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Abstract 
John W. Tukey (1975) defined statistical data depth as a function that determines 
the centrality of an arbitrary point with respect to a data cloud or to a probability 
measure. During the last decades, this seminal idea of data depth evolved into a 
powerful tool proving to be useful in various fields of science. Recently, 
extending the notion of data depth to the functional setting attracted a lot of 
attention among theoretical and applied statisticians. We go further and suggest 
a notion of data depth suitable for data represented as curves, or trajectories, 
which is independent of the parametrization. We show that our curve depth 
satisfies theoretical requirements of general depth functions that are meaningful 
for trajectories. We apply our methodology to diffusion tensor brain images and 
also to pattern recognition of handwritten digits and letters. Supplementary 
Materials are available online. 

Keywords: data depth, space of curves, unparametrized curves, 

nonparametric statistics, curve registration, DT-MRI fibers, classification, DD-

plot. 

1 Introduction 

We propose an extension of the notion of depth for curve data. An 

(unparameterized) curve datum is a set of points of 
d
 which can be 

described by an unspecified continuous function from a sub-interval of  to 
d
. Our original motivation to study such data was to solve a neuroimaging 

problem involving brain fibers of elderly twins. 
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Data depth was originally introduced in a seminal paper by Tukey (1975) to 

measure the degree of centrality of a multivariate point x with respect to a 

given data cloud. His approach consists in computing, for every halfspace H 

containing x, the fraction of points from the data cloud enclosed in H. He then 

retains the minimum of these fractions as a measure of centrality of x; see 

also Donoho & Gasko (1992). Since then, several other notions of data depth 

have been proposed. For example, using random simplices (i.e., 

generalizations of the notion of a triangle to arbitrary dimensions), Liu (1990) 

proposed a similar measure of “insideness” called simplicial depth. For a 

comprehensive survey on multivariate data depths the reader is referred to 

Zuo & Serfling (2000). 

Thanks to these theoretical developments, it has become possible to extend 

standard univariate descriptive statistics based on ranks to analyze 

multivariate observations (see, e.g., Oja 1983; Liu et al. 1999). New classical 

inferential statistical tools or techniques using these depth measures or some 

refinements have also been developed, such as p-values (Liu & Singh 1997), 

confidence regions (Yeh & Singh 1997; Lee 2012), regression (Rousseeuw 

& Hubert 1999; Hallin et al. 2010), multivariate nonparametric testing (Li 

& Liu 2004; Zuo & He 2006; Chenouri & Small 2012), classification (Li 

et al. 2012; Lange et al. 2014; Paindaveine & Van Bever 2015; Dutta 

et al. 2016) and estimation of extreme quantiles (He & Einmahl 2017). See 

Mosler (2013) for a nice introduction showing the richeness and usefulness of 

depth techniques. 

In recent years, statisticians have been facing complex types of data that they 

analyze using a functional depth (Fraiman & Muniz 2001; López-Pintado 

& Romo 2009; Narisetty & Nair 2016) or even a multivariate functional depth 

approach (Claeskens et al. 2014). These new techniques have proven to be 

very useful for data visualization, to estimate a measure of location or spread, 

to detect outliers (see also Hubert et al. 2015), for clustering, or to detect if 

two groups of functions come from the same population. 
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However, functional depths are sensitive to parametrization of curves. 

Figures 1 and 2 illustrate the impact of two different parametrizations on 

depths rankings of curves provided by the multivariate functional halfspace 

depth (MFHD) developped by Claeskens et al. (2014) (with weight function 

set to a constant) and by the modified simplicial band depth (mSBD) 

developped by López-Pintado et al. (2014). 

In Figure 1 (a)-(d), we see that the choice of a parametrization (A or B) has a 

clear impact on which curve is identified as the deepest (in blue). Moreover, 

unlike MFHD and mSBD, our unparameterized approach finds a deepest 

curve which is very close to the center of symmetry (the dotted curve). Also, 

we observe that some curves with high depth (in red) seem to be outliers 

(Figure 1 (a) and (c), upper right) and some curves with low depth (in yellow) 

are close to the deepest curve (Figure 1 (b) and (d)). This problem is even 

more striking on Figure 2. There, many simulated hurricane tracks are 

identified as outliers (in red, on panels (a)–(d)) by MFHD and mSBD (with two 

different parametrizations) even if they are close to the center of distribution of 

the curves (in dark blue). This is in agreement with (Mirzargar et al. 2014, 

Section 5) who note that “the time-parameterization is more sensitive to the 

velocity outlier as a parameterization-dependent feature, the arc-length and 

life-time percentage parameterization are more sensitive to shape and 

positional outliers.” Here again our unparameterized approach correctly 

identifies outliers (panel (e)). 

Note that MFHD and mSBD depths are computed by comparing each point on 

a given curve only to points (from the other curves) that “occur at the same 

time”. Curves are thus compared pointwisely and not globally (this is a direct 

consequence of parametrization). We believe this is the cause of the 

aforementioned artefacts. 

Of course, depending on the context, working with a proper parametrization of 

curves can be relevant. For instance, if available, one could use speed of 

writing as a meaningful parametrization in a handwriting recognition problem; 

see Section A.2 in Supplementary Materials. For further discussion on the 
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importance and possible choices of a proper parametrization when employing 

functional data depth, see, e.g., López-Pintado et al. (2014); Mirzargar 

et al. (2014) and references therein. 

In this article we aim to define a depth which is invariant to the choice of a 

parametrization of the curves. This was originally motivated by the need to 

analyze a very large number of bundles of white matter fibers obtained 

through diffusion tensor imaging (an MRI-based neuroimaging technique) 

among a population of elderly twins. These neuronal fibers, also called axons, 

are nerve cell extensions that transmit electrical information between different 

regions of the brain. The aim of the study was to investigate if genetics plays 

a role in the spatial organization of these fibers. 

In our setting, a mathematical curve describing a given fiber should be 

understood as the set of all points that describe the location in space of one of 

these fibers, with no focus whatsoever on any parametrization. Indeed, as 

outlined by Kurtek et al. (2012) “a parameterization is merely for the 

convenience of analysis and is not an intrinsic property of a curve” which 

leads them to advocate that “the shape analysis should be invariant not only 

to rigid motions and global scalings, but also to their parameterizations”. 

Intuitively, we want to distinguish curves solely by how they bend and twist, as 

well as by their lengths and relative locations in space. Consequently, the 

concept of functional data depth should not be used here (this is further 

investigated in Section 6.1). 

One could think of using one of a few other existing approaches that deal 

specifically with curves. Goldie & Resnick (1995) considered 2D observation 

records that are joined in a sequence, while Sangalli et al. (2009) estimated 

centreline curves (and their curvature functions) of internal carotid artery 

vessels using three-dimensional free-knot regression splines. Unfortunately, 

these two methods also rely on some parametrization. Mani et al. (2010) and 

Kurtek et al. (2012) use a Riemannian framework invariant to the 

parametrization while Zhang et al. (2015) developed a Bayesian version; see 

also Srivastava & Klassen (2016) for a monograph on the statistical analysis 
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of the shapes of curves. However, it is difficult to find a software to apply 

these methods on our data. 

With this motivation in mind, we developed a new concept of depth for curves 

that is invariant to the choice of the parametrization. It will be broadly 

applicable, thanks to our freely available R/C++ package curveDepth 

(Mozharovskyi et al. 2019), to many other similar types of data. On can 

mention a few examples such as textile fibers (Xu et al. 2001), blood clot 

fibers (Collet et al. 2005), blood vessels centrelines (Sangalli et al. 2009), 

moving objects such as birds migrating (Su et al. 2014; Yuan et al. 2017), 

multidimensional data sets obtained by constructing principal curves (Hastie 

& Stuetzle 1989). 

The outline of the article is as follows. In Section 2, curves are defined 

formally and we introduce a statistical model for sampled curves. Section 3 

contains a definition of the new data depth for curves. In Section 4, we 

discuss implementation issues. In Section 6, we present simulation results. 

We also apply our curve depth to analyze brain imaging data sets, and to 

classify hand-written digits. There, our curve depth is compared to other 

existing depths, namely MFHD (Claeskens et al. 2014), the modified 

multivariate band depth (mMBD) of Ieva & Paganoni (2013), the multivariate 

functional skew-adjusted projection depth (saPRJ) of Hubert et al. (2015), the 

simplicial band depth (SBD) of López-Pintado et al. (2014) and its modified 

version (mSBD). 

Section 7 gathers some concluding remarks. Supplementary Materials collect 

all technical proofs, along with the necessary codes and data to reproduce all 

our numerical and graphical results. 

2 A Statistical Model for Sampled Curves 

In what follows we introduce the space of unparameterized curves and define 

a statistical model on it. For a comprehensive reference the reader is referred 

to Kemppainen & Smirnov (2017, Section 2) which borrowed material from 

Aizenman & Burchard (1999, Section 2.1) and Burago et al. (2001, 

Acc
ep

te
d 

M
an

us
cr

ipt



Section 2.5). For additional details see Section B in the Supplementary 

Materials. 

2.1 The Space of Unparameterized Curves 

Let 1d   be an integer. Let 2( ,|·| )d

 be the d-dimensional Euclidean space, 

([0,1], )d

 be the space of continuous functions defined on the interval [0,1]  

and taking values in 
d
 and Γ be the set of increasing continuous functions 

:[0,1] [0,1]   such that (0) 0   and (1) 1  . A parameterized curve β, also 

called a path, is an element of ([0,1], ).d

 The image of ,  denoted as 

([0,1]),S 
 is called the locus of β. Informally if ( )t  describes the position 

of a moving particle at time t, then 
S  describes the physical route taken by 

this particle with no consideration being given to stops or goings backward 

occuring on its trajectory. The function :[0,1] d , a parametrization of 
S  

with parameter t, provides an ordering along 
S . Note that there might exists 

an infinite number of different parametrizations describing the same locus. 

Remark 1. The start point of 
S  is the image of 0 by β. The end point is the 

image of 1. The locus of a trivial curve coincides with a singleton, i.e., a single 

point of .d

 

Formally, unparameterized curves are usually defined via an equivalence 

relation on the set of parameterized curves in 
d
 up to the set of monotonic 

functions from [0,1]  to [0,1] . Roughly speaking, two curves β1 and β2 are said 

equivalent if they share the same locus and visit its points continuously and in 

the same order, possibly at a different speed. Hereafter, we restrict ourselves 

to the set of all curves equivalent to β that start at (0)  and stop at (1) . More 

precisely, we say that two parameterized curves β1 and β2 are equivalent 

whenever there exist two reparametrizations 1 2,  
 such that 1 1 2 2     

. 

We then define the unparameterized curve   as the set of all paths 

equivalent to β, that is the equivalence class of β up to this equivalence 

relation. Informally,   describes the trajectory from (0)  to (1) , with no 

information about the location at any time. Note that in our context, it would be 
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possible to consider the general definition, i.e., to walk a path β from (1)  to 

(0) , or the other way around. But restricting all our definitions by considering 

the set of parameterized curves in 
d
 only up to the set of reparametrizations 

Γ greatly simplifies exposition; see Remark B.2 in the Supplementary 

Materials. In the sequel, an unparameterized curve will be generically denoted 

. Notice that all parameterized curves in the same equivalence class  

share the same locus, which enables one to talk about the locus of , 

denoted thereafter as 
S

. 

The space of unparameterized curves is then defined as 

{ : ([0,1], )}.d

  C  

In other words, C  is the quotient space of ([0,1], )d

 by the equivalence 

relation on the set of parameterized curves 

Following Kemppainen & Smirnov (2017), we endow the space of curves C  

with the Fréchet metric 
dC  defined as 

   1 2 1 2 1 1 2 2 1 2, inf || || ;  , , , ,d        C C  (2.1) 

where 
2

[0,1]

|| || sup | ( ) |
t

t 



 for ([0,1], )d  . The resulting metric space 

( , )dCC
 is non linear. It inherits the properties of separability and completeness 

from ([0,1], )d

; see Section B.2 in the Supplementary Materials. This 

guarantees the existence of non-atomic probability measures on 
( , )dCC

. 

Moreover, according to Parthasarathy (1967, Theorems 1.2, 3.2 and 8.1), 

every probability measure defined on C  is regular and tight. 

2.2 The Arc-Length Probability Measure of a Curve 

The length ( )L   of a parameterized curve    is defined as 

 ( ) sup ( );   a partition of [0,1] ,L L


    (2.2) 

Acc
ep

te
d 

M
an

us
cr

ipt



where 
1 2

1

( ) | ( ) ( ) |
J

j j

j

L      



 
 is the chordal length of β associated with the 

partition 
*

0 0{ , , ; 0 1,  }J J J          
. Informally ( )L   is the total 

distance travelled by a particle moving from (0)  to (1)  along the support   

of the curve β (taking into account any backward steps). Then all 

parameterized curves in  have the same length. Consequently, the length of 

, denoted ( )L , is defined by ( ) ( )L L  , for any   . Note that the 

function : [0, ]L  C  is not continuous, but it is measurable (Lemma B.3 in 

the Supplementary Materials). In the following we assume that all 

unparameterized curves belong to the measurable set 

{ ; 0 ( ) }L L     C C C
, the subset of rectifiable (i.e., of finite length) 

unparameterized curves with a positive length. 

According to Väisälä (2006, Theorem 2.4), each curve LC
 contains a 

unique parametrization 
:[0,1] d 

, called the arc-length parametrization, 

whose restrictions to the intervals [0, ]t , noted 
t
, satisfy 

( ) ( ),tL tL 
 for all 

[0,1]t  . Informally, with 


, the locus 
S

 is visited at a constant speed. Then 

any rectifiable curve  may be expressed as 

{ ;  }.      

Using the arc-length parametrization 


 of an unparameterized curve , one 

can thus define the line integral of a non-negative Borel function : df   

over  as 

 
1

0
( ) : ( ) ( ) ,f s ds f t L dt   (2.3) 

where the integral on the right is a Riemann integral. Furthermore, we define 

the arc-length probability measure of  as the probability distribution 


 on 

the Borel sets of 
d
: 

1
 for any borel set  of , ( ) ( ) ,

( )

d

AA A s ds
L

   1  (2.4) 
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where the indicator function 
( )A x1

 takes the value 1 if x A  and 0 otherwise. 

From (2.3) and (2.4), we immediately get 

1

0
( ) ( ) ( ( )) .f s d s f t dt    (2.5) 

Also, note that 


 only contains information about the support 
S

 of  and 

the frequency at which its points are visited. Roughly speaking, 
( )A

 can be 

interpreted as a ratio: the distance travelled by a particle on the subset 
S A

 

divided by the total distance it travels on . (Note that ( )L  can be different 

from the length of .) It is somehow a normalised measure of how much of 

curve  intersects with A. 

2.3 A Nonparametric Statistical Model for a Sample of Curves 

We denote by  the set of all probability measures defined on the Borel σ-

algebra of the Borel sets of 
( , )dCC

 whose support is a subset of rectifiable 

curves of positive length (to exclude singletons): 

 ,a probability measure on ( , ) ;  1 .{ }LP d P CC C  

Consider a random unparameterized curve ,  namely a random element 

taking “values” in the space of unparameterized curves ,C  whose probability 

distribution P  is unknown. We define the probability distribution QP as 

follows: 

 for all borel sets  of , ( ) ( ) ( ) [ ( )],d

P PA Q A A dP E A  C  (2.6) 

a measure of how much (on average) a curve generated by  intersect 

with A. 

Remark 2. In Section B.3 in the Supplementary Materials, we show that for 

any Borel bounded function : df  , the function L f d C
 is 

measurable. Consequently, QP is well-defined. 
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The statistical model considered in this article is to assume that the data to be 

observed are n random unparameterized curves 1, , n
, which are 

independent copies of the random element , that is to say 

1, , are i.i.d.fromP .n   (2.7) 

In the next section, we define a population data depth for unparameterized 

curves, and its sample version. 

3 Data Depth for Unparameterized Curves 

3.1 Population and Sample Versions 

Let y  denote the transpose of the column vector 
dy   and  be the unit-

sphere in 
d
. For a pair ( , ) du x   , let ,u xH

 denote the closed halfspace 

{ : }dy y u x u   whose frontier is orthogonal to the vector u and goes 

through the point x. Notice that if 1,d   the unit-sphere is { 1,1} . 

Definition 3.1 (Curve depth, population version). Let LC
 be an 

unparameterized curve and let P  be a probability measure. We define the 

curve depth of  w.r.t. P, denoted ( | )D P , by the mapping 

:

( , ) ( | ) ( | , ) ( ),

L

P

D

P D P D s Q d s 

 

 

C
 (3.1) 

where the above line integral is computed via (2.3) using, for any 1d   and 

any 
x S

, 

,

,

( )
( | , ) inf ,

( )

P u x

P
u

u x

Q H
D x Q

H



  (3.2) 

with the convention that / 0a    for all a > 0 and 0 / 0 0  in the above ratio. 

The term 
( | , )PD x Q 

 aims to compare the two distributions QP and 


 

around 
x S

. For u and x fixed, recall from (2.4) and from (2.6) that ,( )u xH
 

measures (the fraction of length of) how much the curve  delves into the 
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halfspace ,u xH
, whereas ,( )P u xQ H

 measures (the expected fraction of length 

of) how much a random curve  (with distribution P) delves into ,u xH
. 

Consequently, the ratio , ,( ) / ( )P u x u xQ H H
 is small when we expect curves 

generated according to P to enter less into ,u xH
 than the curve . Getting a 

value r > 1 (resp. r < 1) for this ratio, indicates that  generates curves that 

enter into ,u xH
, on average, r times more (resp. 1/ r  times less) than  does; 

see Figure 3 for a visual aid. 

Then, similarly to the original Tukey depth, to obtain 
( | , )PD x Q 

, we consider 

all possible rotations of the halfspace ,u xH
 around x to find the one that 

discriminates the most the curve  from a curve generated according to P. 

We shall call 
( | , )PD x Q 

 as the point curve depth at 
x S

. Then (3.1) 

defines the depth of  w.r.t. P as the mean of the point curve depths at all x in 

its locus 
S

. 

Notice that if there exists u   such that ,( ) 0,P u xQ H 
 then x is an outlier 

w.r.t. QP, and thus the contribution of 
x S

 to the depth of  w.r.t. P is set to 

zero, that is 
( | , ) 0PD x Q  

. 

If ,( ) 0P u xQ H 
 for all ,u   that means x lies in the convex hull of the support 

of 
.PQ
 Our aim is to calculate the depth of 

x S
 w.r.t. QP relatively to the 

measure 
,
 that is why we consider the ratio ,( ) / ( , )P u x uQ H H x

 in the 

definition of 
( | , ).PD x Q 

 In this case, we can show that there exists u such 

that , ,( ) ( ) 0u x P u xH Q H  
 (Lemma C.1 in the Supplementary Materials), so 

that 
( | , )Px D x Q 

 is bounded by 1. Moreover, 
( | , )Px D x Q 

 is 

measurable as a limit of measurable functions (see Lemma C.4 in the 

Supplementary Materials). 

Definition 3.2 (Curve depth, sample version). Let 1, , n
 be a random 

sample of unparameterized curves belonging to LC  a.s. and let LC
 be a 
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rectifiable unparameterized curve. With a slight abuse of notation, and thanks 

to (2.3), we define the curve depth of  w.r.t. 1, , n
 by the mapping 

 

1 1

:

( , , , ) ( | , , ) ( | , ) ( ),

n

L L

n n n

D

D D s Q d s 

 

   

C C
 (3.3) 

where 1
( ) /

nnQ n   
 and 


 is the arc-length parametrization of . 

Remark 3. In a sense, our depth may be seen as a genaralization of the 

Tukey halfspace depth in .d

 If  is a trivial curve, that is ( ) 0L   and 

{ }S y
 for some ,dy   we define 


 as the dirac measure δy at y. Then, if 

1, , n
 are also trivial curves, that is 

{ }, 1, ,
i iS x i n  

, we get 

,

1

1

( | , , ) ( |

 

, )

1
inf .

i u y

n n y

n

x H
u

i

D D y Q

n








 

  1
 

Theorem 3.1 below states that the sample version of the curve depth (3.3) 

converges in probability to the population version (3.1) as .n  

Theorem 3.1. Let LC
 be an unparameterized curve such that 


 is non-

atomic. Let P be a probability measure in the space of unparameterized 

curves such that P  and QP is non-atomic. Then the sample curve depth 

1( | , , )nD 
 converges in probability to ( | )D P  as .n  

3.2 Properties 

The main aim of the proposed curve depth is to provide a meaningful 

statistical ordering of the observed curve data, which is experimentally studied 

and illustrated on real-data examples in Section 6. Theorem 3.1 states the 

consistency of our sample depth under mild assumptions and in this 

subsection we discuss its properties. 

Following the suggestion of Liu (1990) for simplicial depths, Zuo 

& Serfling (2000) have defined four properties to be satisfied by a proper 
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multivariate depth function: affine invariance, maximality at the center of 

symmetry, monotonicity relative to the deepest point and vanishing at infinity. 

(For a slightly different version of the postulates see also Dyckerhoff (2004) 

and Mosler (2013).) For a functional depth, Nieto-Reyes & Battey (2016) 

suggest that six properties need to be satisfied, but Gijbels & Nagy (2017) 

argue that some of them could be demanding. 

The situation appears to be even more challenging for the space of 

unparameterized curves. Indeed, (loci of) unparameterized curves can be 

seen as subsets of 
d
 which are parameterized by paths up to the same 

order of visit of their points. These mathematical objects can thus be thought 

of as being “between” functional data and set data. Moreover, since no 

canonical mandatory postulates for a functional depth have been established 

yet, and since the existing postulates are mainly inherited from those for the 

multivariate depth function, we base the following analysis on the latter. 

Since the length is an important characteristic of an unparameterized curve, 

similarity invariance, which is associated with a similarity group preserving 

orientation and ratio of lengths, seems to be more appropriate than affine 

invariance in our context. Moreover, the space of unparameterized curves is 

not a vector space. For instance the surjection 
 is not linear (there is 

no natural way to define the addition of two unparameterized curves and thus 

no line segment between two unparameterized curves, a crucial point for the 

monotonicity property). It is thus not possible to extend the classical 

formulation of a depth using results from Dutta et al. (2011) or Mosler 

& Polyakova (2018), say. Similarly, there is no universal way to define a 

notion of symmetry for unparameterized curves, no symmetry center can be 

defined either. The vanishing at infinity property can be directly extended to 

the space of curves. Below we state the properties satisfied by our curve 

depth function and summarize them in Theorem 3.2. 

Boundness. 
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Calculating the curve depth (3.1) consists in integrating a non-negative 

function bounded by one w.r.t. a probability measure. This fulfills one of the 

basic requirements of a depth function: to take values on the unit interval. 

Similarity invariance. 

For a multivariate depth, affine invariance is required for changelessness 

w.r.t. an affine change of the coordinate system. For the space of 

unparameterized curves, we consider affine transformations that also 

preserve ratios of the lengths of curves, i.e., similarities. (Note that the length 

of an unparameterized curve is a property of the equivalence class.) A 

similarity : d df   is an affine transform, ( )f x rAx b   such that A is an 

orthogonal matrix, r is a positive factor and 
db  is a vector. In particular, for 

all x and y in 
d
, we have 2 2| ( ) ( ) | | | .f x f y r x y  

 We denote by Pf the 

distribution of the image under f of a stochastic process having a distribution 

P. A map D satisfies the property of similarity invariance if for every rectifiable 

curve  and every similarity map : d df  , it holds 
( , ) ( , ).fD P D f P 

 

Vanishing at infinity. 

The farther away an unparametrized curve is from a data cloud of curves, the 

smaller its depth should be. To formulate the vanishing at infinity property of 

our curve depth D, we consider any sequence 
( )n n  of curves in LC  such that 

n


 is a non-atomic measure for all n and 
lim ( ,0)n
n

d


 C
, where 0 denotes 

the set of parametrized curves equivalent to the constant curve ( ) 0t t   

for all [0,1]t  . However, such a formulation involves sequences of curves 

whose length tends to infinity. To exclude these cases, we assume that there 

exists some 0  such that 
( )nL 

 for all n. This guarantees that only the 

location of these curves tends to infinity. We then prove that 

lim ( , ) 0.n
n

D P


  

Theorem 3.2. Under the assumptions of Theorem 3.1, our curve depth is a 

depth function in LC , i.e., it takes values in [0,1] , is similarity-invariant and is 

vanishing at infinity. 
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4 Implementation 

Even if the curves 1, n
 and  are known, it may not be possible to obtain 

explicit expressions of 
( )H

 and 
( )nQ H

 for an arbitrary halfspace H. This 

might prevent one to compute a value for (3.3) (via (3.2)). In fact, it appears 

that computation of the point curve depth 
( | , ),nD x Q 

 
x S

, in (3.3) 

demands algorithmic elaboration. 

We describe in the Supplementary Materials (Section C.1) a Monte Carlo 

scheme to approximate 1( | , , )nD 
. This is summarized in Algorithm 1. 

 

Algorithm 1 Monte Carlo approximation of 1( | , , )nD 
 in (3.3); m denotes 

the Monte Carlo sample size of points generated uniformly on each curve 

(taking into account their length); Δm is a threshold parameter such that 

0m
m

 
; 

,

m

n m

  is the collection of closed halfspaces H such that either 

,
ˆ ( ) 0m nQ H 

 or 
ˆ ( )m mH  

. 

1: procedure MCAPPROX 1, , , , ,n mm 
 

2: Generate 1, , mY Y
 i.i.d. from 


 and set 

1

1

ˆ
j

m

m Y

j

m 



 
. 

3: for 1:i n  do 

4: Generate 1, ,i imX X
 i.i.d. from i


 and set 

,

1

1

ˆ
i i j

m

X

j

m 



 
. 

5: end for 

6: Set 
,

1 1

,

1 1 1

ˆ ˆ ( )
i i j

n n m

m n X

i i j

Q n nm  

  

  
 to estimate (2.6). 

7: Generate (independently from the Yj’s) 1, , mZ Z
 i.i.d. from 


. 
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8: for 1:k m   An approximation of 
( | , )k nD Z Q 

 from (3.2) 

9: Compute 
,

,
ˆˆ ˆ( | , , )n m

k m n mD Z Q    as the smallest ratio of , ,
ˆ ( )

km n u ZQ H
 to 

,
ˆ ( )

km u ZH
 over a (random or deterministic) grid of points u   selected in 

such a way that 
,

, k m

n m

u ZH 
. See Algorithms 1 and 2 in Section F.1 in the 

Supplementary Materials for a way to build a grid achieving exactly the 

infimum in 
2
 or 

3
. 

10: end for 

11: return 

1 ,

,

1

ˆˆ ˆ( | , , )
m

n m

k m n m

k

m D Z Q 






 as an estimate of (3.3). 

12: end procedure 

 

The main idea is to generate 3 samples. First, a sample of size m is used in 

order to approximate 


 (Line 2). Next, a (stratified) sample of size nm is 

used to approximate the i


 (Lines 3–5) and Qn (Line 6). (See Lemma B.4 in 

the Supplementary Materials for the procedure to generate these samples.) 

These are the two ingredients involved in the approximation of 
( | , )nD x Q 

. 

The last sample (Line 7) consists of points generated along the curve 


. It is 

used to approximate the line integral of 
(·| , )nD Q 

 with respect to 


 

(Line 11). A Monte Carlo approximation of (3.2) is obtained (Lines 8–10) by 

using an adaptation of a minimization algorithm from (Rousseeuw 

& Ruts 1996) for dimension 2 and one from (Dyckerhoff 

& Mozharovskyi 2016) for higher dimensions; see our Algorithms 1 and 2 in 

Section F.1 in the Supplementary Materials. These original algorithms were 

developed for the computation of the multivariate Tukey depth. They need to 

be adapted to our context as follows. Given that we are looking to estimate a 

ratio whose denominator can be arbitrarily small, we introduce a threshold Δ 

in order to control the stochastic convergence of the proposed algorithm (see 
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Theorem C.1 in the Supplementary Materials). Formal algorithms for 

dimensions 2 and 3 are stated and described in the Supplementary Materials 

(Section F.1). The latter can be easily extended to higher dimensions. 

Overall, time complexity is 
1( log( ))d dO m n mn

 if 
( | , )nD x Q 

 is computed 

exactly, where n is the size of the sample of curves, and m is the size of the 

Monte Carlo sample of points which are sampled on each curve involved in 

the depth computation. Time complexity is 
2( )O km n  if 

( | , )nD x Q 
 is 

approximated using projections on k random directions (i.e., the minimum 

ratio in Step 9 of Algorithm 1 is searched over k random directions u only). 

In (2.1), we introduced the Fréchet distance 1 2( , )dC  between any two 

curves 1  and 2  belonging to the space of curves C . This distance will be 

useful for two applications of Section 6; namely for curve registration in the 

brain and also for an adaptation of the unsupervised classification method of 

Jörnsten (2004). When calculating 1 2( , )dC , one has to search for a 

parameterized curve in 1  and a parameterized curve in 2  that are as close 

as possible, in terms of their supremum distance. Numerically, this can be 

done as follows. Consider a set of points on 1  and a corresponding 

relocation of each one of these points to 2 , preserving their ordering. The 

goal is to minimize the largest Euclidean distance between any one point on 

1  and any of its relocated counterpart on 2 . The formal algorithm together 

with an illustrative explanation is stated in the Supplementary Materials 

(Section F.2). 

Numerical computation of our curve depth and of the above-mentioned 

distance are implemented in the R package CurveDepth (Mozharovskyi 

et al. 2019) which is available on the CRAN (R Core Team 2019). 

5 Numerical Experiments Using Simulations 

5.1 Simulated examples with a closed-form depth formula 
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The particular geometrical aspects of the curves in the following examples 

allows one to gain a better insight in the behavior of our curve depth and its 

potential limitations. More details on the computations are provided in the 

Supplementary Materials (Section G.1). 

Segments on a line. 

We observe a sample of n non-overlapping segments 
[ , ], 1, ,k ka b k n 

, on a 

line. Without loss of generality, we denote by k  the 
thk  segment, from left to 

right (see Figure 4 top). The curve depth of k  w.r.t 1, , n
 is 

 1 1

1/  if 1 or 
( | , , )

1/ (( 1) / ) log (1 ) otherwise,k kk n t t

k k

n k k n
D

n n n t t


 
  

  

 

where 
( 1) / ( 1).kt k n  

 The deepest curve is the segment for which tk is the 

closest point to 1/ 2.  Our curve depth induces the same ordering as when one 

computes the original Tukey depth of the middle points of the segments. It is 

worthwhile noting that when the sample size n increases, 1( | , , )k nD 
 

tends to the Shannon entropy (in base b = e) of a Bernoulli(tk) random 

variable. Thus our segment depth is maximum at 1/2 (its value being equal to 

log(2) ) and minimal (i.e., equal to 0) close to 0 and 1. Outliers correspond to 

minimal depth and minimal entropy. 

Parallel segments on a rectangle. 

Let y  be the segment of 
2[0,1]  defined as the set {( , ); [0,1]}.x y x  We define 

~ P  as the random curve generated from the following scheme (see Figure 

4, bottom left): 

 with ~ [0,1].Y Y  

The population version of our curve depth is 

( | ) min( ,1 ) 1/ 2 | 1/ 2 |  for [0,1].yD P y y y y       
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Our curve depth induces the same ordering as when one computes the Tukey 

depth of the abscissa of the segments. Notice that due to the particular 

geometry of the distribution of the segments, our curve depth is unable to 

detect as outliers vertical segments lying in the interior of the support of the 

measure QP (here it is the unit square). 

Star segments. 

Let   be the segment in 
2
 from (0, 0) to the point (cos( ),sin( ))  , for 

[0,2 )  . We define ~ P  as the random curve generated from the 

following scheme (see Figure 4, bottom right): 

 with ~ [0,2 ].    

By symmetry, every segment has the same depth, which is equal to 0.255. 

Concentric circles. 

Let r  be the circle in 
2
 of center 0 and radius r > 0. We define ~ P  as the 

random curve generated from the following scheme (see Figure 4, bottom 

middle-left): 

 with ~ [0,1].R R  

The population version of our curve depth is plotted on Figure 4 (bottom 

middle-right). The deepest circle is the circle with a radius 0.425.r   It is 

worthwhile noting that our approach do not incorrectly lead to the deepest 

curve being the circle with a null radius. This being said, one may have 

expected the deepest curve to be the circle with radius 1/ 2.r   

5.2 Monte Carlo Approximation of the Curve Depth 

In most cases, it is not possible to get an explicit expression of our curve 

depth since it requires to compute for all 
x S

 an infinimum of the ratio 

, ,( ) / ( )n x u x uQ H H
 over all .u  Section 4 describes a Monte Carlo estimate 

of 1( | , , )nD 
; see Algorithm 1. This approximation is consistent 

according to Theorem C.1 from the Supplementary Materials. We conducted 
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a Monte Carlo study to assess this convergence in several scenarios in 

Section G.2 of the Supplementary Materials. Here, we only give a brief 

summary of these results. 

Scheme 1: Concentric circles. 

We consider the population of concentric circles with radius lying in the 

interval (0, 1) described in Subsection 5.1. For a given sample of circles 

1{ , , }n
, we have an explicit expression both for 1( | , , )r nD 

 and 

( | )rD P
, where r  is the circle of radius (0,1)r  . This example has the 

particularity that the functions 
( | , )nx S D x Q 

 and 
( | , )Px S D x Q 

 

are constant over their domain. Our main findings are the following. 

1. The Monte Carlo estimator of the sample curve depth converges in 

probability as the Monte Carlo sample size m goes to infinity; see Figure 9 in 

the Supplementary Materials. Monte Carlo estimates (see Algorithm 1) tend in 

average to underestimate the sample curve depth. Observing such a negative 

bias is not surprising since we aim to compute an infimum over all directions 

u  . However this bias and the standard deviation depend on the value of 

the radius (i.e., on the position of the curve  w.r.t. the sample of curves) and 

they both decrease towards zero as m gets large. 

2. The sample curve depth converges in probability to the population curve 

depth. The bias and the standard deviation of the sample curve 

depth computed over 5, 000 replications decrease towards zero as n goes to 

 ; see Table 2 in the Supplementary Materials. Moreover, the standard 

deviation of 1( | , , )r nD 
 seems to be dependent on the value of the 

radius r. As expected, the Monte Carlo estimator of the population curve 

depth (see Algorithm 1) also converges in probability for increasing values of 

both n and m. The rate of convergence of the latter is slightly smaller, with on 

average a greater impact on its bias than on its standard deviation. 

Scheme 2 and scheme 3: functional data. 
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We consider two example of simulated functional data from Claeskens 

et al. (see paragraph 4.2.1 in 2014) and from Cuevas et al. (2007). Here we 

consider as unparametrized curve the collection of points, 

{( , ( )): [0,1]}t t t x  

where ( )tx  is a continuous function from [0,1]  to .  The sample processes of 

these example admit a symmetry around their respective mean function. 

Moreover these mean functions are known (see the black curves in Figure 5). 

Notice that for these examples, we have no explicit formula for the sample 

curve depth and the population curve depth. 

1. The convergence of the Monte Carlo estimate of the sample curve depth. 

For a given sample of curves, 1{ , , },n
 we observe that the Monte Carlo 

estimate of 1( | , , )nD 
 converges in probability to a constant with m goes 

to   and with min( , )n m  goes to .  Moreover, we don’t observe an impact of 

the threshold Δ in the computation of the depth. 

2. The most central curves are located in a neighborhood of the mean curves. 

According to the previous simulations, we estimate the Monte Carlo error of 

the deepest curve (shown in red in Figure 5) and we select the curves whose 

depth belongs to the 97.5%-confidence (shown in orange in Figure 5). These 

curves appear to be located reasonably close to the center of the stochastic 

process (the black mean curves). 

5.3 Outlier detection 

We explored the ability of our curve depth to detect outlying observations in a 

sample of curves, on two visual examples; see Figure 6. 

For the first scenario, we generated a sample of 12 2D-curves according to 

the following random generating process (inspired from (Claeskens 

et al., 2014, Section 4.2.1)): 

  1 2, sin(2 ) cos(2 ) ; [ , ] ,x A x A x x L U     
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where 
1 2

2
, ~ [0,0.05], ~ [0, ]

3
A A L



, and 

4
~ [ ,2 ]

3
U




, all independent. We 

then added three outlier curves: two (red and green) are shift-shape outliers, 

while the third one (blue) is a purely shape outlier (for a taxonomy of 

multivariate functional outliers see, e.g., Hubert et al., 2015). 

For the second scenario, we generated a sample of 46 2D-curves according 

to the following random generating process: 

  1 1.5,30(1 ) ; [ , ]W W

xx x x U x L U      

where 
{ ; [0,1]}tU t 

 is a zero mean stationary Gaussian process with 

covariance function 

1
| |

0.30.2 , ~ [0,0.5], ~ [0,0.1], ~ [0.9,1]
t

t e W L U


, all 

independent. We then added four outliers: a shift outlier (red), an isolated 

outlier (green), a persistent outlier (blue), and to be fair to the other depth 

measures, another isolated outlier with a negative peak (magenta). All the 

outliers (slightly) differ in shape. 

Plots of the ordered depths of the curves in these two samples, computed 

using mSBD, saPRJ and MFHD (using an arc-length parametrization) as well 

as our curve depth are displayed on Figure 7. 

Our curve depth is the only one able to correctly identify the three outliers 

added to the  curves. saPRJ and MFHD only identify the two shift-shape 

outliers while mSBD identifies just one. None of these three other depth 

methods sees the pure shape outlier. 

For the second scenario, mSBD and MFHD are not able to identify any outlier 

added to the  curves, while saPRJ only fails to find the shift outlier. Our 

curve depth perfectly distinguishes all outliers but the negative isolated outlier 

which is assigned a rather large value of depth. This failure was to be 

expected since a building block of our approach is to use halfspaces, as 

illustrated in Figure 3. Somehow, a similar behaviour was observed when we 
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slightly underestimated the depth of the deepest curve in the concentric 

circles example of Section 5.1. 

6 Application to Real Data 

6.1 Application to the Older Australian Twins Study Data 

White matter (WM) in the brain is made up of long myelinated axonal fibers 

generally regarded as passive routes connecting several gray matter regions 

(the ones containing neurons) to permit flow of information across them. In 

such tissue, water tends to diffuse mostly along the direction of the fibers. The 

ratio of axial and radial movement is called fractional anisotropy. Diffusion 

Tensor Magnetic Resonance Imaging (DTI) measures the motion of hydrogen 

atoms within water in all three dimensions. 

We had access to DTI scans from the Older Australian Twins Study (OATS), 

an ongoing longitudinal study investigating genetic and environmental factors 

and their associations and interactions in healthy brain ageing and ageing-

related neurocognitive disorders for people aged 65+ years (Sachdev 

et al. 2009). 

The DTI data considered in the current article were drawn from 34 twin pairs, 

aged between 67.3 and 84.2 years. Eleven of the 34 pairs were dizygotic (DZ) 

twin pairs (i.e., non-identical twins sharing 50% of their genes) and 23 

monozygotic (MZ) twin pairs (i.e., identical twins sharing 100% of their genes). 

Using MRtrix software (Tournier et al. 2012) to extract corticospinal fiber tracts 

from the DTI scans (an operation called tractography), the resulting data sets 

were two bundles of around 1, 000 fibers each per subject (see Figure 8; left). 

Other pre-processing steps are described in the Supplementary Materials, 

Section H. 

It is quite a challenging task to visualize brain fibers. Consequently this 

information is difficult to use in a clinical environment (e.g., for surgery 

planning). New tools are thus needed for efficiently representing these 

tractograms. An interesting approach by Mercier et al. (2018) consists in 
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progressively simplifying tractograms by grouping similar fibers into a specific 

geometric representation. 

We believe that the depth for curves developed here can also help 

neuroscientists to visualize a 3D bundle of fibers. One can follow the 

approach adopted by Mercier et al. (2018) by grouping curves according to 

their depths. It is also possible to assign a transparency value to each curve 

equal or proportional to its depth value (see Figure 8; left) to inspect the whole 

bundle at once. Similarly, one can instead assign a low transparency value to 

the least deep curves in order to visualize outliers (see Figure 8; right). 

Outliers can eventually be removed before further statistical analyses are 

conducted. 

We demonstrate on Figure 9 that our curve depth approach gives better 

results in terms of outlier detection than four other existing depth measures 

that can be applied to three-dimensional curves. These multivariate functional 

depth-based competitors (with an arc-length parametrization) are the modified 

multivariate band depth (mMBD), SBD, mSBD, saPRJ, and our curve depth. 

We observe that the 15 fibers having the lowest depth as computed by our 

curve depth are located outside of the bundle, while there are fibers with a low 

depth value inside this bundle for the competitors. Furthermore the range of 

depth values associated to our curve depth is the widest among the 5 

methods considered here. And there is a clearer separation between the 

depths of outliers and the other fibers. Notice that it is hard to distinguish 

outliers using SBD and mSBD and that the bottom fiber which is clearly 

outside the bundle is not detected as an outlier by SBD. Finally, mMBD and 

saPRJ detect fewer outliers than our curve depth, some of them being the 

same as the ones detected by our approach. 

6.1.1 Curve Registration 

Image registration is one of the main pre-processing steps in any statistical 

analysis of brain imaging data. Its aim is to geometrically match up image 

volumes of brain structures, for example for structure localization or difference 

detection. Broadly, this consists in finding rotation and translation parameters 
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that will minimize a certain cost function (e.g., least squares or mutual 

information) which quantifies how well aligned two images are. Image 

registration is an active field of research since existing algorithms still have 

defects, for example they might suffer from directionality bias (Modat 

et al. 2014). All standard libraries dedicated to the analysis of fMRI, MRI and 

DTI brain imaging data contain an image registration procedure; see, e.g., 

RNiftyReg (Clayden et al. 2017) in the R software (R Core Team 2019). 

Here, our approach to register the bundles at hand is to first extract one single 

best representative curve for each bundle (namely the deepest one; see the 

dark blue fiber in Figure 8) and then to match these representatives as best 

as possible. In the twin DTI data set considered here, our aim was to register 

68 bundles, of about 1,000 fibers each, located in the left hemisphere say. To 

reach this goal, we first computed the deepest fiber within each bundle, noted 

thereafter dj, 
1, ,68j   . We then computed the deepest fiber among 1 68,...,d d

, which is denoted D. Finally, for each bundle j, we found the rigid 

transformation (in terms of rotation, translation and centering) that minimizes 

the distance (2.1) between the curves dj and D. Registration is then achieved 

by applying each one of these rigid transformations to all the fibers within the 

corresponding bundle. This process is illustrated in Figure 10. 

6.1.2 A Statistical Comparison Between MZ and DZ Twins 

After having performed curve registration, comparison of the empirical 

distributions is possible. Given two distributions 0 1,P P 
 on the space of 

curves C , we consider the mapping that yields the DD-plot (Liu et al. 1999): 

 2

0 1[0,1] , ( | ), ( | ) .D P D PC  (6.1) 

For two random samples of curves 0

(0) (0)

1{ , , }n
 and 1

(1) (1)

1{ , , }n
 from P0 

and P1 respectively, the empirical DD-plot can be constructed as: 

  
0 1

( ) (0) (0) ( ) (1) (1)

1 1

0,1

( | , , ), ( | , , ) , 1, , .k k

i n i n k

k

D D i n


     
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For six pairs of twins, DD-plots are presented in Figure 11, whose contribution 

is twofold. First, as a proof of concept, the empirical distributions of two MZ 

twins are very similar since the points are concentrated around the diagonal of 

the DD-plot while those of DZ twins differ (see also Liu et al. 1999). Second, 

this closeness of the MZ twins underlines the high quality of the curve 

registration using the the geometrical matching (Section 6.1.1) in the sense 

that (each of) these two bundles of curves are meant to substantially coincide. 

Recently, neuroscientists have discovered that several structures in the brain 

are influenced by our genetics; see, e.g., (Wen et al. 2016). This suggests a 

genetically-driven spatial organisation of corticospinal brain fibers. This 

biological hypothesis can be statistically confirmed by applying the depth-

based Wilcoxon testing procedure introduced by Liu & Singh (1993) and 

further described in (López-Pintado & Romo, 2009). For each pair of twins, we 

considered 500 fibers selected at random from the first twin as a reference 

sample. We then used 50 fibers from each twin (selected at random among 

the remaining fibers) to calculate the test statistic value. The p-values, 

computed using the normal asymptotic null distribution given by Lehmann & D

’Abrera (1975), are provided in Figure 11. They are small for DZ twins and 

large for MZ twins, a statistical evidence in favour of this biological hypothesis. 

6.2 Classification Algorithms for Unparameterized Curves 

Automatic clustering of white matter fibers is an important sub-task in 

understanding brain connectivity and integrity, see e.g., Jin et al. (2014). With 

this motivation in mind, we extend to the context of curves two classification 

algorithms: the DD-plot procedure (Li et al. 2012) and the unsupervised 

depth-based clustering (Jörnsten 2004). To illustrate the performance of these 

two procedures when used in conjunction with our curve depth, we start by 

considering the problem of recognition of hand-written digits from the now 

famous training MNIST data set1. This is done in a supervised way in 

Section 6.2.1 and in an unsupervised way in Section 6.2.2. Finally, in 

Section 6.2.3 we produce an unsupervised clustering of the DT-MRI brain 

fibers in a data set previously studied by Kurtek et al. (2012, Section 4). 
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6.2.1 Supervised Classification of Hand-written Digits 

As a proof-of-concept, we show that our curve depth can be used to produce 

a linear classifier able to discriminate between two classes of images 

representing the digits ‘0’ and ‘1’. We illustrate its results on 100 observations 

from each class. The original MNIST images have been preprocessed in 

order to transform them into pixelized curves (i.e., each pixel of an image 

should have at most two neighboring pixels on the vertical, horizontal and 

diagonal directions). A few examples of the preprocessed digit images are 

plotted in Figure 12. 

A DD-plot built using our curve depth (see Section 6.1.2) can be exploited to 

classify curves. Indeed, this task is greatly simplified in the DD-plot space 

since a rule separating two classes needs only to be found in a Euclidean 

space of dimension two. For the sample consisting of 100 ‘0’s and 100 ‘1’s, 

we applied the DD -procedure (an iterative heuristics in the DD-plot; see 

Lange et al. (2014) for a detailed description). The resulting separation rule is 

plotted in solid green on Figure 13. 

One can observe (for this particular sample) the perfect separation of the two 

classes by a linear rule. In Figure 13, on the right-hand side of the DD-plot ‘

magnified’ observations (‘1’ and ‘0’) having the highest depth in each class 

are pictured; they are trivially well classified. On the left-hand side of the DD-

plot, we paint the most doubtful observations, i.e., those lying closest to a 

member of the opposite class. The ‘1’ here corresponds to the observation 

with the lowest depth in the sample of ‘1’s; this can also be regarded as an 

atypical observation. The situation is different with the ‘0’ lying closest to the 

set of ‘1’s. It has a rather average depth in its own class, but due to its oblong 

shape resembles a ‘1’ and thus has a high depth value in the class of ‘1’s 

relative to its depth in the class of ‘0’s. 

6.2.2 Unsupervised Classification of Hand-written Digits 

Jörnsten (2004) proposes the DDClust algorithm for clustering. This non-

parametric method is based on both distance-based distortion (captured by 
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the silhouette width) and geometry of the curves (captured by the relative 

depth). We propose the original method with slight modifications and we 

illustrate it on the MNIST-digits data. Let 1{ , , }n
 be an observed sample of 

curves from .C  Our aim is to partition the data set into K groups. DDclust 

proceeds iteratively by assigning a curve i  at each instance to the cluster 

where it has the highest depth. 

For 1, , ,k K   we denote by Ik the set of indices of observations belonging to 

the cluster k and by Pk the probability measure on C  defined as 

1
,

i

k

k

i Ik

P
n




   

where nk is the size of the cluster 
.kI
 Then 1{ , , }KI I 

 is a partition of 

{1, , }.n  

The within-cluster data depth of an observation ki I
 is 

( | ).i kD P
 The 

between-cluster data depth of an observation ki I
 is 

min ( | ).k iD P  The 

relative depth of an observation ki I
 is then defined as 

( ) ( | ) min ( | ).
k

i i k iReD D P D P


   (6.2) 

The within-cluster average distance of an observation i kI
 is 

{ }

1
( | ) ( , ),

1
k

i i j

j I ik

d k d
n 




 C  

where 
1kn 

 is the size of 
{ }.kI i

 The closest average distance of an 

observation ki I
 among foreign clusters is 

min ( | ).k id  The silhouette 

width of an observation i belonging to cluster k is 

min ( | ) ( | )
( ) .

max{ ( | ),min ( | )}

k i i

i

i k i

d d k
Sil

d k d






  (6.3) 

The clustering cost of an observation i for the partition 1{ , , }KI I 
 is 
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( ) (1 ) ( ) ( ),i i iC Sil ReD     (6.4) 

where [0,1]   being a constant defining trade-off between depth and 

distance. The total clustering cost can then be formulated as 

1

1
( ) ( ).

k

K

i

k i I

C C
n  

   (6.5) 

Here we employ the original clustering algorithm by Jörnsten (2004) with 

slight modifications, which we briefly describe right below and send the reader 

to the source for details. For a fixed number of clusters K, we start with an 

initial partition  which may be generated at random. For each observation 

1, , ,i n   we compute its clustering cost 
( ).iC

 Then the set of observations 

considered for a potential reallocation is defined as the set of indices: 

{ : ( ) },ii C T   

where 0T   is a prefixed threshold. For a random subset E from ,  we 

reallocate each index in E to its closest cluster (the one with highest depth for 

this observation) getting a new partition  that is accepted if ( ) ( )C C  and 

with probability 
 1 exp ( ( ) ( )) / 2C C 

 otherwise (β is a temperature 

parameter). The whole procedure is given in Algorithm 4, which can be found 

in Section F.3 of the Supplementary Materials. 

We ran our clustering algorithm DDCLUSTCURVE (with K = 3) on a set of 300 

preprocessed MNIST images of the digits ‘0’, ‘1’ and ‘7. The results are very 

satisfactory (empirical error rate 1% , 3 errors). The resulting 
( )iC

-s are 

plotted in Figure 14. 

6.2.3 Unsupervised Classification of DT-MRI Fiber Tracts 

To further illustrate the exploratory potential of the proposed depth notion, we 

additionally apply the clustering Algorithm 4 by Jörnsten (2004) (see the 

Supplementary Materials) to the DT-MRI brain fibers considered previously by 

Kurtek et al. (2012, Section 4). Automatic clustering of white matter fibers is 
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an important sub-task in understanding brain connectivity and integrity, see 

e.g., Jin et al. (2014). 

The data consist of one bundle of fibers for each one of four subjects. These 

bundles contain 176, 68, 48 and 88 fibers respectively. The results of our 

clustering coincide for subjects 1 and 3 with those obtained by Kurtek 

et al. (2012, Figure 4). The results differ for subjects 2 and 4 but our own 

interpretation is geometrically sound; see Figure 15. For subject 2, the original 

red and blue groups in Kurtek et al. (2012) are grouped together into one 

single group (the red one in Figure 15), while their original green group is split 

in two parts (green and blue in Figure 15). It is worthwhile noting that a closer 

look to the scatter plot in Kurtek et al. (2012, bottom of second column in 

Figure 4) tends to justify this splitting. Subject 4, on the other hand, illustrates 

that our approach takes into account different features of the data. 

7 Concluding Remarks 

In this work, we introduced a new notion of depth for continuous curves 

having finite length and we investigated its properties (boundedness, similarity 

invariance, vanishing at infinity). By construction, our curve depth is invariant 

to reparametrizations and it is defined on a non-linear space, namely the 

space of unparametrized curves. It is applicable to curve data embedded in a 

space of any (finite) dimension. It is a tool that can advantageously compete 

with functional data depths when dealing with curve objects that should not be 

considered as functional data (e.g., DTI data). In that sense, our curve depth 

can be seen as an extension of the notion of statistical depth function to non-

standard data types; see also the works by Ley et al. (2014) and Paindaveine 

& Van Bever (2018). We envision a rich palette of applications for this curve 

depth. We gave various examples of its use, e.g., for the spatial alignment or 

unsupervised classification of brain fibers. We illustrated its superiority to 

other existing depth methods for some applications, for instance in terms of its 

ability to detect spatial outliers. One can think of other interesting applications 

of our curve depth, e.g., for handling handwriting data, or 2D and 3D 

trajectories of animal species or vehicles. A ready-to-use implementation of 
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algorithms that approximate depths of curves via Monte Carlo or that compute 

the distance between two curves suggests a basis for direct application of the 

developed methodology in other contexts. Being the most time demanding 

part of the algorithm, the computation of our point curve depth can be 

performed efficiently in dimension two while approximations can be 

successfully used in higher dimensions, which is illustrated in the performed 

experiments. These computations are moderately sensitive to the choice of 

the size m of Monte Carlo samples or smooth curves. This is confirmed by 

simulation and for real data applications (e.g., we took m = 50 to cluster brain 

imaging data obtained from Kurtek et al. (2012)). Implementation of the 

proposed methodology can be found in the R-package curveDepth 

(Mozharovskyi et al. 2019) available on the CRAN (R Core Team 2019). The 

data on brain fibers used in this article are available from the authors. 

Supplementary Materials 

Additional results: These contain theoretical details on the space of curves, 

definitions of our curve depth function and its properties, algorithms, additional 

simulation results and some details on data preprocessing. (“

CurveDepthSupplement.pdf”) 

Reproducing scripts: Reproducing R-scripts for experiments contained in the 

article with descriptions included in files. (“CurveDepthReproduce.zip”) 

Animations: A depth-colored animation of a few brain fibers 

(http://biostatisticien.eu/DataDepthFig8) and an illustration of two 

parametrizations of an ‘S’-shaped curve 

(http://biostatisticien.eu/EquivalentCurves). 
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Fig. 1 Comparison of depth based ordering for two parametrizations A and B 

provided respectively by MFHD (a)–(b), mSBD (c)–(d), and by our new depth 

for unparameterized curves (e). The depth increases from yellow to red. Each 

deepest curve is plotted in blue. The center of symmetry of the distribution is 

plotted using black dots. Source: an ensemble of 50 simulated S letters; see 

Section A.1 in Supplementary Materials. 
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Fig. 2 Comparison of the depth based ordering for two parametrizations A 

(time) and B (arc-length) provided respectively by MFHD (a)–(b), mSBD (c)–

(d), and by our new depth for unparameterized curves (e). Curves with low 

value of depth are plotted in red, the others in blue. Each deepest curve is 

plotted in dark blue. Source: an ensemble of 50 simulated hurricane tracks 

(Mirzargar et al. 2014). 
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Fig. 3 Illustrations of the statistical model and depth calculation (3.2) for three 

halfspaces with a sample of five curves generated by  in blue and the curve 

 in red. We consider all halfspaces whose frontier contains the point x and 

pick up the smallest ratio of the probability measures between QP and 

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Fig. 4 Illustration of examples: (top) Sample of n = 7 non-overlapping 

segments on a line, (bottom left) Sample of n = 50 parallel segments, (bottom 

middle) Sample of n = 100 concentric circles and the associated population 

version of our curve depth as a function of the radius, (bottom right) Sample of 

n = 100 star segments. For each scenario, the deepest curves are plotted in 

blue while darker red indicates a higher value of depth. 
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Fig. 5 Two samples of n = 50 gray curves generated according to two 

simulation schemes: (left) the one proposed by Claeskens et al. (2014), (right) 

the one proposed by Cuevas et al. (2007). The deepest curve, computed 

using our new method (taking 
1/ (10 )m m 

 with m = 500 and 1/ 8  ), is 

plotted in red; its depth is 0.744 (left) and 0.752 (right). The mean curves, 

plotted in black, have a depth of 0.727 (left) and 0.571 (right). The curves 

having a depth lying in the 0.975 Monte Carlo confidence interval are plotted 

in orange. 
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Fig. 6 Curve data with outliers. Left: 15 smooth curves with two shift-shape 

(red and green) and one purely shape (blue) outliers. Right: 50 oscillating 

curves with one smooth shift outlier (red), one isolated outlier (green), one 

persistent outlier (blue), and one isolated outlier with a negative peak 

(magenta). 
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Fig. 7 Values of depth in ascending order for two samples drawn from  

(top) and  (bottom) contaminated with a few outlying observations (colored 

as in Figure 6). 
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Fig. 8 Illustrations of the ordering of the white matter fibers for one subject 

using our curve depth. (Left) Whole brain fiber data set for one twin; see 

http://biostatisticien.eu/DataDepthFig8 for an interactive 3D applet. 

(Right) Result of bundle ordering for the right side of the brain only. We only 

display the first 100 fibers in the data set, among which 6 are identified as 

outliers and colored in red (their depth is less than 0.075). 
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Fig. 9 Top: Curve boxplots for a sample of 100 WM-fibers from the right side 

of the brain. The set of 100 curves is partitioned into 15 / 35 / 49 /1 curves: 15 

with the smallest value of depth, considered as outliers (red), 35 with a larger 

value of depth, considered as outer curves (light blue), 49 with the largest 

value of depth, considered as the more central curves (blue), and finally the 

deepest curve of all (dark blue). Depth methods are (from left to right) mMBD, 

SBD, mSBD, saPRJ, and our curve depth. Bottom: Corresponding depth-

ranked histograms. 
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Fig. 10 Illustration of the registration process. Subject 235 is the reference 

subject (i.e., the subject whose deepest curve is D, the deepest of all). The 

red and the dark blue curves are the deepest curves (before registration) of 

the given subject and of subject 235, respectively. We bring the red curve as 

close as possible, in terms of distance (2.1), to the dark blue curve. The 

transformed curve (i.e, after registration) is the light blue curve. Distances 

from each red curve (i.e., before registration) and from each light blue curve 

(i.e., after registration) to the deepest of all are 10.271 and 3.245 (for subject 

104), 4.539 and 3.395 (for subject 110), and 3.329 and 2.084 (for subject 

131), respectively. 
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Fig. 11 DD-plots of six pairs of twins (red circles for 1xx; blue “+” signs for 

2xx) with associated p-values in parenthesis. (Top) three DZ, namely: 105 

and 205 (1 9e ), 120 and 220 (0.017), 132 and 232 (0.003). (Bottom) three 

MZ: namely 104 and 204 (0.733), 106 and 206 (0.366), 131 and 231 (0.366). 
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Fig. 12 First ten images from each of the two classes of curve-preprocessed 

MNIST digits. 
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Fig. 13 DD -classifier for a subsample of 100 ‘0’s and 100 ‘1’s taken from 

the MNIST data set. For each one of the two classes, ‘magnified’ observations 

correspond to the one having the highest depth value in its class (on the right-

hand side), and to the one lying closest to the opposite class (on the left-hand 

side). 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Fig. 14 Clustering cost (ordered decreasingly within each class) of 300 digits 

from the MNIST library after convergence of the clustering algorithm 

(Algorithm 4 in the Supplementary Materials, an adaptation of Jörnsten (2004)

’s algorithm). The colors correspond to the correct classes of digits ‘0’ (red), ‘1

’ (green), and ‘7’ (blue). We fixed the threshold value T at 0. When the 

stopping criterion of the algorithm was reached, only 3 observations from 

class ‘1’ and 1 observation from class ‘7’ had a cost value below the 

threshold. Among them, three are misclassified giving a clustering error of 

1%. 
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Fig. 15 Clustering of DT-MRI fibers (Source: Kurtek et al. 2012). 

Acc
ep

te
d 

M
an

us
cr

ipt



Depth for Curve Data and Applications

Supplementary Materials

Pierre Lafaye de Micheaux

School of Mathematics and Statistics, UNSW Sydney, Australia

and

Pavlo Mozharovskyi

LTCI, Télécom ParisTech, Université Paris Saclay

and

Myriam Vimond

Univ Rennes, Ensai, CNRS, CREST - UMR 9194

March 17, 2020

A Impact of Parametrization on Functional Depth

A.1 Simulated S Letters

We parameterize a 2D S-shaped curve (the red one in Figure 2 (a)) using either parametriza-
tion A:

x1(t) = −
(
cos(t) + 1

)
1{t < 3π

2
} −

(
cos(3t− 3π) + 1

)
1{t ≥ 3π

2
}+ 1,

x2(t) =
(
sin(t) + 1

)
1{t < 3π

2
} −

(
sin(3t− 3π) + 1

)
1{t ≥ 3π

2
},

(A.1)

or parametrization B:

x1(t) = −
(
cos(3t) + 1

)
1{t < π

2
} −

(
cos(t+ π) + 1

)
1{t ≥ π

2
}+ 1,

x2(t) =
(
sin(3t) + 1

)
1{t < π

2
} −

(
sin(t+ π) + 1

)
1{t ≥ π

2
}.

(A.2)
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For parametrization A (A.1), the argument t �moves slowly� on the �rst half of the
curve while it �moves fast� on the second half. This pattern is reversed for parametriza-
tion B (A.2); see Figure 1 and also http://biostatisticien.eu/EquivalentCurves for
an interactive visualization.
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Figure 1: Parametrization A (in red) and parametrization B (in green) for coordinates x1

(a) and x2 (b).

A set of 50 S-shaped curves is then obtained by randomly shifting and rotating an
�ideal� S-curve, as well as changing its length; see Figure 2 (a). More precisely, both
location coordinates, the rotation angle, and the di�erence of length w.r.t. the beginning
and the end of the �ideal� S-curve are drawn from a normal distribution centered at zero.

Depth-based rankings given by MFHD (Claeskens et al. 2014) and mSBD (López-
Pintado et al. 2014), both using parametrizations A and B, are displayed in Figure 2
(b) and (c), respectively.
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Figure 2: A set of 50 curves derived from the red pattern (a), together with their corre-
sponding depth-colored functional representations for parametrizations A (b) and B (c).
The depth of each curve is calculated w.r.t. to the same sample of 50 curves. Here, we used
the multivariate functional halfspace depth by Claeskens et al. (2014). The depth increases
from yellow to red, the deepest curve being colored in blue.

A.2 Cursive Handwriting Sample

We applied the multivariate functional halfspace depth developped by Claeskens et al.
(2014) (with weight function set to a constant) to a set of 20 planar curves taken from
(Ramsay et al. 2017, Cursive handwriting sample). These curves were parameterized via
two continuous functions u 7→ (x(u), y(u)) ∈ R2, where the parameter u ∈ [0, 1] represents
either the time or the arc-length. (Note that an equivalent representation of such a curve,
standard in multivariate functional data analysis, is through a vector of two real-valued
functions de�ned over [0, 1], as in the previous subsection.) Depth rankings are di�erent
depending on the parametrization chosen; see Figure 3.
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Figure 3: Functional depth based ranking (obtained using the multivariate functional half-
space depth by Claeskens et al. (2014)) of plane curves for parametrization by time (left)
or by arc-length (right) obtained using the package MFHD (Hubert & Vakili. 2013). The
depth increases from yellow to red in the two dimensional trace. The 3-dimensional blue
curve indicates the observation with the extreme rank di�erence for the two parametriza-
tions (rank 1 for time parametrization and rank 13 for arc-length parametrization). Source:
data set handwrit of the R-package fda (Ramsay et al. 2017).

Only four curves out of twenty are assigned the same ranks (namely 3, 10, 19 and 20).
For the sixteen others, depth-induced rankings are di�erent, sometimes by a large amount.
For instance, one curve is ranked 1 (minimal depth) for one parametrization and 13 (quite
high depth) over 20 for the other; see Table 1.

Table 1: Depth ranks for parametrization by time or by arc-length.

Time 2 3 13 12 4 8 1 17 11 9 7 19 15 20 18 16 14 5 6 10

Length 6 3 16 14 5 7 13 11 1 17 2 19 8 20 12 18 15 4 9 10

It thus appears that to obtain meaningful results, a proper parametrization of curves is
needed. (This could be the speed of writing in this handwriting recognition example.)
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A.3 Historic Hurricanes Tracks

We applied the multivariate functional halfspace depth developped by Claeskens et al.
(2014) and the multivariate simplicial depth developed by López-Pintado et al. (2014) to
the historical hurricane tracks (obtained from https://coast.noaa.gov/hurricanes/)
that go through the circular region of size 56 nautical miles centered at location 24.5N by
78W. We considered two parametrizations : the arc-length parametrization (A) and the
parametrization by the time (B); see Figure 4. In this example, the results we obtained
seem less sensitive to the choice of a parametrization than in the previous subsections.
Nevertheless, this illustrates that multivariate functional depth functions tend to detect
outliers which do not appear to be geometrically aberrant.

MFHD, par. A MFHD, par. B mSBD, par. A mSBD, par. B curve depth
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Figure 4: Comparison of depth based ordering for two parametrizations A and B provided
respectively by MFHD (a)�(b), mSBD (c)�(d), and by our new depth for unparameterized
curves (e). The depth increases from yellow to red. Deepest curves are plotted in blue.
Curves with low value of depth are plotted in red. Source: an ensemble of 23 historic
hurricane tracks originating in the Gulf of Mexico between 1918 - 2018.

B The Space of Unparametrized Curves

Several of the results in this section can be found in (Kemppainen & Smirnov 2017, Sec-
tion 2). The authors of this article borrowed material from Aizenman & Burchard (1999,
Section 2.1) and Burago et al. (2001, Section 2.5).

B.1 Equivalence Relation for Parametrized Curves

We denote Γ the set of increasing continuous functions γ : [0, 1] → [0, 1] such that γ(0) =
0 and γ(1) = 1. Two parametrized curves β1 : [0, 1] → Rd and β2 : [0, 1] → Rd are
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equivalent (i.e., describe the same unparametrized curve) if and only if there exist two
reparametrizations γ1, γ2 ∈ Γ such that β1 ◦ γ1 = β2 ◦ γ2.

In order to describe the equivalence class associated to β1, we consider never-locally-
constant functions. A parametrized curve β : [0, 1]→ Rd is said to be never-locally-constant
if there exists no non-empty sub-interval (a, b) ⊂ [0, 1] such that the restriction of β to the
interval [a, b], denoted as β|[a,b] , is a constant function. According to Burago et al. (2001,
Exercice 2.5.3), each equivalence class admits one representative which is never-locally-
constant, for example its arc-length parametrization. The equivalence class associated to
the never-locally-constant path β in C ([0, 1],Rd) is,

C = {β ◦ γ : γ ∈ Γ}.

The set of unparmetrized curves C is the quotient space of C ([0, 1],Rd) by the equivalence
relation de�ned above.

B.2 The Metric Space of Unparmetrized Curves

Following Kemppainen & Smirnov (2017), we endow the space of curves C with the Fréchet
metric dC de�ned as

dC (C1, C2) = inf {‖β1 − β2‖∞, β1 ∈ C1, β2 ∈ C2} , C1, C2 ∈ C, (B.1)

where ‖β‖∞ = supt∈[0,1] |β(t)|2 for β ∈ C ([0, 1],Rd).

Lemma B.1. The metric space (C, dC) is separable and complete.

Proof of Lemma B.1 relies on the following lemma.

Lemma B.2. Let β1 and β2 be two never-locally-constant paths on [0, 1]. Let Ci be the
unparametrized curve associated to βi and

CHom
i = {βi ◦ ψ; ψ : [0, 1]→ [0, 1] is homeomorphic increasing continuous},

a subset of Ci, i = 1, 2. Then, we have

dC (C1, C2) = dC
(
C1

Hom, C2
Hom
)
.

Proof of Lemma B.2. We note that for every reparametrization γ ∈ Γ, there exists a se-
quence (ψn)n of increasing homeomorphisms that converges uniformly to γ. Then using the
uniform continuity of the parametrized curves, we deduce that every point of the equiva-
lence class Ci is the uniform limit of sequence of CiHom for i = 1, 2.
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Proof of Lemma B.1. First, note that (C, dC) is a metric space (Aizenman & Burchard
1999, Lemma 2.1). It remains to prove that it is separable and complete.

1. The topological space (C, dC) is separable. The topological space (C ([0, 1],Rd), ‖ ·‖∞)
is separable (Billingsley 2013, Exemple 1.3), so by de�nition it contains a countable dense
subset D. Then the set of equivalence classes associated to the paths of D is a countable
dense subset of (C, dC).

2. The topological space (C, dC) is complete. Let (Cm)m be a Cauchy sequence of (C, dC).
Let (εk)k be a sequence of positive real numbers such that the series of general term (εk)
converges. Using Lemma B.2 it is possible to build a sub-sequence (nk)k and a sequence of
never-locally-constant parametrizations βnk of Cnk such that,

∀k ≤ 1, ‖βnk − βnk+1
‖∞ ≤ εk.

Then (βnk) is a Cauchy sequence of the complete space (C ([0, 1],Rd), ‖ · ‖∞). There exists
β ∈ C ([0, 1],Rd) such that limk→∞ ‖βnk − β‖∞ = 0. Since the sequence (Cn)n is a Cauchy
sequence and that βnk is a parametrization of Cnk , we deduce that (Cn)n converges to the
equivalence class of β in (C, dC).

B.3 Mesurability of the Line Integral

The length of a parametrized curve β, denoted L(β), is de�ned as the supremum of the set
of chordal lengths,

Lτ (β) =
J∑
j=1

|β(τj)− β(τj−1)|2, (B.2)

corresponding to all �nite partitions τ of [0, 1] : 0 = τ0 < τ1 < . . . < τJ = 1. A parametrized
curve β is recti�able if L(β) is �nite.

Remark B.1. For a recti�able parametrized curve β, we have,

L(β) = lim
J→∞

J∑
j=1

|β(j/J)− β ((j − 1)/J)|2 .

The length is a property of the equivalence class : all parametrizations of C ∈ C have
the same length. We denote by L(C) the length of C.
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For a recti�able parametrized curve β, we de�ne the length reparametrization (see
Väisälä 2006, Theorem 1.3) :

sβ : [0, 1]→ [0, 1]

t 7→ L(βt)/L(β),

where βt is the restriction of β to the interval [0, t]. The function sβ is increasing and
continuous, that is sβ ∈ Γ. Moreover, one can de�ne the generalized inverse of sβ,

qβ : [0, 1]→ [0, 1]

u 7→ inf{t : sβ(t) ≥ u}.

The function qβ is left continuous and admits a limit from the right for all u ∈ [0, 1] (see
Embrechts & Hofert 2013, Proposition 1). According to Väisälä (2006, Theorem 2.4),
for each recti�able curve C there exists a unique parametrization βC : [0, 1] → Rd, called
the arc-length parametrization, such that L(βtC) = tL(C), for all t ∈ [0, 1]. The arc-length
parametrization is never-locally-constant.

Lemma B.3. Let CL be the set of recti�able unparametrized curves with a positive length.

1. L : C→ [0,+∞] is measurable and CL is a measurable set.

2. Let u ∈ [0, 1] be �xed. The application,

{β ∈ C ([0, 1],Rd) : L(β) <∞} → [0, 1]

β 7→ qβ(u)

is measurable.

3. For all non negative bounded functions f : Rd → R, the application

I : CL → R

C 7→
∫
C
f(s)ds :=

∫ 1

0

f(βC(t))dt

is measurable.
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Proof of Lemma B.3. 1. L is measurable. Let τ be a partition of [0, 1]. The function
β ∈ C ([0, 1],Rd) 7→ Lτ (β) ∈ R+ is measurable. Then the length function β 7→ L(β) is
measurable as the limit of measurable functions. Moreover, for A a borelian of [0,∞], we
have :

β ∈ L−1(A) if and only if Cβ ⊂ L−1(A).

Then L : C→ [0,+∞] is measurable and CL = L−1(]0,∞[).
2. β 7→ qβ(u) is measurable. From the previous item, we deduce that for all t ∈ [0, 1],

the function

{β ∈ C ([0, 1],Rd) : L(β) <∞} → [0, 1]

β 7→ sβ(t)

is measurable. Let u be in [0, 1] �xed. We remark that,

{β∈C ([0, 1],Rd) : 0 < L(β) <∞ and qβ(u) ≤ t} = {β∈C ([0, 1],Rd) : 0 < L(β) <∞ and sβ(t) ≥ u}.

Then β 7→ qβ(u) is measurable too.
3. I : C 7→ I(C) is measurable. It su�ces to prove the lemma when f is continuous.

Let C be in CL. Using Riemann sums we have:

I(f) = lim
n→∞

In(C), where In(C) =
1

n

n∑
i=1

f (βC(i/n)) .

Let β be a parametrization of C, then β = βC ◦ sβ and βC = β ◦ qβ. Then we can rewrite
In(C) as

In(β) =
1

n

n∑
i=1

f (β(qβ(i/n))) .

We deduce from the previous point that the function,

{β∈C ([0, 1],Rd) : 0 < L(β) <∞} → R, β 7→ In(β),

is measurable, and its limits is measurable too.

Further, we de�ne the probability distribution µC on the Borel sets of Rd

for all borel sets A of Rd, µC(A) =
1

L(C)

∫
C
1A(s)ds ,

with 1A(x) being the indicator function that takes the value 1 if x ∈ A and 0 otherwise.

9



Lemma B.4. Let β be a parametrisation of C. Let UJ be a random variable such that its
distribution is a mixture distribution,

J∑
j=1

|β(j/J)− β((j − 1)/J)|2
LτJ (β)

U[(j−1)/J,j/J ],

where LτJ (β) is the chordal-length (B.2) associated to the partition τJ = (j/J)j=0,...,J and
U[a,b] is the uniform distribution on the interval [a, b]. The sequence of random variables
(β(UJ))J≥1 converges in distribution to µC.

Proof of Lemma B.4. Let `β(t) = L(β|[0,t]) be the length of the parametrized curve β on
[0, t]. Let f : Rd → R be a continuous bounded function. Using that the functions f, β, βC
and `β are continuous (and uniformly continuous on a compact set), for all ε > 0 there
exists Jε ≥ 1 such that,

∀J ≥ Jε, [L(C)− LTJ (β)| < εL(β)/2 and L(C)/2 < LTJ (β),

∀J ≥ Jε, ∀t ∈ [0, 1],∃j ∈ {1, . . . , J} : t ∈ [(j − 1)/J, j/J ] and |f ◦ β(j/J)− f ◦ β(t)| < ε.

Then we can show that

lim
J→∞

EP (f(β(UJ)) = lim
J→∞

J∑
j=1

|β(j/J)− β((j − 1)/J)|2
L(C)

f(β(j/J)),

∫
fdµC = lim

J→∞

J∑
j=1

`β(j/J)− `β((j − 1)/J)

L(C)
f(β(j/J)).

Noticing that for all j = 1, . . . , J, `β(j/J) − `β((j − 1)/J) ≥ |β(j/J) − β((j − 1)/J)|2, we
can bound the di�erence,∣∣∣∣∣

J∑
j=1

`β(j/J)− `β((j − 1)/J)

L(C)
f(β(j/J))−

J∑
j=1

|β(j/J)− β((j − 1)/J)|2
L(C)

f(β(j/J))

∣∣∣∣∣
≤

maxt∈[0,1] |f(β(t))|
L(C)

(L(C)− LτJ (β)) .

10



Remark B.2 (The order does not matter). In the paper, we de�ne an unparametrized
curve C = Cβ with an order : the starting point is β(0) and the end point is β(1). We can
also de�ne an unparametrized curve without orientation via an equivalence relation on the
set of parametrized curves up to a larger set of reparametrization,

Γnew = {γ : [0, 1]→ [0, 1] : γ is continuous and monotonic,

(γ(0), γ(1)) ∈ {(0, 1), (1, 0)}} .
Using the same arguments, one can show that the resulting space of curves endowed with
the associated Frechet metric is separable and complete. The di�erence is that there exist
two arc-length parametrizations : one β+

C from β(0) to β(1) and the other β−C from β(1) to
β(0) such that,

β−C (t) = β+
C (1− t).

Then the de�nition of the probability measure µC is invariant whether we use β
+
C or β−C to

de�ne it.

C De�nition of the Depth Functions

In order to prove that our curve depth is well de�ned, we have to show that the function
x 7→ D(x|QP , µC) is measurable and that D(C|QP ) is bounded by 1 for all C ∈ CL. This
requires the use of a Monte Carlo scheme that we describe in the next subsection.

C.1 Monte Carlo Approximation of the Curve Depth

Notice that the curves X1, . . .Xn and C are known, so this means that µC and Qn are
formally known too. However, the computation of µC(H) and Qn(H) for an arbitrary
halfspace H can be untractable. Consequently, it is necessary to estimate µC(H) using
either a quadrature formula or a Monte Carlo approach. We choose here a Monte Carlo
approximation of (3.3). In Section G we conduct a simulation study on the size m of the
Monte Carlo scheme.

We generate samples of size m from the observed (realized) curves X1, . . . ,Xn:
for all i = 1, . . . , n, given Xi, Xi,1, . . . , Xi,m are i.i.d. distributed from µXi ,

and two independent samples from the curve C,
Y1, . . . , Ym are i.i.d. distributed from µC,

Z1, . . . , Zm are i.i.d. distributed from µC.
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We use Ym = {Y1, . . . , Ym} to estimate the distribution µC by the empirical distribution
µ̂m:

µ̂m = m−1

m∑
j=1

δYi ,

where δx stands for the Dirac measure at x ∈ Rd.
Furthermore, we remark that the marginal distribution of Xi,j is QP (see Remark 2).

Then, let Q̂m,n be the empirical distribution of the random sample Xn,m = {Xi,j, i =
1, . . . , n; j = 1, . . . ,m}:

Q̂m,n = (mn)−1

n∑
i=1

m∑
j=1

δXi,j .

LetH be a closed halfspace of Rd. A plug-in estimator of Qn(H)/µC(H) is Q̂m,n(H)/µ̂m(H).
To ensure the consistency of the Monte Carlo estimate of (3.3) we need to control the

ratio Q̂m,n(H)/µ̂m(H) for all H such that µC(H) > 0, given that µC(H) is approximated
by µ̂m(H). This is known to be a challenging problem having no general solution, see e.g.,
Broda & Kan (2016). To circumvent this, we consider only a subset of all halfspaces in
Rd for the computation of the Monte Carlo estimate of the depth. Let ∆ be in (0, 1/2).

We denote by Hn,m
∆ the collection of closed halfspaces H such that either Q̂m,n(H) = 0 or

µ̂m(H) > ∆, almost surely. For all x in the locus of C, we de�ne

D̂(x|Q̂m,n, µ̂m,Hn,m
∆ )= inf

u∈S

{
Q̂m,n(Hu,x)/µ̂m(Hu,x) : Hu,x ∈ Hn,m

∆

}
. (C.1)

Then, we use Zm = {Z1, . . . , Zm} to estimate the integral (3.3) w.r.t. the probability
measure µC,

D̂n,m,∆(C|X1, . . . ,Xn)=
1

m

m∑
i=1

D̂(Zi|Q̂m,n, µ̂m,Hn,m
∆ ). (C.2)
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Hu1,z1

z1

Hu2,z2

z2

Figure 5: Illustrations to the statistical model and Monte Carlo appproximation of the
depth with a sample of �ve curves in blue and the curve C in red: (left) samples Xn,m

(blue) and Ym (red) of points on the observed curves; (middle and right) illustration of
calculations of (C.1) for z1 and z2 on the red curve see Remark C.1.

Remark C.1. To provide an intuitive reasoning, we arti�cially restrict the choice of the
in�mum in (C.1) to two halfspaces where the number of observed curves is n = 5 and the
size of the Monte Carlo sample for each curve is m = 8; see Figure 5. Let z1 and z2

be two points in the locus of C (red middle curve). Consider two halfplanes, say Hu1,z1

and H−u1,z1, yielded by the line in Figure 5, middle, when calculating D̂(z1|Q̂m,n, µ̂m).

For each of these halfplanes, we obtain (Q̂m,n(Hu1,Z1) = 25/40, µ̂m(Hu1,z1) = 4/8) and

(Q̂m,n(H−u1,z1) = 15/40, µ̂m(H−u1,z1) = 4/8), respectively. Among Hu1,z1 and H−u1,z1,

H−u1,z1 will be chosen as Q̂m,n(H−u1,z1) < Q̂m,n(Hu1,z1) and µ̂m(Hu1,z1) = µ̂m(H−u1,z1), and
thus the rationale follows the traditional multivariate Tukey depth as this would be the case
in the absence of the denominator µ̂m(H·,z1). On the other hand, in Figure 5, right, the

values of the denominators in (C.1) di�er giving pairs of portions equal to (Q̂m,n(Hu2,z2) =

25/40, µ̂m(Hu2,z2) = 6/8) and (Q̂m,n(H−u2,z2) = 15/40, µ̂m(H−u2,z2) = 2/8). In this case,

halfplane Hu2,z2 with higher portion of Q̂m,n will be chosen due to the di�erence of µ̂m(Hu2,z2)
and µ̂m(H−u2,z2).

Theorem C.1 below states that the Monte Carlo approximation of the curve depth (C.2)
converges in probability to the population version (3.1) when n,m→∞ or to the sample
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version (3.3) when m → ∞. Then Theorem 3.1 holds. Let µ be a probability measure
de�ned on Rd, and let µ̂m be the empirical measure de�ned on a m-sample of µ.We denote
by H the collection of all halfspaces in Rd and de�ne

‖µ̂m − µ‖H := sup
H∈H
|µ̂m(H)− µ(H)|.

According to Shorack & Wellner (2009, Chapter 26, Theorem 1), the class H satis�es the
Glivenko-Cantelly property. Then ‖µ̂m−µ‖H converge a.s. to zero as m→ +∞. Moreover,
we have

limmλ
−1
m ‖µ̂m − µ‖H ≤ C a.s., (C.3)

where C =
√
d+ 1 + 1/2 and λm = (log(m)/m)1/2; see Shorack & Wellner (2009, Chapter

26, Exercise 2).

Theorem C.1. Let C ∈ CL be an unparametrized curve such that µC is non-atomic. Let P
be a probability measure in the space of curves such that P ∈ P and QP is non-atomic. Let
(∆m) be a decreasing sequence of positive numbers such that (∆m) and (λm/∆

2
m) converge

to zero as m→∞. Then:

• the Monte Carlo approximation D̂n,m,∆m(C|X1, . . . ,Xn) converges in probability to
D(C|X1, . . . ,Xn) as m→∞,

• the Monte Carlo approximation D̂n,m,∆m(C|X1, . . . ,Xn) converges in probability to
D(C|P ) as m,n→∞,

• the sample Tukey curve depth D(C|X1, . . . ,Xn) converges in probability to D(C|P ) as
n→∞.

To prove the boundness of the curve depth, it su�ces to show that for all x, D(x|QP , µC)
is bounded by 1.

C.2 Boundness of Data Depth

Let A be a Borel set of Rd, we denote by ∂A the boundary of the set A. For instance the
boundary of Hx,u is ∂Hx,u =

{
y ∈ Rd : (y − x)>u = 0

}
, u ∈ S, x ∈ Rd.

Lemma C.1. Let µ and Q be non-atomic measures on Rd, d ≥ 1. For all x ∈ Rd, there
exists a closed halfspace H ∈ H such that x ∈ ∂H and Q(H)/µ(H) ≤ 1 (with a convention
0/0 = 0).

14



Proof of Lemma C.1. Let x be a �xed point of Rd.
1. The one-dimensional case, d = 1. Since QP and µC are non-atomic measures, we get

either QP ((−∞, x]) ≤ µC((−∞, x]) or QP ([x,+∞)) ≤ µC([x,+∞)), for all x ∈ R. Then
the lemma is proved.

2. The multi-dimensional case, d ≥ 2. If there exists u ∈ S such that Q(∂Hu,x) =
µ(∂Hu,x) = 0, then the lemma is proved. We show recursively that, for k = 1, . . . , d − 1,
there exists an a�ne subspace Ak of dimension k such that Q(Ak) = µ(Ak) = 0 and x ∈ Ak.
Then we consider u ∈ S such that ∂Hu,x = Ad−1 and the �rst assertion is true.

For k = 1, let An be the set of a�ne subspaces of dimension 1 such that for all A ∈ An:
x ∈ A and either Q(A) > 1/n or µC(A) > 1/n. The set An is �nite since the intersection
of A ∈ An is the singleton {x} (and Q({x}) = µ({x}) = 0),

1 ≥ µ (∪A∈AnA) =
∑
A∈An

µ(A) > #An/n.

Then the set

∪n≥1An = {A a�ne subspaces of dimension 1 : x ∈ A and µ(A) > 0 or Q(A) > 0}

is countable as the countable union of �nite sets. Since the set of a�ne subspaces of
dimension 1 which contain x is continuous, there exists A1 /∈ An such that Q(A1) =
µC(A1) = 0 and x ∈ A1.

Assume that k ≥ 2. Using the recursive assumption for k − 1, there exists an a�ne
subspace Ak−1 of dimension k − 1 such that Q(Ak−1) = µ(Ak−1) = 0 and x ∈ Ak−1. Let
An be the set of a�ne subspaces A of dimension k such that Ak−1 ⊂ A, Q(A) > 1/n or
µ(A) > 1/n. Using the same previous argument the subset An is �nite and there exists
Ak /∈ ∪n≥1An.

C.3 Mesurability

To prove the measurability, it su�ces to show that x 7→ D(x|QP , µC) and x 7→ D(x|Qn, µC)
are the limits of measurable functions (see Lemma C.4 and Lemma C.5 respectively).

Lemma C.2. The function x ∈ Rd 7→ D̂(x|Q̂m,n, µ̂m,Hn,m
∆ ) ∈ R+ is measurable a.s.

Lemma C.3. Let C ∈ CL be an unparametrized curve such that µC is non-atomic. The
function x 7→ D̂(x|Q̂m,n, µ̂m,Hn,m

∆ ) ∈ R+ is bounded µC-a.s. by 1 if ∆ ≤ 1/m and by
(1−∆)−1 otherwise.
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Lemma C.4. Let C ∈ CL be an unparametrized curve such that µC is non-atomic. Let P
be a probability measure on the space of curves such that P ∈ P and QP is non-atomic. Let
(∆m) be a decreasing sequence of positive numbers such that (λm/∆

2
m) and (∆m) converges

to zero as m → ∞. Then for all x ∈ Rd, D̂(x|Q̂m,n, µ̂m,Hm,n) converges almost surely to
D(x|QP , µC) as n,m→∞.

Lemma C.5. Let C ∈ CL be an unparametrized curve such that µC is non-atomic. Let P
be a probability measure in the space of curves such that P ∈ P and QP is non-atomic. Let
(∆m) be a decreasing sequence of positive numbers such that (λm/∆

2
m) and (∆m) converges

to zero as m → ∞. Then for all x ∈ Rd, D̂(x|Q̂m,n, µ̂m,Hm,n) converges almost surely to
D(x|Qn, µC) as m→∞.

In what follows, we introduce the probability space (Ω,F ,Q) generated by the sequences
(Xi,j)j≥1,i≥1, (Yj)j≥1 and (Zj)j≥1 (P and C are �xed). For ω ∈ Ω, we denote by Xi,j(ω),
Yj(ω) and Zj(ω) the respective coordinates of ω for the variables Xi,j, Yj and Zj. Similarly,
let T be a random variable which is a function of (Xi,j)i≥1,j≥1, (Yj)j≥1 and (Zj)j≥1. We
denote by T (ω) the value taken by this variable at points (Xi,j(ω)), (Yj(ω)) and (Zj(ω)).

Applying (3.6) to the empirical measures µ̂m and Q̂m,n with the assumptions of Theo-
rem 3.1, there exists Ω̃ ⊂ Ω such that Q(Ω̃) = 1 and for all ω ∈ Ω̃ there exists Nω ∈ N:

∀m ≥ Nω, ∀n ≥ 1, ‖µ̂m(ω)− µC‖H ≤ 2Cλm and ‖Q̂m,n(ω)−Qn‖H ≤ 2Cλm,

2Cλm < ∆m,

∀m ≥ Nω, ∀n ≥ Nω, ‖Q̂m,n(ω)−QP‖H ≤ 2Cλmn.

Proof of Lemma C.4. We introduce the variable,

D(x|Q, µ,Hn,m
∆ ) = inf {Q(Hu,x)/µ(Hu,x), u ∈ S, Hu,x ∈ Hn,m

∆ } ,

where Q and µ are two probability measures on Rd. It is straightforward to show that, for
all ω ∈ Ω̃, there exists Nω ∈ N such that for all m,n ≥ Nω, we get,

sup
x∈Rd

∣∣∣D̂(x|Q̂m,n(ω), µ̂m(ω),Hn,m
∆m

(ω))−D(x|QP , µ̂m(ω),Hn,m
∆m

(ω))
∣∣∣ ≤ ‖Q̂m,n(ω)−QP‖H

∆m

,

sup
x∈Rd

∣∣D(x|QP , µ̂m(ω),Hn,m
∆m

(ω))−D(x|QP , µC,Hn,m
∆m

(ω))
∣∣ ≤ ‖µ̂m(ω)− µC‖H

∆2
m (1− 2Cλm/∆m)

.

Then we deduce that the variable

sup
x∈Rd

∣∣∣D(x|Q̂m,n, µ̂m,Hn,m
∆m

)−D(x|QP , µC,Hn,m
∆m

)
∣∣∣
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converges a.s. to zero. It remains to show that D(x|QP , µC,Hn,m
∆m

) converges a.s. to
D(x|QP , µC) as m,n→∞ for a �xed point x ∈ Rd.

Case 1 : there exists u0 ∈ S such that QP (Hu0,x) = 0. Then for all (m,n), Hu0,x ∈ H
n,m
∆m

,
and D(x|QP , µC) = D(x|QP , µC,Hn,m

∆m
) a.s.

Case 2 : for all u ∈ S, QP (Hu,x) > 0. Due to the fact that D(x|QP , µC) is bounded
by 1 (see Lemma C.1) there exists a sequence (uk) of S such that

D(x|QP , µC) = lim
k→∞

QP (Huk,x)

µC(Huk,x)
, and QP (Huk,x) ≥ µC(Huk,x) > 0.

First we consider the sub-case where the sequence (µC(Huk,x)) is lower-bounded by a positive
constant κ > 0 (if d = 1, only this case occurs because S is a �nite set). Since (λm) and
(∆m) are decreasing sequences, we have µC(Huk,x) ≥ 2Cλm + ∆m, for m large enough and
for all k ∈ N. Then for all ω ∈ Ω̃, there exists Nω ∈ N such that

∀m ≥ Nω, ∀k ∈ N, µ̂m(ω)(Huk,x) ≥ µC(Huk,x)− ‖µ̂m(ω)− µC‖H
≥ ∆m,

which means that ∀m ≥ Nω, ∀k ∈ N, Huk,x ∈ H
n,m
∆m

(ω). Therefore we have, for all m ≥ Nω,
D(x|QP , µC) = D(x|QP , µC,Hn,m

∆m
(ω).

A second sub-case occurs when the sequence (µC(Huk,x)) is decreasing to zero, i.e., for
all m there exists Mm ∈ N such that for all k > Mm, µC(Huk,x) < 2Cλm + ∆m. Let m0 ∈ N
such that there exists k0 ∈ N for which µC(Huk0 ,x

) ≥ 2Cλm0 + ∆m0 . Then we consider the
increasing sequence (km)m≥m0 of integers de�ned recursively by,

km0 = k0 and km+1 = sup{k ≥ km : µC(Hukm+1
,x) ≥ 2Cλm+1 + ∆m+1}.

For all ω ∈ Ω̃, there exists Nω ∈ N such that,

∀m ≥ Nω, µ̂m(ω)(Hukm ,x
) ≥ ∆m,

i.e., Hukm ,x
∈ Hn,m

∆m
(ω). Thus we obtain for all ω ∈ Ω̃, for all m ≥ Nω that

D(x|QP , µC) ≤ D(x|QP , µC,Hn,m
∆m

(ω)) ≤
QP (Hukm ,x

)

µC(Hukm ,x
)

and lim
m→∞

QP (Hukm ,x
)

µC(Hukm ,x
)

= D(x|QP , µC).

17



Proof of Lemma C.5. As the proof of Lemma C.4, we have that, for all ω ∈ Ω̃, there exists
Nω ∈ N such that for all m ≥ Nω, and for all n ≥ 1,

sup
x∈Rd

∣∣∣D̂(x|Q̂m,n(ω), µ̂m(ω),Hn,m
∆m

(ω))−D(x|Qn, µ̂m(ω),Hn,m
∆m

(ω))
∣∣∣ ≤ ‖Q̂m,n(ω)−Qn‖H

∆m

,

sup
x∈Rd

∣∣D(x|Qn, µ̂m(ω),Hn,m
∆m

(ω))−D(x|Qn, µC,Hn,m
∆m

(ω))
∣∣ ≤ ‖µ̂m(ω)− µC‖H

∆2
m (1− 2Cλm/∆m)

.

Then we deduce that the random variable

sup
x∈Rd

∣∣∣D(x|Q̂m,n, µ̂m,Hn,m
∆m

)−D(x|Qn, µC,Hn,m
∆m

)
∣∣∣

converges a.s. to zero. It remains to show that D(x|Qn, µC,Hn,m
∆m

) converges a.s. to
D(x|QP , µC) as m→∞ for a �xed point x ∈ Rd.

Case 1 : there exists u0 ∈ S such that Qn(Hu0,x) = 0. Then for all m, Hu0,x ∈ H
n,m
∆m

,
and D(x|Qn, µC) = D(x|Qn, µC,Hn,m

∆m
) a.s.

Case 2 : for all u ∈ S, Qn(Hu,x) > 0. Due to the fact that D(x|Qn, µC) is bounded by 1
(see Lemma C.1) there exists a sequence (uk) of S such that,

D(x|Qn, µC) = lim
k→∞

Qn(Huk,x)

µC(Huk,x)
, and Qn(Huk,x) ≥ µC(Huk,x) > 0.

First we consider the sub-case where the sequence (µC(Huk,x)) is lower-bounded by a positive
constant κ > 0 (if d = 1, only this case occurs). Since (λm) and (∆m) are decreasing
sequences, we have µC(Huk,x) ≥ 2Cλm + ∆m, for m large enough and for all k ∈ N. Then
for all ω ∈ Ω̃, there exists Nω ∈ N such that,

∀k ∈ N, µ̂m(ω)(Huk,x) ≥ µC(Huk,x)− ‖µ̂m(ω)− µC‖H
≥ ∆m,

i.e., ∀k ∈ N, Huk,x ∈ H
n,m
∆m

. Therefore we have for all m ≥ Nω that D(x|Qn, µC) =
D(x|Qn, µC,Hn,m

∆m
(ω)).

A second sub-case occurs when the sequence (µC(Huk,x)) is decreasing to zero, i.e., for
all m there exists Mm ∈ N such that for all k > Mm µC(Huk,x) < 2Cλm + ∆m. Let m0 ∈ N
such that there exists k0 ∈ N for which µC(Huk0 ,x

) ≥ 2Cλm0 + ∆m0 . Then we consider the
increasing sequence (km)m≥m0 of integers de�ned recursively by,

km0 = k0 and km+1 = sup{k ≥ km : µC(Hukm+1
,x) ≥ 2Cλm+1 + ∆m+1}
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For all ω ∈ Ω̃, there exists Nω ∈ N such that,

∀m ≥ Nω, µ̂m(ω)(Hukm ,x
) ≥ ∆m,

that means Hukm ,x
∈ Hn,m

∆m
(ω). Thus we obtain for all ω ∈ Ω̃, for all m ≥ Nω that

D(x|Qn, µC) ≤ D(x|Qn, µC,Hn,m
∆m

(ω)) ≤
Qn(Hukm ,x

)

µC(Hukm ,x
)

and lim
m→∞

Qn(Hukm ,x
)

µC(Hukm ,x
)

= D(x|Qn, µC).

Proof of Lemma C.2. Notice that the function (x, z, u) ∈ R× Rd × S 7→ u>(x− z) ∈ R is
measurable, and that the function

w : Rd × S → R+ ∪ {+∞}× R+

(x, u) 7→
(
Q̂m,n(Hu,x)/µ̂m(Hu,x), µ̂m(Hu,x)

)
is also measurable and takes a �nite number of values. We denote by 0 = v0 < v1 < · · · <
vp = +∞ the collection of values which are taken by the �rst coordinate of w. Let Vq be

the inverse image of {vq}× [∆, 1] under w, q = 0, . . . , p. We may rewrite D(x|Q̂m,n, µ̂m,∆)
as

D̂(x|Q̂m,n, µ̂b,∆) =

p∑
q=0

vq1Bq(x),

where (Bq)q=0,...,p are measurable subsets of Rd de�ned recursively by

B0 =
{
x ∈ Rd : ∃u ∈ S, Q̂m,n(Hu,x) = 0

}
,

Bq =
{
x ∈ Rd : ∃u ∈ S, (x, u) ∈ Vq

}
\

{
q−1⋃
r=0

Br

}
, q = 1, . . . , p.

Proof of Lemma C.3. Let x be a �xed point of the locus of C. Since µC is a non-atomic
measure, x is not in Ym ∪ Xn,m almost surely. Let ω ∈ Ω be �xed.

1. The one-dimensional case, d = 1. We have that Q̂m,n(∂Hu,x) = µ̂m(∂Hu,x) = 0, for
all u ∈ {−1, 1}.
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2. The multi-dimensional case, d ≥ 2. Assume there exists a.s. an a�ne subspace
Ad−1 of dimension d − 1 such that Q̂m,n(Ad−1) = µ̂m(Ad−1) = 0 and x ∈ Ad−1. Since
0 < ∆ < 1/2, there exists u ∈ S such that ∂Hu,x = Ad−1 and µ̂m(Hu,x) > ∆. Then we
de�ne the non-empty subset Sx of S such that

Sx =
{
u ∈ S : Hu,x ∈ Hn,m

∆ and Q̂m,n(∂Hu,x) = µ̂m(∂Hu,x) = 0 a.s.
}
.

If there exists u ∈ Sx such that Q̂m,n(Hu,x)/µ̂m(Hu,x) ≤ 1, the lemma is proved. Otherwise
for all u ∈ Sx, we have

Q̂m,n(Hu,x)/µ̂m(Hu,x) > 1, and 0 < µ̂m(H−u,x) < ∆.

If ∆ < 1/m, then there exists u ∈ Sx such that Q̂m,n(Hu,x)/µ̂m(Hu,x) ≤ 1 by the reductio ad

absurdum argument. If ∆ > 1/m, then for all u ∈ Sx, Q̂m,n(Hu,x)/µ̂m(Hu,x) ≤ 1/(1−∆).
It remains to show the existence for d ≥ 2 of such an a�ne subspace Ak recursively on the
dimension k = 1, . . . , d− 1 of Ad−1.

For k = 1, there exists a �nite number (at most m+nm) of a�ne lines which contain x
and a point of the sample Ym(ω)∪Xn,m(ω). Since the set of a�ne lines which contain x is

continuous, there exists an a�ne line A1 such that Q̂m,n(w)(A1) = 0 and µ̂m(w)(A1) = 0.
Assume that k ≥ 2. Using the recursive assumption, there exists an a�ne subspace

Ak−1 of dimension k − 1 such that Q̂m,n(ω)(Ak−1) = µ̂m(ω)(Ak−1) = 0 and x ∈ Ak−1.
Let A be the set of a�ne subspaces A of dimension k such that Ak−1 ⊂ A. Then there
exist at most m+ nm a�ne subspaces of A which contain at least one point of the sample
Ym(ω) ∪Xn,m(ω). Then there exists an a�ne subspace Ak which contains no points of the
sample Ym(ω) ∪ Xn,m(ω).

D Proof of Theorem C.1

Conditionally on the samples Xn,m and Ym, we apply the Hoe�ding inequality on the

independent sum of bounded variables D̂(Zi|Q̂m,n, µ̂m,Hn,m
∆m

). Then for all ε > 0, we get
that the event

Ωε = Ω \
(∣∣∣∣D̂n,m,∆(C|X1, . . . ,Xn)−

∫
C
D(x|Qn, µC,Hn,m

∆m
)dµC(x)

∣∣∣∣ > ε

)
has a probability larger than 1 − 2 exp(−2ε2m). Using Lemma C.5 and Lemma C.3, the
dominated convergence theorem implies that given X1, . . . ,Xn,

∀ω ∈ Ωε, lim
m→∞

∫
C
D̂(s|Q̂m,n(ω), µ̂m(ω),Hn,m

∆m
(ω))dµC(s) =

∫
C
D(s|Qn, µC)dµC(s).
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Then we deduce that D̂n,m,∆(C|X1, . . . ,Xn) converges in probability to D(C|X1, . . . ,Xn) as
m→∞.

Similarly, conditionally on the samples Xn,m and Ym, the Hoe�ding inequality on the

independent sum of bounded variables D(Zi|Q̂m,n, µ̂m,Hn,m
∆m

) allows to consider,

Ωε = Ω \
(∣∣∣∣D̂n,m,∆(C|X1, . . . ,Xn)−

∫
C
D(x|QP , µC,Hn,m

∆m
)dµC(x)

∣∣∣∣ > ε

)
,

where ε > 0 and Q(Ωε) ≥ 1 − 2 exp(−2ε2m). Using Lemma C.4 and Lemma C.3, the
dominated convergence theorem implies that given the sequence (Xi)i≥1,

∀ω ∈ Ωε, lim
m,n→∞

∫
C
D(s|Q̂m,n(ω), µ̂m(ω),Hn,m

∆m
(ω))dµC(s) =

∫
C
D(s|QP , µC)dµC(s).

Then we deduce that D̂n,m,∆(C|X1, . . . ,Xn) converges in probability toD(C|P ) as n,m→∞
and therefore that D(C|X1, . . . ,Xn) converges in probability to D(C|P ) as n→∞.

E Properties of the Curve Depth

Lemma E.1. The depth of a curve is invariant up to the similarities group,

D(rAC + b|QPrAX+b
) = D(C|QPX ),

where A is a d× d orthogonal matrix, r > 0 and b ∈ Rd.

Proof of Lemma E.1. Let b be a translation vector in Rd, r > 0 be a scalar and A be a d×d
orthogonal matrix. The arc-length parametrization of the curve rAC+b is t 7→ rAβC(t)+b.
We notice by using the substitution rule u = t/r that

µrAC+b(rAH + b) =

∫ 1

0

1rAβC(t)+b∈rAH+bdt

=

∫ 1

0

1βC(t)∈Hdt

= µC(H).

Denote by QX the distribution of a given random vector X. We deduce that

QrAX+b(rAH + b) =

∫
µrAC+b(rAH + b)dP (C) = QX(H).
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Then we get

D(rAC + b|QPrAX+b
) =

∫ 1

0

D(rAβC(t) + b|QrAX+b, µrAC+b)dt,

where

D(rAβC(t) + b|QrAX+b, µrAC+b) = inf
u∈S

{
QrAX+b(rAHu,x + b)

µrAC+b(rAHu,x + b)

}
= inf

u∈S

{
QX(Hu,x)

µC(Hu,x)

}
= D(x|C, PX ).

rn
Rn

Hu1,x

Hu2,x

u1

u2

xn

Figure 6: Illustration for the proof of �Vanishing at in�nity� property

Lemma E.2. Let (Cn) be a sequence of unparametrized curves of length ` such that µCn is
non-atomic, and

Rn = inf
x∈SCn

|x|2, and lim
n→∞

Rn = +∞.

Then the sequence of depths (D(Cn|P )) converges to 0 as n→∞.

22



We introduce the following notations and de�nitions. We denote by Sr = {x ∈ Rd :
|x|2 = r} the sphere of radius r > 0. A halfspace H is tangent to Sr if its boundary ∂H is
tangent to Sr and H ∩ Sr is a singleton.

Lemma E.3. Let x ∈ Rd such that |x|2 = R and d ≥ 2. Let y ∈ Rd such that |y|2 ≥ |x|2
and |x− y|2 ≤ ` < r. There exist u1, u2, . . . , u2d−2 ∈ S such that

• for all i = 1, . . . , 2d− 2, Hui,x is a tangent halfspace to Sr,

• y ∈ ∪2d−2
i=1 Hui,x.

Proof of Lemma E.2. Since QP is a probability meausure on Rd, QP is tight. Then we can
consider an increasing sequence rn such that:

1− εn = QP ({x : |x|2 ≤ rn}) and lim
n
ε = 0,

` < rn < Rn/
√

2 and εn ≤ 1/(4d2).

Let ∆n be a subset of SCn de�ned as

∆n = {x ∈ SCn : ∀u ∈ S, QP (Hu,x) > εn or µCn(Hu,x) <
√
εn} .

Then for all x /∈ ∆n, D(x|µCn , QP ) ≤ √εn. It su�ces to show that µCn(∆n) < 4dεn and the
lemma is proved. We de�ne,

Rn + `n = max
x∈SCn

|x|2,

Fn(t) = µCn ({x : |x|2 ≤ Rn + t}) .

Since SCn is a compact set, we get that 0 < `n < `, and Fn is a cumulative distribution
function (c.d.f.) whose support is [0, `n].

1. The one-dimensional case, d = 1. The c.d.f. Fn is a non atomic cumulative distri-
bution function because µCn is non-atomic. Let tn be the quantile of order 1−√εn of Fn.
Then ∆n is included in the set of x ∈ SCn such that |x|2 > tn, that is µCn(∆n) ≤ √εn.

2. The multi-dimensional case, d ≥ 2. The c.d.f. Fn may have atoms. First assume
that µCn({x : |x|2 = Rn}) ≥ 1− (2d−2)

√
εn.We aim to show that ∆n ⊂ {x : |x|2 > Rn}

and then µCn(∆n) < 4dεn. Let x ∈ SCn be such that |x|2 = Rn and x ∈ ∆n. Then for all
y ∈ SCn , |y|2 ≥ |x|2 and |x− y|2 ≤ `. Using Lemma E.3, there exist u1, . . . , u2d−2 ∈ S such
that :

SCn ⊂ ∪2d−2
i=1 Hui,x and ∀i = 1, . . . , 2d− 2, µCn(Hui,x) <

√
εn,

23



which is absurd. Then ∆n ⊂ {x : |x|2 > Rn} and µCn(∆n) < 4dεn.
Secondly assume that µCn({x : |x|2 = Rn}) < 1 − (2d − 2)

√
εn : there exists a non

negligible part of the curve Cn outside of SRn . Under this assumption, we distinguish two
cases. The �rst sub-case is when µCn({x : |x|2 = Rn + `n}) ≥ (2d− 2)

√
εn. If x ∈ ∆n then

for all y ∈ {z : |z|2 = Rn + `n} ∩ SCn , |x|2 ≤ |y|2 and |x − y|2 ≤ `. Using Lemma E.3,
there exist u1, . . . , u2d−2 ∈ S such that :

SCn∩{x : |x|2 = Rn+`n} ⊂ ∪2d−2
i=1 Hui,x and ∀i = 1, . . . , 2d−2, µCn(Hui,x) <

√
εn,

which is absurd. Then ∆n = ∅ and µCn(∆n) < 4dεn.
The second sub-case is when µCn({x : |x|2 = Rn + `n}) < (2d − 2)

√
εn. Let tn be

the quantile of order 1 − (2d − 2)
√
εn of Fn. We know that 0 < tn ≤ `n. Using the same

argument, we show that ∆n ⊂ {x : |x|2 ≥ tn}. If µCn({x : |x|2 = tn}) ≥ (2d − 2)
√
εn,

one can show that ∆n is a subset of {x : |x|2 < tn} and µCn(∆n) ≤ (2d − 2)
√
εn. If

µCn({x : |x|2 = tn}) < (2d− 2)
√
εn, then

µCn(∆n) ≤ µCn({x : |x|2 = tn}) + µCn({x : |x|2 > tn}) ≤ 4d
√
εn.

F Algorithms

F.1 Procedures for Calculating Point Curve Depth

Calculation of the point curve depth D̂(x|Q̂m,n, µ̂m,Hn,m
∆ ) in R2 relies on the work by

Rousseeuw & Ruts (1996). The main idea is to regard all possible closed halfplanes by ro-
tating a line containing x in a counter-clockwise way. Here, the modi�cations are straight-
forward and narrow down to accounting for two di�ering samples Q̂m,n and µ̂m, threshold
∆, and minimization functional represented by a ratio. The formal algorithm is detailed
in Algorithm 1, where w.l.o.g. x = 0 due to translation invariance of the depth for conve-
nience. The complexity of the algorithm is O(mn log(mn)).

Algorithm 2 calculates D̂(x|Q̂m,n, µ̂m,Hn,m
∆ ) in R3 modifying in the similar way the

work by Dyckerho� & Mozharovskyi (2016), and exploits Algorithm 1 as its basic element.

The main idea is to perform Algorithm 1 for a projection of Q̂m,n and µ̂m onto a plane

orthogonal to the line connecting 0 and one of the points from Q̂m,n and µ̂m. It can be
easily extended to higher dimensions by additionally accounting for di�erent combinations
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of points lying on this line on di�erent sides form the (hyper)plane. The complexity of the
algorithm is O(m2n2 log(mn)).
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Algorithm 1 Routine for computing D(0|Q̂m,n, µ̂m,∆) in dimension 2

1: function pTcd.2d(y1, ...,ym,x1, ...,xm·n,∆) . Point Tukey curve depth of 0
2: nzy ← 0 . Number of µ-points in the origin
3: nzx ← 0 . Number of Q-points in the origin
4: nhy ← 0 . Number of µ-points in the halfplane
5: nhx ← 0 . Number of Q-points in the halfplane
6: for i = 1 : m do . Go through all points sampled on µ
7: if |yi| = 0 then
8: nzy ← nzy + 1 . Count µ-points in the origin
9: else

10: P (i− nzy)← (α = ATAN2(yi(2),yi(1)), c = 0) . Save to all points
11: if ATAN2(yi(2),yi(1)) < 0 then
12: nhy ← nhy + 1 . Count µ-points in the (lower) halfplane
13: end if
14: end if
15: end for
16: for i = 1 : (m · n) do . Go through all points sampled on Q
17: if |xi| = 0 then nzx ← nzx + 1 . Count Q-points in the origin
18: else
19: P (m− nzy + i− nzx)← (α = ATAN2(xi(2),xi(1)), c = 1) . Save to all
20: if ATAN2(xi(2),xi(1)) < 0 then
21: nhx ← nhx + 1 . Count Q-points in the (lower) halfplane
22: end if
23: end if
24: end for
25: k ← (m+m ∗ n)− (nzy + nzx)
26: Sort P w.r.t. αs in ascending order

27: D ← nhx/(m·n)
nhy/m

. Initialize the depth value

28: j ← nhy + nhx + 1
29: . Turn around counter-clockwise from the lower to the upper halfplane
30: for i = 1 : (nhy + nhx + 1) do
31: while j ≤ k and (((i = nhy + nhx + 1) and (P (j).α ≤ π)) or
32: (P (j).α− π ≤ P (i).α)) do
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Algorithm 1 Routine for computing D(0|Q̂m,n, µ̂m,∆) in dimension 2 (continued)

33: if P (i).c = 0 then nhy ← nhy + 1 . Add the point to the halfplane
34: elsenhx ← nhx + 1
35: end if
36: if (j < k) and (P (j + 1).α = P (j).α) then . If next point a tie ...
37: j ← j + 1; continue . ... go directly to it
38: end if
39: if (i = nhy + nhx + 1) or (P (j).α− π ≤ P (i).α) then . If last point ...
40: if nhx = 0 then
41: return 0 . ... stop if zero depth achieved ...
42: end if
43: if nhy/m > ∆ then . ... otherwise still update the depth

44: D ← min{D, n
h
x/(m·n)
nhy/m

}
45: end if
46: end if
47: j ← j + 1 . Add point to the halfplane
48: end while
49: if i = nhy + nhx + 1 then break . No more points to remove from the halfplane
50: end if
51: if P (i).c = 0 then nhy ← nhy − 1 . Remove the point from the halfplane
52: else nhx ← nhx − 1
53: end if
54: if (i < nhy + nhx) and (P (i+ 1).α = P (i).α) then . If next point a tie ...
55: continue . ... go directly to the next iteration
56: end if
57: if nhx = 0 then
58: return 0 . Stop if zero depth achieved
59: end if
60: if nhy/m > ∆ then . Update the depth

61: D ← min{D, n
h
x/(m·n)
nhy/m

}
62: end if
63: end for
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Algorithm 1 Routine for computing D(0|Q̂m,n, µ̂m,∆) in dimension 2 (continued)

64: j ← 0
65: . Turn around counter-clockwise from the upper to the lower halfplane
66: for i = (k − (nhy + nhx) + 1) : (k + 1) do
67: while j ≤ k < (nhy + nhx) and (((i = k + 1) and (P (j).α ≤ 0)) or
68: (P (j).α + π ≤ P (i).α)) do
69: if P (i).c = 0 then nhy ← nhy + 1 . Add the point to the halfplane
70: elsenhx ← nhx + 1
71: end if
72: if (j < k − (nhy + nhx)) and (P (j + 1).α = P (j).α) then . If a tie ...
73: j ← j + 1; continue . ... add it as well
74: end if
75: if (i = k + 1) or (P (j).α + π ≤ P (i).α) then . If last point ...
76: if nhx = 0 then
77: return 0 . ... stop if zero depth achieved ...
78: end if
79: if nhy/m > ∆ then . ... otherwise still update the depth

80: D ← min{D, n
h
x/(m·n)
nhy/m

}
81: end if
82: end if
83: j ← j + 1 . Add point to the halfplane
84: end while
85: if i = k + 1 then . If last point ...
86: break . ... no points to remove from the halfplane, so stop the outer loop
87: end if
88: if P (i).c = 0 then nhy ← nhy − 1 . Remove the point from the halfplane
89: elsenhx ← nhx − 1
90: end if
91: if (i < k) and (P (i+ 1).α = P (i).α) then . If next point a tie ...
92: continue . ... go directly to the next iteration
93: end if
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Algorithm 1 Routine for computing D(0|Q̂m,n, µ̂m,∆) in dimension 2 (continued)

94: if nhx = 0 then
95: return 0 . Stop if zero depth achieved
96: end if
97: if nhy/m > ∆ then . Update the depth

98: D ← min{D, n
h
x/(m·n)
nhy/m

}
99: end if
100: end for
101: return D
102: end function
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Algorithm 2 Routine for computing D(0|Q̂m,n, µ̂m,∆) in dimension 3

1: function pTcd.3d(y1, ...,ym,x1, ...,xm·n,∆) . Point Tukey curve depth of 0
2: D ← 1
3: for i = 1 : (m+m · n) do . For each point of the both samples
4: if i ≤ m then z ← yi
5: elsez ← xi−m
6: end if
7: Compute a basis A = [a1,a2] of the hyperplane with normal z
8: nay = 0 . Number of µ-points in the origin above halfplane
9: nby = 0 . Number of µ-points in the origin below plane

10: ny = 0 . Number of µ-points not in the origin in the plane
11: for j = 1 : m do . Go through all points sampled on µ
12: if A>yi = 0 then . If projected in the origin
13: if z>yi > 0 then nay ← nay + 1 . yi above the plane
14: else if z>yi < 0 then nby ← nby + 1 . yi below the plane

15: elsey′ny+1 ← A>yi; ny ← ny + 1 . Add yi's projection to the plane
16: end if
17: elsey′ny+1 ← A>yi; ny ← ny + 1 . Add yi's projection to the plane
18: end if
19: end for
20: nax = 0 . Number of Q-points in the origin above halfplane
21: nbx = 0 . Number of Q-points in the origin below halfplane
22: nx = 0 . Number of Q-points not in the origin in the plane
23: for j = 1 : (m · n) do . Go through all points sampled on Q
24: if A>xi = 0 then . If projected in the origin
25: if z>xi > 0 then nax ← nax + 1 . xi above the plane
26: else if z>xi < 0 then nbx ← nbx + 1 . xi below the plane
27: elsex′nx+1 ← A>xi; nx ← nx + 1 . Add xi's projection to the plane
28: end if
29: elsex′nx+1 ← A>xi; nx ← nx + 1 . Add xi's projection to the plane
30: end if
31: end for
32: D ← min{D, pTcd.2d(y1, ...,yny

,x1, ...,xnx , n
a
y, n

b
y, n

a
x, n

b
x,∆)} . Update depth

33: end for
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Algorithm 2 Routine for computing D(0|Q̂m,n, µ̂b) in dimension 3 (continued)

34: return D
35: end function

F.2 Procedure for Calculating the Distance Between Two Curves

When calculating the metric dC(C1, C2) in (B.1) one searches for two parametrizations that
minimize the maximum norm between the two corresponding parametrized curves. Nu-
merically this can be done by looking for a possible relocation of points from one curve
to another keeping their order, in such a way that the distance of the longest relocation
is minimal. Below we state the formal algorithm (Algorithm 3) and demonstrate it on an
example of calculation of distance between two digits. The complexity of the algorithm is
O(m1m2 log(m1m2)) with m1 and m2 being the number of points of each of the curves C1

and C2, respectively.
In Figure 7, two curves (digits '1') are given in a pixel form, or more precisely by

the coordinates of the corresponding pixel centers ordered from below to above in the
image. Their mutual pixel-wise distances can be represented as a distance matrix; see
Figure 8. Keeping in mind that curves are (piece-wise) connected curves (in R2, here),
optimal relocation of points will be approximated by a path in the matrix connecting the
most upper left and the most bottom right cells in Figure 8, such that the largest cell of
this path will have smallest possible value. Algorithm 3 starts by eliminating the cells with
the highest values and continues until any such path is blocked. The blockage of the path
is identi�ed when either at least one row or at least one column does not contain a single
cell. Note that unreachable cells (while the path can proceed only right and down) are
immediately deleted as well on each iteration of the algorithm.
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Figure 7: Two digits '1' used as an example to demonstrate calculation of the metric dC.

0.107 0.113 0.129 0.152 0.179 0.208 0.240 0.272 0.305 0.352 0.385 0.418

0.113 0.107 0.113 0.129 0.152 0.179 0.208 0.240 0.272 0.319 0.352 0.385

0.101 0.080 0.071 0.080 0.101 0.129 0.160 0.192 0.226 0.272 0.305 0.339

0.113 0.080 0.051 0.036 0.051 0.080 0.113 0.147 0.182 0.226 0.260 0.295

0.147 0.113 0.080 0.051 0.036 0.051 0.080 0.113 0.147 0.192 0.226 0.260

0.179 0.143 0.107 0.071 0.036 0.000 0.036 0.071 0.107 0.147 0.182 0.217

0.214 0.179 0.143 0.107 0.071 0.036 0.000 0.036 0.071 0.113 0.147 0.182

0.253 0.217 0.182 0.147 0.113 0.080 0.051 0.036 0.051 0.071 0.107 0.143

0.295 0.260 0.226 0.192 0.160 0.129 0.101 0.080 0.071 0.051 0.080 0.113

0.339 0.305 0.272 0.240 0.208 0.179 0.152 0.129 0.113 0.071 0.080 0.101

Figure 8: Pixel-wise distance matrix for the two digits '1' from Figure 7.
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Algorithm 3 Routine for computing dC(C1, C2)

1: function distance(x1, ...,xm1 ,y1, ...,ym2
) . Distance between sampled curves

2: for i = 1 : m1 do
3: for j = 1 : m2 do
4: cells

(
m2(i− 1) + j

)
= (i, j, dij = ‖xi − yj‖2) . Calculate cell-wise distances

5: end for
6: end for
7: Sort cells w.r.t. d··-s in descending order
8: M = (0, ..., 0)m1 × (0, ..., 0)m2 . m1 ×m2 matrix �lled with 0
9: rowMaxs = (m2, ...,m2)m1 . Vector of length m1 having all entries equal m2

10: rowMins = (0, ..., 0)m1 . Vector of length m1 having all entries equal 0
11: colMaxs = (m1, ...,m1)m2 . Vector of length m2 having all entries equal m1

12: colMins = (0, ..., 0)m2 . Vector of length m2 having all entries equal 0
13: k = 1
14: while k <= m1 ·m2 do
15: d = cells(k).dij
16: while cells(k).dij = d do
17: M(i, j) = 1
18: if rowMaxs(i) = j + 1 then . If blocking cells above, then ...
19: l← j
20: while l ≥ 1 and M(i, l) = 1 do
21: M(0 : i, l)← 1; l← l − 1 . ... mark cells above
22: end while
23: rowMaxs(i) = l + 1 . Update maximum row's extension
24: end if
25: if rowMins(i) = j − 1 then . If blocking cells below, then ...
26: l← j
27: while l ≤ m2 and M(i, l) = 1 do
28: M(i : m1, l)← 1; l← l + 1 . ... mark cells below
29: end while
30: rowMins(i) = l − 1 . Update minimum row's extension
31: end if
32: if colMaxs(j) = i+ 1 then . If blocking cells to the left, then ...
33: l← i
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Algorithm 3 Routine for computing dC(C1, C2) (continued)

34: while l ≥ 1 and M(l, j) = 1 do
35: M(l, 0 : j)← 1; l← l − 1 . ... mark cells to the left
36: end while
37: colMaxs(j) = l + 1 . Update maximum column's extension
38: end if
39: if colMins(j) = i− 1 then . If blocking cells to the left, then ...
40: l← i
41: while l ≤ m1 and M(l, j) = 1 do
42: M(l, j : m2)← 1; l← l + 1 . ... mark cells to the left
43: end while
44: colMins(j) = l − 1 . Update minimum column's extension
45: end if
46: k ← k + 1
47: end while
48: if min rowMaxs = 1 or max rowMins = m2 or min colMaxs = 1 or
49: max colMins = m1 then . If the route through the matrix is blocked
50: break
51: end if
52: end while
53: return d
54: end function
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F.3 Procedure for the Clustering of Curves

Algorithm 4 Clustering of curves (following Jörnsten 2004)

1: function DDclustCurve(C1, . . . , Cn) . Input unlabeled curves

2: Initialize {Ik}K1 randomly

3: m← 0; β ← −1; i← 0 . Initialize iterated variables

4: while m < M or j < maxIter do . Termination criterion

5: Calculate Ci({Ik}K1 ), i = 1, ..., n

6: Identify a set S = {i : Ci({Ik}K1 ) ≤ T} . Candidates for reallocation

7: f ← false

8: while S 6= ∅ do
9: For a random subset E ⊂ S, reallocate observations to get partitioning {Ĩk}K1

10: if C({Ĩk}K1 ) > C({Ik}K1 ) or B
(
P
(
C({Ik}K1 )− C({Ĩk}K1 ), β

)
∼ b = 1

)
then

11: Ik ← Ĩk, k = 1, . . . , K; f ← true . Accept reallocation

12: end if

13: S ← S \ E
14: end while

15: β ← 2β; j ← j + 1 . Increase simulated-annealing temperature

16: if f = true then

17: m← 0

18: else

19: m← m+ 1 . No changes on current iteration

20: end if

21: end while

22: return {Ik}K1 . Output the �nal clustering

23: end function

G Numerical experiments and Applications

In this section, some additional materials are proposed in order to illustrate the convergence

of the Monte Carlo approximation of our curve depth with the size n of the sample of curves
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and the size m of the Monte Carlo sample. We conduct the Monte Carlo study with three

models of two-dimensional curves.

G.1 Simple examples and their explicit depth expression

Segments on a line. We observe n non-overlapping segments on a line. Without loss of

generality, we denote by Xk the kth segment (k = 1, . . . , n), from left to right. For t ∈ [0, 1],

we have

for k ∈ {1, n}, D(βXk(t)|Qn, µXk) = 1/n,

for k /∈ {1, n}, D(βXk(t)|Qn, µXk) =
t+ (n− 1)tk

nt
1t≥tk +

1− t+ (n− 1)(1− tk)
n(1− t)

1t<tk ,

where tk = (k − 1)/(n− 1).

Star segments. Let Cθ be the segment in R2 of starting point (0, 0) and ending point

(cos(θ), sin(θ)), for θ ∈ [0, 2π). We de�ne X ∼ P as the random curve generated from the

following scheme :

θ ∼ U [0, 2π], X = Cθ.

For t ∈ [0, 1], we have

D(βCθ(t)|Q, µX ) =


1/2, if t = 0,

g(t), if t ∈ (0, 1),

0, if t = 1,

where g : (0, 1)→ (0, 1) is a function de�ned by

g(t) = min

{
1

2
, inf
α∈(0,π/2]

qt,α
1− t

, inf
α∈(−π/2,0)

1− qt,−α
t

, inf
α∈(−π,−pi/2)

1− qt,π+α

t
, inf
α∈(π/2,π)

qt,π−α
1− t

}
,

qtα =
π − sin−1(t sinα)

2π
− t sin(α)

2π
log

1 + cos
[
sin−1(t sin(α))

]
1− cos

[
sin−1(t sin(α))

] .
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The population version of the curve depth is de�ned as

D(Cθ|P ) =

∫ 1

0

g(r)dr.

Concentric circles. Let Cr be the circle of center 0 and radius r > 0 in R2. We de�ne

X ∼ P as the random curve generated from the following scheme :

R ∼ U [0, 1], X = CR.

The population version of the curve depth is de�ned as

D(Cr|P ) = 0 if r = 1;

D(Cr|P ) = min

{
1,

cos−1(r)

π
− r

π
log

(
1 + sin cos−1(r)

r

)
,

inf
α∈(0,π/2)

2π − 2 cos−1(r sinα)

π + 2α
+

2r sin(α)

π + 2α
log

1 + sin [cos−1(r sin(α))]

r sin(α)
,

inf
α∈(0,π/2)

2 cos−1(r sinα)

π − 2α
− 2r sin(α)

π − 2α
log

1 + sin [cos−1(r sin(α))]

r sin(α)

}
.

For n ≥ 1, we denote by Ri the radius of the circle Xi for all i = 1, . . . , n. The sample

depth of Cr with respect to {X1, . . . ,Xn} is

D(Cr|X1, . . . ,Xn) = 0 if r ≥ max
i=1...n

Ri; (G.1)

D(Cr|X1, . . . ,Xn) = min

{
1, inf

α∈(0,π/2)

2π

n(π − 2α)

n∑
i=1

cos−1(r sin(α))

π
1Ri>r sin(α),

inf
α∈(0,π/2]

2π

n(π + 2α)

n∑
i=1

(
1Ri≤r sin(α) +

cos−1(r sin(α))

π
1Ri>r sin(α)

)}
.

G.2 Monte Carlo Approximation of the Curve Depth

We illustrate the convergence of the Monte Carlo approximation of our curve depth accord-

ing to the size n of the sample and the Monte Carlo size m on three simulation schemes.
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Scheme 1 : Concentric circles. First, we consider the population of concentric circles

with radius lying in the interval (0, 1) described in Section G.1. We �x the sample size n of

{X1, . . . ,Xn}, and we compute the depth of circles Cr of radius r ∈ {0.1, 0.4, 0.5, 0.6, 0.9}.

In the companion package of the paper, we propose an algorithm to approximate the

depth D(C|X1, . . . ,Xn) using a Monte Carlo estimate (see line 11 of Algorithm 1):

1

m

m∑
k=1

D̂(Zk|Q̂m,n, µ̂m,Hn,m
∆ ),

where Q̂m,n is the empirical measure associated to an i.i.d. sample Xn,m =

(Xi,j)i=1,...,n;j=1,...,m from QPn , where µ̂m is the empirical measure associated to an i.i.d.

sample Ym = (Yj)j=1,...,m from µC and (Zj)j=1,...,m is an i.i.d. sample from µC. Theorem C.1

states that this Monte Carlo estimator is consistent as m goes to +∞. We emphasize that

the threshold ∆ is here useless due to the geometry of circles : the halfspaces Hx,u such

that µC(Hx,u) is small are those for which the ratio Q̂n,m/µ̂m(Hx,u) is larger than 1.

First, we �x the sample X1, . . . ,Xn and we compute 100 replications of the Monte

Carlo estimate of D(Cr|X1, . . . ,Xn); see Figure 9. The Monte Carlo estimates tend to

underestimate the sample depth. Moreover the variability of the Monte Carlo estimates

depends on the position of the circle C with respect to the sample of curves. Nevertheless

both the bias and the variance decrease as m increases.
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Figure 9: Boxplot of Monte Carlo estimates of the sample depths (Algorithm 1) for curves

Cr with respect to a sample of n = 25 concentric circles over 100 replications : (left)

r = 0.1, (middle) r = 0.4, (right) r = 0.9. The Monte Carlo sample sizes considered are

m ∈ {125, 500, 2000}. The horizontal dotted line is at the value D(Cr|X1, . . . ,Xn).

Table 2 illustrates the convergence in probability of the sample depth D(C|X1, . . . ,Xn)

and of its Monte Carlo approximation (see Algorithm 1) to D(C|P ) as n→∞ over 5, 000

replications. For every replicated sample, we compute the depth of Cr using Equation (G.1)

and its approximation using Algorithm 1. The sample size m in Algorithm 1 is set to 500.

As expected, both the empirical bias of the sample curve depth and its empirical standard

deviation converge to zero for every value of r. The sample curve depth is on average

smaller than the population depth. Moreover the standard deviation of D(Cr|X1, . . . ,Xn)

is a function of the radius.

Since the Monte Carlo approximation tends to underestimate the sample depth, its

average is expected to be smaller than the population depth : the bias of the Monte Carlo

approximation is then larger than that of the sample curve depth. We may expect a larger

variance for the Monte Carlo estimate. In this example the variability due to the Monte

Carlo estimate is quite weak, and tends to be equivalent to the variability of the sample
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curve depth for a large enough sample size.

r 0.1 0.4 0.5 0.6 0.9

D(Cr|P ) 0.627 0.830 0.758 0.629 0.169

n = 50 D(Cr|X1, . . . ,Xn) 0.627 0.808 0.744 0.617 0.161

(0.020) (0.031) (0.071) (0.083) (0.062)

MC-estimate 0.627 0.782 0.697 0.574 0.144

(0.020) (0.041) (0.071) (0.078) (0.056)

n = 200 D(Cr|X1, . . . ,Xn) 0.627 0.825 0.756 0.628 0.167

(0.010) (0.011) (0.037) (0.042) (0.031)

MC-estimate 0.627 0.799 0.705 0.581 0.149

(0.010) (0.022) (0.038) (0.040) (0.028)

n = 800 D(Cr|X1, . . . ,Xn) 0.627 0.830 0.758 0.629 0.169

(0.005) (0.005) (0.019) (0.021) (0.015)

MC-estimate 0.627 0.806 0.707 0.582 0.151

(0.005) (0.015) (0.021) (0.022) (0.014)

Table 2: Average of sample depths and their Monte Carlo approximations (with m = 500)

for the curves Cr and their corresponding standard deviations (in parentheses) with respect

to increasing sample sizes n over 5, 000 replications.

Scheme 2 : (see paragraph 4.2.1 in Claeskens et al. 2014). We consider an i.i.d.

sample X1, . . .Xn, from the process X proposed by (see paragraph 4.2.1 in Claeskens et al.

2014),

X = {(x,A1 sin(2πx) + A2 cos(2πx)) ; x ∈ [L,U ]} ,
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where A1, A2 ∼ U [0, 0.05], L ∼ U [0, 2π
3

], and U ∼ U [4π
3
, 2π], all independent. The mean

of the process is denoted as CX with the value a1 = a2 = 0.025 of A1 and A2. Using the

Monte Carlo approximation for a �xed values of m and ∆, we compute the depth of CX .

We repeat the experiment 1, 000 times for di�erent values of n, m and ∆.

First we �x the n = 50 curves of the sample, and we aim to measure the e�ect of m and

∆ on the computation of the depth of CX given the sample X1, . . . ,Xn. Table 3 indicates the

average depths and their standard deviations (in parentheses) for the curve CX for di�erent

choices of m and ∆. From the simulations, the threshold ∆ in the chosen range seems to

have very limited in�uence on the estimated depth value. Further simulations indicate that

averages of the depths converge (the consecutive di�erences decrease) and their standard

deviations decrease towards zero as m increases as expected from Theorem 3.1. Figure 10

(right) indicates that a subsample of deepest curves is located nearby the center of the

stochastic process.
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Figure 10: Illustration of the sample of n = 50 curves for Simulation 1. In the left panel,

the curves Xi are plotted in di�erent colors and the mean curve CX in black. In the right

panel, the curves with depth larger than 0.727 − 2 × 0.014 (with m = 500 and α = 1/8,

see Table 3) are plotted in orange, where 0.727 is the depth of the mean curve, the deepest

curve having depth 0.744 in red.

Lastly, we aim to measure the e�ect of the size n of the sample of curves on the com-

putation of the depth. Here, we sample m = 1, 000 points on each curve. For every Monte

Carlo replication, we generate a new i.i.d. sample X1, . . . ,Xn from the process X de�ned

above. Table 4 shows the average depths and their standard deviations (in parentheses)

of the curve CX . We can see that the depth of CX converges as expected in Theorem 3.1.

Note that, compared to Table 3, the standard deviations take into account additionally the

variation of the curves' sample, cf. 0.010 for α = 1/8, m = 1000 in Table 3 and 0.023 for

n = 50 in Table 4.
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Table 3: Average depths for the mean curve CX and their corresponding standard deviations

(in parentheses) with respect to a sample of size n = 50 for Simulation 1 over N = 1, 000

Monte Carlo repetitions with di�ering m and ∆ = 1/(10mα).

α\m 20 50 100 200 500 1000 2000 5000 10000

0 0.616 0.685 0.721 0.745 0.764 0.772 0.777 0.781 0.782

(0.055) (0.040) (0.030) (0.023) (0.015) (0.010) (0.007) (0.004) (0.003)

1/8 0.62 0.69 0.726 0.749 0.767 0.774 0.778 0.781 0.782

(0.056) (0.040) (0.029) (0.022) (0.014) (0.010) (0.006) (0.004) (0.003)

1/4 0.615 0.686 0.723 0.747 0.766 0.773 0.778 0.781 0.782

(0.054) (0.039) (0.031) (0.022) (0.014) (0.010) (0.007) (0.004) (0.003)

Table 4: Average depths for the mean curve and their corresponding standard deviations

(in parentheses) for Simulation 1 over N = 1, 000 Monte Carlo repetitions, m = 1, 000, and

α = 1/8 with growing n.

n 20 50 100 200 500 1000 2000 5000 10000

CX 0.730 0.751 0.759 0.762 0.764 0.765 0.766 0.765 0.766

(0.044) (0.023) (0.016) (0.012) (0.009) (0.009) (0.008) (0.008) (0.007)
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Simulation 2 : Cuevas et al. (2007). We consider an i.i.d. sample Y1, . . . ,Yn from

the process Y proposed by Cuevas et al. (2007):

Y =
{(
x, 30(1− x)1+Wx1.5−W + Ux

)
; x ∈ [L,U ]

}
where {Ut; t ∈ [0, 1]} is a zero mean stationary Gaussian process with covariance function

t 7→ 0.2e−
1
0.3
|t|, W ∼ U [0, 0.5], L ∼ U [0, 0.1], U ∼ U [0.9, 1], all independent. The mean

of the process is denoted as CY with the parametrization y(t) = 15(1 − t)t(
√

1− t −
√
t)/(log(1− t)− log(t)). Notice that since the curves Yi are noisy, they may not be in fact

recti�able. While in practice such curves are discretely observed, they can be approximated

by a�ne functions with a �nite length.

Similarly to the last scheme, we �x the n = 50 curves of the samples. In Figure 11

(right), we depict the �rst Monte Carlo replication with the deepest curve Y1 and a sub-

sample of curves with a depth closest to it in depth. Note that the depth of CY is around

0.6 while the depth of the deepest curve in the sample is about 0.8. Although the mean

curve CY is fairly central, the deepest curve Y1 is a better representative of the sample

because of the smoothness of CY . Table 5 indicates the average depths and their standard

deviations (in parentheses) for the curves CY and Y1 (notice that due to the variation of the

points on the curves, Y1 is not always the deepest curve for all Monte Carlo replications).

Even though the standard deviations are of the same order as in the previous simulation,

we remark that the depths of Y1 are twice more dispersed than those of CY .
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Table 5: Average depths for the mean curve CY and the deepest curve Y1 and their cor-

responding standard deviations (in parentheses) for Simulation 2 over N = 1, 000 Monte

Carlo repetitions, n = 50 curves and α = 1/8.

m 20 50 100 200 500 1000 2000 5000 10000

CY 0.497 0.54 0.557 0.568 0.576 0.58 0.583 0.584 0.585

(0.055) (0.039) (0.031) (0.021) (0.014) (0.010) (0.007) (0.004) (0.003)

Y1 0.633 0.694 0.726 0.746 0.761 0.768 0.772 0.774 0.774

(0.069) (0.061) (0.049) (0.038) (0.026) (0.018) (0.013) (0.008) (0.006)
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Figure 11: Illustration of the sample of n = 50 curves for Simulation 2. In the left panel,

the curves Yi are plotted in di�erent colors and the mean curve CY in black. In the right

panel, the curves with depth larger than 0.752 − 2 × 0.026 (with m = 500 and α = 1/8,

see Table 5) are plotted in orange, where the deepest curve having depth 0.752 is plotted

in red, the depth of the mean curve is 0.571.
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H Pre-processing of DTI Scans

DTI scans were acquired from all 34 twin pairs on a Philips 3T Achieva Quasar Dual MRI

scanner (Philips Medical System, Best, The Netherlands), using a single-shot echo-planar

imaging (EPI) sequence (TR = 7115 ms, TE = 70 ms). For each di�usion scan, 32 gradient

directions (b = 1000 s/mm2) and a non-di�usion-weighted acquisition (b = 0 s/mm2) were

acquired over a 96mm2 image matrix (FOV 240 mm × 240 mm2); with a slice thickness of

2.5 mm and no gap, yielding 2.5 mm isotropic voxels.

We used the MRtrix software (Tournier et al. 2012) to extract �ber tracts from the

DTI scans and we chose corticospinal tract (both left and right) here because corticospinal

tracts are long and could be identi�ed and extracted relatively accurately and reliably in

comparison to other shorter and more ambiguous �ber tracts of the human brain. We used

the seed region of interest on an axial slice on which the cerebral peduncle was visible.

The resulting data sets were two bundles of around 1, 000 �bers each per subject. Each

�ber was described by a set of around 400 successive 3D locations. The size of a single �le

containing only one bundle of �bers was around 12MB, so that altogether the 34 × 2 × 2

�les weigh around 1.6GB.

References

Aizenman, M. & Burchard, A. (1999), `Hölder regularity and dimension bounds for random

curves', Duke Mathematical Journal 99(3), 419�453.

Billingsley, P. (2013), Convergence of Probability Measures (2nd Edition), Wiley Series in

Probability and Statistics, John Wiley & Sons, New York.

Broda, S. A. & Kan, R. (2016), `On distributions of ratios', Biometrika 103(1), 205�218.

46



Burago, D., Burago, Y. & Ivanov, S. (2001), A Course in Metric Geometry, Vol. 33 of

Graduate Studies in Mathematics, American Mathematical Society, Providence, RI.

Claeskens, G., Hubert, M., Slaets, L. & Vakili, K. (2014), `Multivariate functional halfspace

depth', Journal of the American Statistical Association 109(505), 411�423.

Cuevas, A., Febrero, M. & Fraiman, R. (2007), `Robust estimation and classi�cation for

functional data via projection-based depth notions', Computational Statistics 22(3), 481�

496.

Dyckerho�, R. & Mozharovskyi, P. (2016), `Exact computation of the halfspace depth',

Computational Statistics & Data Analysis 98, 19�30.

Embrechts, P. & Hofert, M. (2013), `A note on generalized inverses', Mathematical Methods

of Operations Research 77(3), 423�432.

Hubert, M. & Vakili., K. (2013), MFHD: Multivariate Functional Halfspace Depth. R

package version 0.0.1.

Jörnsten, R. (2004), `Clustering and classi�cation based on the L1 data depth', Journal of

Multivariate Analysis 90(1), 67�89.

Kemppainen, A. & Smirnov, S. (2017), `Random curves, scaling limits and Loewner evolu-

tions', The Annals of Probability 45(2), 698�779.

López-Pintado, S., Sun, Y., Lin, J. K. & Genton, M. G. (2014), `Simplicial band depth for

multivariate functional data', Advances in Data Analysis and Classi�cation 8(3), 321�

338.

47



Ramsay, J. O., Wickham, H., Graves, S. & Hooker, G. (2017), fda: Functional Data Anal-

ysis. R package version 2.4.7.

Rousseeuw, P. J. & Ruts, I. (1996), `Algorithm AS 307: Bivariate location depth', Journal

of the Royal Statistical Society. Series C (Applied Statistics) 45(4), 516�526.

Shorack, G. R. & Wellner, J. A. (2009), Empirical Processes with Applications to Statistics,

Vol. 59 of Classics in Applied Mathematics, Society for Industrial and Applied Mathe-

matics (SIAM), Philadelphia, PA.

Tournier, J., Calamante, F. & Connelly, A. (2012), `MRtrix: di�usion tractography in cross-

ing �ber regions', International Journal of Imaging Systems and Technology 22(1), 53�66.

Väisälä, J. (2006), Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in

Mathematics, Springer, Berlin Heidelberg.

48


	Impact of Parametrization on Functional Depth
	Simulated S Letters
	Cursive Handwriting Sample
	Historic Hurricanes Tracks

	The Space of Unparametrized Curves
	Equivalence Relation for Parametrized Curves
	The Metric Space of Unparmetrized Curves
	Mesurability of the Line Integral

	Definition of the Depth Functions
	Monte Carlo Approximation of the Curve Depth
	Boundness of Data Depth
	Mesurability

	Proof of Theorem C.1
	Properties of the Curve Depth
	Algorithms
	Procedures for Calculating Point Curve Depth
	Procedure for Calculating the Distance Between Two Curves
	Procedure for the Clustering of Curves

	Numerical experiments and Applications
	Simple examples and their explicit depth expression
	Monte Carlo Approximation of the Curve Depth

	Pre-processing of DTI Scans

