2

1
( , ) ( ) ( )

2
d d

c c c d d


  u u u u u u
I

H . By Parseval identity, this is 

1 21 2

22

12 1 2

1
( , ) ( ) ( )

(2 )
d dd d

d d  



  s t s t s tH  (7.1) 

where for 1d
s  and 2d

t  and 

1 2 1

1 2 1

( )
12 112 1 2 1 2 1 1 11, ( , ) ( , ) , ( ) ( )

d d d

i i
i e c d d e c d 



   
    

s u t u s u
s t u u u u s u u

I I
 

and 2

2
22 2 2( ) ( )

d

i
e c d 

 
t u

t u u
I

, that is, the Fourier transforms of 12 1,c c  

and 2c , respectively. Expanding the modulus in (7.1), one obtains 

 1 21 2

2 * *

12 1 2

1
1 ( , ) ( ) ( ) ,

(2 )
d dd d

d d  



    s t s t s tH  (7.2) 

where *·  denotes complex conjugation and (·)  is the real part. The three 

Fourier transforms 12 1,   and 2  are integrals with respect to the square-root 

of a copula density. As such, they can be estimated in a way very similar to 

estimating B  by (5.1) or k  by (5.2) in the 2-dimensional case, making use of 

nearest-neighbour distances in the copula-transformed domain. Lemma 1 in 

Aya Moreno et al (2018) and Theorems 1 and 2 in Ebner et al (2018) would 

again guarantee the consistency of those estimators which, when plugged in 

(7.2), would produce a consistent estimator of 2H  for the multivariate-

marginal case. This will be investigated in detail in a follow-up paper. 

Another obvious question is how to adapt the Hellinger correlation to the case 

of discrete variables. In fact, (4.1) obviously applies to the discrete case as 

well. If (X1, X2) is a discrete random vector with joint probability mass function 

p12 on 1 2S S , where 1S  and 2S  are two discrete sets, and marginal 

distributions p1 and p2, respectively, then 

 
1 1 2 2

2
2

1 2 1 2 1 212 1 2

1
( , ) ( , ) ( ) ( ) .

2 x x

X X p x x p x p x
 

  
S S

H  
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However, this measure is not ‘margin-free’. Recently, Geenens (2019) 

proposed a concept of copula suitable for discrete random vectors, in which 

the marginals are not made uniform by Probability Integral Transform but by 

the Iterated Proportional Fitting procedure (IPF). One can then apply (4.1) on 

12p , the ‘copula probability mass function’, that is, the joint distribution after 

the marginals have been made discrete uniform by IPF, making it now 

margin-free. That measure will be the topic of a follow-up paper, as well as 

the related axiomatic. Indeed, it is clear for instance that the concept of ‘pure 

dependence’ in (P6) only applies to continuous variables, and must be 

replaced by a different concept in the discrete case. 

Supplementary Material 

Reproducing scripts: Reproducing R-scripts for experiments contained in the 

article with descriptions included in files. (“HellingerReproduce.zip”) 
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Appendix 

A Families of  -divergences 

Common choices for   in (3.1) include: 

(i) , ( ) | 1|L t t 

   , for 1  , yielding dependence measures 

,, 1 2 12 1 2( , ) ( || )
LLD X X F F F
   reminiscent of some sort of L -distance 

between F12 and 1 2F F ; 

(ii) , ( ) ( 1) / ( ( 1))P t t t

         , for \{0,1}  , yielding dependence 

measures 
,, 1 2 12 1 2( , ) ( || )

PPD X X F F F
   reminiscent of the ‘power 

divergence’ of Cressie and Reid (1984). As ,
1

lim ( ) log 1P t t t t





   , the 

Mutual Information 1 2 , 1 2
1

( , ) lim ( , )PI X X D X X


  is a limiting case of this 

power-divergence family; 
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(iii) 1/

, ( ) | 1|M t t 

    for (0,1]  , yielding dependence measures 

,, 1 2 12 1 2( , ) ( || )
MMD X X F F F

  , reminiscent of Matusita (1967)’s 

divergence. 

Now, in case (i), it is seen that for α = 1, 2    , hence the rescaled 

measure 
,1 1 2 ,1 1 2( , ) (1/ 2) ( , )L LD X X D X Xå  satisfies (P1)–(P7). By contrast, if 

1  , then    , and the corresponding measure is unable to characterise 

pure dependence. That is the case of Pearson’s Mean Square Contingency 

coefficient 2 , which corresponds to α = 2. In case (ii), one can check that, 

for 1   (and 0  ), 1/ ( (1 ))     . Hence the associated dependence 

measure satisfies (P1)–(P7). For 1,     and one faces the same issue 

as above. That includes the limiting case 1 , which yields the Mutual 

Information. Finally, in case (iii), 2     for all (0,1]  , making any ‘

Matusita’ dependence measure , 1 2 , 1 2( , ) (1/ 2) ( , )M MD X X D X X å  comply with 

(P1)–(P7). 

All in all, among the  -measures (3.1) of type (i)-(ii)-(iii), only ,1 1 2 ,( , ),L PD X X D 

å å  

for 1   (and 0  ) and ,MD 

å  for 0 1   satisfy (P1)–(P7). Evidently, 

,1 1 2 ,1 1 2( , ) ( , )M LD X X D X Xå å . This particular measure, forming a kind of 

intersection between the L- and M-families, is Silvey (1964)’s Δ described in 

Section 3.2. At the intersection of the P- and M-families lies 

,1/2 1 2 ,1/2 1 2( , ) ( , )P MD X X D X Xå å , which is 2H  given in (4.1). 

B Marginal transformations 

Lemma 1 in Aya Moreno et al (2018) and Theorems 1 and 2 in Ebner et 

al (2018) establish the root-n consistency and the asymptotic normality of the 

oracle estimator B . However, those results hold only if the copula density c12 

is bounded and bounded away from 0 on 2I . This is a very restrictive 

assumption. In particular, many common parametric copula densities would 

grow unbounded in some of the corners of 2I  in the presence of 

dependence. Now, define a double marginal transformation 

1 1

1 2 1 1 2 2( , ) ( ( ), ( ))i i i i iT T U U    T  where for k = 1, 2, 1

k

  is the quantile function 

of a continuous distribution Ξk having a bounded density ξk on I . Standard 
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developments show that 1{ , , }nT T  is a sample from a distribution having 

density 12 1 2 12 1 1 2 2 1 1 2 2( , ) ( ( ), ( )) ( ) ( )d t t c t t t t     on 

1 2 1 2( , ) Supp( ) Supp( ) Supp( )t t    Ξ . Then we see that 

2 12 1 2 1 2 12 1 2 1 1 2 2 1 2
Supp( )

( , ) ( , ) ( ) ( ) ,c u u du du d t t t t dt dt    ΞI
B  

by the obvious change-of-variable. Let 
2min || ||i j i j iS  T T . Then, similarly to 

B , one can also estimate B  by 

1 1 2 2

1

2 1
( ) ( ).

n

i i i

i

n
S T T

n
 




 B  

The known weight function 1 2   is easily accounted for in the theoretical 

developments; see Aya Moreno et al (2018, Lemma 1) or Ebner et al (2018, 

Theorem 1). 

The transformations 1  and 2  can be whatever is convenient. In Geenens et 

al (2017), their role was essentially to send the boundaries ‘far away’ from the 

observations so as to annihilate boundary effects. Here one could take, for 

instance, 1  and 2  to be Beta(6, 6)-distributions: the ensuing density d12 

would remain supported on 2I , but concentrated around the centre of it due 

to its Beta(6, 6)-marginals. That ‘double Beta transformation’ is also beneficial 

in terms of relaxing the above mentioned assumption on c12. Indeed, let c12 

satisfy Assumption 3.3 in Geenens et al (2017), which is rather mild and 

allows c12 to grow unboundedly in some of the corners of 2I . With 

5 5( ) (1 )k k k kt t t    and * *

0
( ) ( )

kt

k k kt t dt   , for k = 1, 2, that is the Beta(6, 6) 

density and cumulative distribution functions, it can be shown that d12 is 

Hölder continuous (with exponent α = 2) on 2I  – this follows as in Lemma A.1 

in Geenens et al (2017). 

Then, Corollary 8 of Singh and Póczos (2016) applies, and B  is root-n 

consistent for B . The results shown in Figures 5.1 and 5.2 were actually 

obtained making use of the Beta(6, 6) transformation. 

C Cross-validation 
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For nonparametric functional estimation through orthogonal series 

approximation, it is well-known that the truncation cutoff plays the role of 

smoothing parameter (Efromovich, 1999, Chapter 2). Hence, if one wants to 

estimate 12c  by 

12 1 2 1 2

0 0

ˆ( , ) ( ) ( ),
K L

k k

k

c u u b u b u
 

  

as suggested in Section 5.3, one should select K and L appropriately. First, 

note that 

 2

2
2

12 1 2 1 2

0 0

ˆ( , ) ,
K L

k

k

c u u du du 
 

I  

which suggests to directly opt for the re-normalised estimator 

1 2

0 0
12 1 2

2

0 0

ˆ ( ) ( )

( , ) .

ˆ

K L

k k

k

K L

k

k

b u b u

c u u





 

 





å

 

Obviously, 
2

2

12 1 2 1 2( , ) 1c u u du du
 

  
å

I
, for all ( , )K L   . The usual Mean 

Integrated Squared Error of this estimator is 

2 2

2

12 12 12 121 2 1 2 1 2 1 2 1 2 1 2( , ) ( , ) 2 2 ( , ) ( , ) ,c u u c u u du du c u u c u u du du
 

     
å å

I I
 

that we may seek to minimise with respect to K and L. It follows from Aya 

Moreno et al (2018, Lemma 1) that, for any bounded function 

2

2
121 2 1 2 1 2: , ( , ) ( , )f f u u c u u du du II  can be estimated by: 

1 2

1

2 1 ˆ ˆ ˆ( , );
n

i i i

i

n
R f U U

n 


  

compare (5.2). This justifies to estimate 
2 12 121 2 1 2 1 2( , ) ( , )c u u c u u du du

å

I
 by 
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( )

12 1 2

1

2 1 ˆ ˆ ˆ( , )
n i

i i i

i

n
R c U U

n








å

 (C.1) 

where, as usual, the Leave-one-Out version of the estimator 
( )

12

i

c
å

 is used 

for avoiding overfitting. Explicitly, this is 

( )

1 2( )
0 0

12 1 2

( ) 2

0 0

ˆ ( ) ( )

( , )

ˆ{ }

K L
i

k ki
k

K L
i

k

k

b u b u

c u u








 



 







å

 

where 

( ) ( )

1 2

2 2ˆ ˆ ˆ ˆ( ) ( )
1

i i

k i k i i

i i

n
R b U b U

n
  

  







  

and ( )

{ , } 2
ˆ min || ||i

j ii j i iR 
   U U . Note that, for any i, ( )ˆ ˆi

i iR R

   only if iU  is the 

closest neighbour of i U , which concerns only a small number of {1, , }i n   ; 

in such a case ( )ˆ i

iR 


 is the distance from i U  to its second closest neighbour. 

The values ( )ˆ i

iR 


 are thus very easily obtained, and so are the ( )ˆ i

k
 ’s and 

eventually 
( )

12 1 2( , )
i

c u u
å

. Finally, K and L may be chosen as the values which 

maximise (C.1), the (estimated) Battacharyya affinity coefficient between c12 

and its estimator, that is 

( )

1 2)

0 0

1 ( ) 2

0 0

ˆ ˆ ˆ( ) (
2 1 ˆ .

ˆ{ }

K L
i

k k i in

k

i K L
i i

k

k

b U b U
n

R
n







 

 

 







 

These values are easy to identify given that K and L are integers. 

D Empirical estimation and power study 

The aim of this section is to investigate the ability of the empirical Hellinger 

correlation ̂  to consistently estimates its population counterpart η and to 

detect (i.e., to test) the dependence between two univariate random variables 

X1 and X2. All our computing codes are available in Supplementary Material. 
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They have been written using the version 3.6.1 of the R programming 

language (R Core Team, 2019), along with parts written in C++. We used 

version 1.3 of our R package HellCor. Simulations have been performed on a 

computational cluster using a 64-bit CPU and 8GB of RAM. Long computation 

times are indicated at appropriate places in the next sections. 

D.1 A unifying Data Generating Process 

We consider a unifying data generating process (DGP) for the vector (X1, X2), 

which can be written under the following form: 

1 1

2 2 2

( )
,

( ) (1 ) ( )

X U

X U V


 

   
          

ò  (D.1) 

where U and V are independent 
[0,1]U -random variables, ò  is an independent 

bivariate standard normal noise (with noise level set via the parameter 0  ) 

and 1  and 2  are ‘shape’ functions from [0,1]  to . The parameter [0,1]   

determines the strength of the dependence between X1 and X2. This is 

somehow related to the degree of freedom discussed in Section 2.3. When α 

= 0, X1 and X2 are independent. When α = 1 and β = 0, they are purely 

dependent. The functions 1  and 2  characterise the joint distribution of 

(X1, X2). The ones we consider in this empirical study are explicitly given in 

Table D.1, in a unifying form that makes it easy to simulate from (see the 

undocumented functions.datagen15() and.gendep() in our R package 

HellCor). 

The marginal distribution of X1 is unrelated to the choice of α in [0,1] , whereas 

for X2 it remains unchanged only when {0,1}   (i.e., for the two extreme 

cases). The scenarii of Table D.1 are directly inspired from those considered 

in Heller et al (2012, Figure 4) – also, our Figure 5.2. However, playing with 

the parameters α and β, we can create from each of them a whole family of 

distributions showing any level of dependence and/or any level of noise. 

Figures D.1, D.2 and D.3 show typical scatter-plots of samples of size n = 500 

drawn from those 15 scenarii, for pure dependence (α = 1 and β = 0), mild 

dependence ( 0.7   and 0.01  ) and independence (α = 0 and 0.1  ), 
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respectively. The values of ̂  are added on top of each one of these plots. 

One can definitely relate the value of ̂  to the strength of the dependence 

apparent on the plots. 

D.2 Accuracy of estimation 

Here we explore the ability of our measure to consistently estimate the true 

population value of the Hellinger correlation for the 15 situations shown in 

Figure D.2, that is, with 0.7   and 0.01   in (D.1). Our graphical findings 

are displayed in Figures D.4–D.18, for samples of size n = 100 to n = 2, 000. 

The left panel (I) shows the boxplots of the estimated values of η, while the 

right panels (II) and (III) show the values of K and L returned by the cross-

validation criterion for enforcing the normalisation (Section 5.3). (Processing 

time for each figure is around 2, 000s.) As noticed in Section 5.4, the real 

value of η is not available in these situations, so we have approximated η by 

̂  computed on a sample of size n = 20, 000. The Mean Squared Error 

(shown on top of each violin plot, panel (I)) quickly decreases with the sample 

size for all scenarii. Also, the selected values of K and L tend to increase with 

the sample size, as we would expect for smoothing parameters in a 

nonparametric density estimation context. 

Now, two cases require larger samples for providing accurate estimation of η, 

though: ‘Spiral’ and ‘4-Circles’ (Figures D.14-D.15). This can easily be 

understood from Figure D.2. If dependence is obvious visually on the other 

scatter-plots (and quantified by a high value of ̂ ), it is not at all the case for 

those two scenarii. Indeed it is actually very difficult to discern whether the 

data show just noise or not. The empirical Hellinger correlation is just 

significant (at level 0.05  ) for ‘Spiral’, and not significant for ‘4-Circles’ – 

remind from Section 5.5 that the critical value at that level for n = 500 is 

0.146c  . Given the nature of the relationship, and the level of noise 

involved, it would take a larger sample than n = 500 to be able to grab the 

dependence with confidence. The effect of the normalisation is also 

interesting to observe. For small samples, when the data look really like noise, 

the cross-validation criterion consistently picks 1K L   – see Figures D.14-
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D.15, panels (II) and (III). The procedure attempts to fit a copula density as 

flat as possible, and the normalisation tends to hold ̂  down to 0. For larger 

sample sizes, when the dependence becomes perceivable, the CV-criterion 

picks higher values for K and L, allowing ̂  to grow. The switch between 

these two ‘regimes’ happens at around n = 500 for ‘Spiral’, and around n = 1, 

000 for ‘4-Circles’. Around those samples sizes, the distribution of ̂  is 

essentially bi-modal, depending on the values of K and L selected by cross-

validation, that is, depending on whether the dependence can be perceived or 

not. This is actually in agreement with intuition. 

D.3 Power study 

Finally, we complement here the simulation study shown in Section 5.5 to 

compare the empirical power of independence tests based on 0̂  and ̂  (non-

normalised and normalised version of the empirical Hellinger correlation) to 

some well known competitors, namely dCov: distance correlation (Székely et 

al, 2007); HHG: Heller et al (2012); G2: Wang et al (2017); RCD: robust 

copula dependence (Ding et al, 2017); GMR: Granger et al (2004). For the 

GMR test, we used the implementation of (Maasoumi and Racine, 2002) 

provided in the np R package (Hayfield and Racine, 2008) available on the 

CRAN. For the G2 test of Wang et al (2017), we used the implementation 

provided in the Gs R package.2 We reprogrammed the other tests in C++. 

Tables D.2 and D.3 summarise the empirical power results, for sample sizes n 

= 20 and n = 50 respectively, based on M = 10, 000 Monte Carlo replications 

of each scenario. 

It appears that the test based on ̂  exhibits a good power overall when the 

sample size reaches n = 50, and is ranked among the three best tests of 

independence (with HHG and RCD). Compared to the test based on 0̂ , it is 

seen that the normalisation is not always detrimental to the power of detecting 

dependence. 
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Fig. 5.1 M   1,000 replications of 6 estimators of η on bivariate Gaussian 

samples of size n = 500 with 0.4   (left) and 0.8   (right). 
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Fig. 5.2 Fifteen random samples of size n = 500 generated from the 15 

scenarii of Heller et al (2016, Figure 4). The empirical Hellinger correlations 

are shown on top. 
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Fig. 5.3 Typical random samples of n = 500 (top row) and n = 5, 000 (bottom 

row) points uniformly distributed on the Peano curve at resolution 

1,2,3,4,5d   and d    (independence). The empirical Hellinger correlations 

are shown on top, as well as the empirical distance correlations ( dCor ). 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Fig. 5.4 Typical random samples of n = 500 (top row) and n = 5, 000 (bottom 

row) points uniformly distributed on the ‘bissection expanding cross’ 

(Zhang, 2019) at resolution 1,2,3,4,5d   and d    (independence). The 

empirical Hellinger correlations are shown on top, as well as the empirical 

distance correlations ( dCor ). 
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Fig. 5.5 The Hellinger correlation η as a function of the classical parameter θ 

for nine common copulas. 
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Fig. 5.6 M = 1, 000 replications of ̂  for each copula of Table 5.1 and each 

sample size n = 100, 250, 500 and 1, 000. The corresponding true values of η 

are indicated by the horizontal dashed line. 
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Fig. 6.1 Birth rate versus death rate in 229 countries and island territories 

around the world in 2020. (Source: The CIA World Fact Book.) These data are 

made available in our HellCor package, via the command 

data(worlddemographics). Countries are represented by their 2-digit ISO 

code (obtained from the R package countrycode (Arel-Bundock et al, 2018) or 

extracted from the website countrycode.org). 
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Fig. D.1 Pure dependence: α = 1, β = 0; n = 500. 
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Fig. D.2 Dependence: 0.7, 0.01   ; n = 500 
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Fig. D.3 Independence: 0, 0.1   ; n = 500. 
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Fig. D.4 M = 1, 000; 20,000n  ; 0.7, 0.01   . 
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Fig. D.5 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.6 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.7 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.8 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.9 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.10 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.11 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.12 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.13 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.14 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.15 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.16 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.17 M = 1, 000; 20,000n  ; 0.7, 0.01    
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Fig. D.18 M = 1, 000; 20,000n  ; 0.7, 0.01    

Acc
ep

te
d 

M
an

us
cr

ipt



Table 5.1 Nine copulas with their chosen parameter values θ. The 

corresponding values of η are rounded at 4 decimal points. 

Copula AMH  Joe  FGM  

Placke

tt t(4)  

Gaussia

n Frank 

Gumb

el 

Clayto

n 

Parameter 

θ 0.80  5.00  0.50  0.30  0.70  0.40  0.80  1.80  1.00  

η 

0.357

9 

0.888

3 

0.167

2 0.3810  

0.681

7 0.4000  

0.132

0 0.6436  

0.549

1  
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Table 5.2 Empirical power (in %) of 7 tests of independence for the Peano (d = 

4) structure of pure dependence, for increasing sample size n. (The entry 

labelled ‘ > time’ was not computed due to a prohibitive computing time for a 

sample size of 500.) Number of Monte-Carlo replications: M = 10, 000.  

n  dCov HHG G2  RCD GMR  0̂  ̂  

100 5.14  5.28  2.77 5.46  4.88   7.34   5.30  

200 5.75  5.44  1.19 4.95  1.46  14.86   6.81 

300 5.00  5.13  0.78 5.38  0.026  27.79   7.81  

400 5.38  5.31  0.58 5.45  6 -04e   58.12  8.86  

500 4.83  4.88  0.67 5.61  > time 86.06  8.72  
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Table 5.3 Empirical power (in %) of 7 tests of independence for the ‘bissection 

expanding cross’ (d = 3) structure of pure dependence, for increasing sample 

size n. Number of Monte-Carlo replications: M = 10, 000.  

n  dCov HHG G2  RCD  GMR  0̂  ̂  

50  4.94   8.97  4.03  7.33   5.62   28.83   5.71  

100 4.68  12.44 2.43 15.55  28.17   96.06   8.46 

150 4.60  15.82 1.33 44.08  94.46  100.00  10.79  

200 5.16  20.68 1.00 89.84  100.00 100.00  17.92  

300 5.25  34.50 0.71 100.00 100.00 100.00  67.54  
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Table 6.1 Density of seabirds and fish (individuals per hectare of island, data 

truncated to the nearest integer) around n = 12 islands of the Chagos 

Archipelago. (Untruncated data are provided in package HellCor via the 

command data(Chagos)). 

Island  1 2 3 4 5 6 7 8 9 10 11 12 

Seabirds 1 3702 183 973 1161 2 1427 0 3 15 4 1 

Fish  194 278 279 300 281 244 300 245 212 275 301 265 
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Table D.1 Fifteen scenarii of dependence. Functions 1  and 2  from (D.1): 

1

1 YF    and 1

2 ZF   , where 
1 1 2( , )

d

Y U U , 
2 1 2( , )

d

Z U U  and where the 

random variables U1 and the univariate components of the p-dimensional 

random vector 2U  are mutually independent uniform random variables taking 

values in [0, 1]. A bit of jittering is added to the ‘4 Clouds’ and ‘5 to 15 Clouds’ 

scenarios to ensure that the random variables X1 and X2 have a continuous 

part so that our measure is properly defined. 

Name  p 1 1 2( , )u u   2 1 2( , )u u   

W  0 1(2 1)u     2
2

14 (2 1) 0.5u      

Diamond  1 12u    2
10.5

1 (2 1)(1 | 2 1|)
u

u


    1   

Parabola  0 1(2 1)u    2

1(2 1) / 2u    

2Parabola

s  1 1(2 1)u     2

2

1 0.5
(2 1) (2 1)

u
u


 1   

Circle  0 1sin(2 )u    1cos(2 )u    

4Clouds  0  1
10.5

(2 1) /100
u

u


 1    1
10.5

(2 1) /100
u

u


 1   

Cubic  0 
3

1(2 1)u    3 2

1 1 14(2 1) (2 1) 4(2 1)u u u       

Sine  0 14u   14sin(4 )u   

Wedge  1 u1  2
1 0.5
(2 1)

u
u


1   

Cross  1 u1  2
1 0.5

(2 1)(2 1)
u

u


 1   

Spiral  0 1 16 cos(6 ) / 3u u    1 16 sin(6 ) / 3u u    

4Circles  2 

 (1)

1 22 cos(2 ) 2 0.5 1u   u1

   (2)
2

1 0.5
2 sin(2 ) 2 1u



 
 
 u

1   

Heavisine  0 14u   / var( )y y  with  

   

1 1 14sin(4 ) sign( 0.3) sign(0.72 )y u u u    

  

Doppler  0 110u   / var( )y y  with 0.05ò  and 

     1 1 1(1 ) sin 2 (1 ) / ( )y u u u   ò ò   

5to15Clou 0 1 1 2 4 5/100 ( )u I I I I      1 1 2 4 5/100 ( )u I I I I      
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Name  p 1 1 2( , )u u   2 1 2( , )u u   

ds 

  

with 

 1(( 1)/5) ( /5)
, 1, ,5j j u j

I j
  

  1

  with  1(( 1)/5) ( /5)
, 1, ,5j j u j

I j
  

  1   
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Table D.2 Power (in %) with n = 20, M = 10, 000, 0.7, 0.01   . (Processing 

time: 46h.) 

 dCov HHG G2  RCD GMR 0̂  ̂  

W  29.8  69.3  40.2 81.0 31.8  59.7  63.7  

Diamond   2.9  25.4  22.8 38.5 13.2  27.7  19.4 

Parabola  61.6  97.9  32.5 96.5  56.6  83.5  96.8  

2Parabolas  21.1  79.0  7.4  62.7  18.4  44.9  39.5 

Circle   3.8  13.8  15.8 28.7  1.8  24.0  13.3  

4Clouds  99.9 99.9 77.5 99.5   0.0  73.3  99.2 

Cubic  81.5  93.8  14.0 98.6  4.3  83.5  97.7  

Sine  38.7  54.2  25.6 66.8  35.4  53.4  70.5 

Wedge  38.6  66.3 14.4 61.0  14.0  37.7  61.2  

Cross  13.2  53.2  7.0  50.3   9.9  32.7  25.3  

Spiral   6.1   6.6   5.5   6.7   5.0   7.3   5.8  

4Circles   4.7   4.6   5.1   5.4   4.3   5.3   4.9  

Heavisine  48.6  67.7  32.0 79.6 61.9  60.0  74.0  

Doppler  21.3  30.1  29.3 33.8 14.6  25.9  21.8  

5to15Clouds  7.4  21.8   9.7  30.3  2.1  20.6   9.3  
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Table D.3 Power (in %) with n = 50, M = 10, 000, 0.7, 0.01   . (Processing 

time: 57h.) 

 dCov  HHG G2  RCD  GMR 0̂  ̂  

W   94.5  100.0  78.6  100.0  96.0  99.9  100.0  

Diamond   9.6   93.5   81.1   96.8   53.5  70.6   95.5 

Parabola   99.8  100.0  83.2  100.0  99.8  99.9  100.0  

2Parabolas   50.5  100.0  1.8   99.6   81.6  91.3   99.0 

Circle   7.1   72.0   61.1   88.3   1.5  68.0   88.2  

4Clouds  100.0 100.0 100.0 100.0  0.0  99.5  100.0 

Cubic  100.0 100.0  58.8  100.0  2.8  99.9  100.0  

Sine   93.8  100.0  82.5  100.0  97.4  99.7  100.0 

Wedge   95.3   99.8   52.3   99.2   64.4  79.3  99.8  

Cross   25.7   98.2   1.9   98.4   51.4  73.5  88.9  

Spiral   8.3   10.0   6.6   11.4   2.5  12.0   6.7  

4Circles   4.9   4.9   6.6   5.4   4.1   7.6   4.8  

Heavisine   98.8  100.0  84.5  100.0 100.0 99.8  100.0  

Doppler   65.9   94.4   93.1   91.4   89.2  71.5  70.9  

5to15Clouds  11.1   55.1   2.9   86.7   0.0  58.3  13.8  

        

Notes 

1 An earlier version of this example was used in Boglioni-Beaulieu (2016). 

2 Source: http://www.people.fas.harvard.edu/~junliu/Gs/Gs.html Acc
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