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a b s t r a c t

We develop a new L1 law of large numbers where the ith summand is given by a function
h(·) evaluated at Xi − θn, and where θn ⊜ θn(X1, X2, . . . , Xn) is an estimator converging in
probability to some parameter θ ∈ R. Under broad technical conditions, the convergence
is shown to hold uniformly in the set of estimators interpolating between θ and another
consistent estimator θ ⋆n . Ourmain contribution is the treatment of the casewhere |h| blows
up at 0, which is not covered by standard uniform laws of large numbers.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let X1, X2, X3, . . . be a sequence of i.i.d. random variables and consider the statistic Tn(θ ⋆n ) where the random variable

Tn(θ ) ⊜ Tn(X1, X2, . . . , Xn; θ ) : � → R

depends on an unknown parameter θ ∈ R for which we have a consistent sequence of estimators θ ⋆n ⊜ θ ⋆n (X1, X2, . . . , Xn).
Assume further that the following first-order Taylor expansion is valid :

Tn(θ ⋆n ) = Tn(θ ) + (θ ⋆n − θ )
∫ 1

0
T ′

n(θ + v(θ ⋆n − θ ))dv, (1.1)

where

T ′

n(t) =
1
n

n∑
i=1

1{Xi ̸=t}h(Xi − t), (1.2)

and where h : R \ {0} → R is a measurable function (possibly nonlinear). In statistics, one is often interested in knowing
if estimating a parameter (θ here) has an impact on the asymptotic law of a given statistic. See for example the interesting
results of de Wet and Randles (1987) in the context of limiting χ2 U and V statistics. Eqs. (1.1) and (1.2) provide a natural
setting for studying the question of whether or not Tn(θ ⋆n ) − Tn(θ ) → 0 whenever θ ⋆n → θ , as n → ∞.
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Given some regularity conditions on the behavior of h(·) around the origin and in its tails, proving the convergence to
E[h(X1 − θ )], in probability say, of the integral on the right-hand side of (1.1) is often possible under weak assumptions by
adapting standard uniform laws of large numbers. For instance, one can use (Ferguson, 1996, Theorem 16(a)), which was
introduced by LeCam (1953) and Rubin (1956). One can also use entropy conditions: see, e.g., van de Geer (2000, Chapter 3)
and van der Vaart and Wellner (1996, Section 2.4). Some of these theorems go back to or evolved from the works of Blum
(1955), Dehardt (1971), Vapnik and Červonenkis (1971, 1981), Giné and Zinn (1984), Pollard (1984) and Talagrand (1987).
For extensive notes on the origins of the entropy conditions, we refer the interested reader to van de Geer (2000, Section
3.8) and Pollard (1984, pp. 36–38).

However, when |h| blows up at 0, namely when lim supx→0|h(x)| = ∞, these results are not applicable because the
envelope function hsup(x) ⊜ supt:|t−θ |<δ1{x̸=t}|h(x − t)| is infinite in any small enough neighborhood of θ and, in particular,
hsup(X1) is not integrable for the outer measure.

We faced such a problemwhen analyzing the convergence of score functions in the context of testing the goodness-of-fit
of the Laplace distribution with unknown location and scale parameters (µ, σ ). If the family of alternatives is taken to be the
asymmetric power distribution (Komunjer, 2007) or the skewness exponential power distribution (Fernández et al., 1995),
a score function evaluated at the maximum likelihood estimator (µ⋆n, σ

⋆
n ) can be used, in the spirit of Desgagné et al. (2013)

and Desgagné and Lafaye de Micheaux (2018). If the score function is expanded around (µ, σ ), then a multivariate version
of (1.1) is obtained. One of the integrals in the expansion will have an integrand (1.2) where h(·) contains a logarithmic term.
Standard uniform laws of large numbers cannot be applied to show the convergence of such integrals because the envelope
function of the class of functions {log( · − t)}t:|t−µ|<δ is infinite in any small enough neighborhood ofµ. In Section 3, we show
how the main result of this paper (Theorem 2.6) can be used to prove a crucial part of the problem described above.

More generally, the main result is that, under broad conditions, one obtains

lim
n→∞

sup
v∈[0,1]

E

⏐⏐⏐⏐⏐1n
n∑

i=1

1{Xi ̸=θ+v(θ⋆n−θ )}h(Xi − θ − v(θ ⋆n − θ )) − E
[
h(X1 − θ )

]⏐⏐⏐⏐⏐ = 0. (1.3)

From (1.3) and the setting above, one can conclude that Tn(θ ⋆n ) − Tn(θ ) → 0 in probability as n → ∞.

2. A new uniform L1 law of large numbers

Throughout the paper, the labels (X .k), (H.k) and (E.k) denote, respectively, assumptions that we will make on X1, h(·)
and θn. Fig. 2.1 at the end of the current section illustrates the logical structure of these assumptions and their implications.
We start by proving a non-uniform version of Theorem 2.6.

Proposition 2.1. Let θ ∈ R and let X1, X2, X3, . . . be a sequence of i.i.d. random variables such that

(X.1) P(X1 = θ ) = 0.

Let h : R \ {0} → R be a measurable function that satisfies

(H.1) P(X1 − θ ∈ Dh) = 0, where Dh is the set of discontinuity points of h(·),
(H.2) E |h(X1 − θ )| < ∞.

Let θn ⊜ θn(X1, X2, . . . , Xn) be an estimator that satisfies

(E.1) θn
P

−→ θ ,
(E.2) For all n ∈ N and all i ∈ {1, 2, . . . , n}, (Xi − θn, Xi − θ ) law

= (X1 − θn, X1 − θ ),
(E.3) There exists N0 ∈ N such that

{
1{X1 ̸=θn}h(X1 − θn)

}
n≥N0

is uniformly integrable.

Then,

E

⏐⏐⏐⏐⏐1n
n∑

i=1

1{Xi ̸=θn}h(Xi − θn) − E
[
h(X1 − θ )

]⏐⏐⏐⏐⏐ −→ 0. (2.1)

Remark 2.2. Condition (E.2) is satisfied for any estimator that is symmetric with respect to its n variables. For example, this
is the case for any maximum likelihood estimator that is based on i.i.d. observations.

Proof of Proposition 2.1. From (X.1) and (E.1), we know that 1{X1=θn}

P
−→ 0. Indeed, for any ε > 0,

• take δ ⊜ δε > 0 such that P(|X1 − θ | < δ) < ε/2, and
• take N ⊜ Nδ,ε such that for all n ≥ N , we have P(|θn − θ | ≥ δ) < ε/2.

We get, for all n ≥ N ,

P(X1 = θn) ≤ P(X1 = θn, |θn − θ | < δ) + P(|θn − θ | ≥ δ) < ε.
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In particular, this shows 1{X1=θn}|h(X1 − θ )|
P

−→ 0. Since this sequence is uniformly integrable by (H.2), we also have the L1
convergence. By using Jensen’s inequality and (E.2), we deduce

E

⏐⏐⏐⏐⏐1n
n∑

i=1

1{Xi=θn}h(Xi − θ )

⏐⏐⏐⏐⏐ ≤ E
[
1{X1=θn}|h(X1 − θ )|

]
−→ 0. (2.2)

By (H.2) and the law of large numbers in L1 (see, e.g., Theorem 1.2.6 in Stroock (2011)), we also know that

E

⏐⏐⏐⏐⏐1n
n∑

i=1

h(Xi − θ ) − E
[
h(X1 − θ )

]⏐⏐⏐⏐⏐ −→ 0. (2.3)

By combining (2.2) and (2.3), we have shown

E

⏐⏐⏐⏐⏐1n
n∑

i=1

1{Xi ̸=θn}h(Xi − θ ) − E
[
h(X1 − θ )

]⏐⏐⏐⏐⏐ −→ 0. (2.4)

To conclude the proof, we show that

Yn ⊜
1
n

n∑
i=1

1{Xi ̸=θn}h(Xi − θn) −
1
n

n∑
i=1

1{Xi ̸=θn}h(Xi − θ )
L1

−→ 0.

From Jensen’s inequality and (E.2), we have

E|Yn| ≤ E
[
1{X1 ̸=θn}

⏐⏐h(X1 − θn) − h(X1 − θ )
⏐⏐]. (2.5)

The sequence {1{X1 ̸=θn}|h(X1 − θn)− h(X1 − θ )|}n∈N converges to 0 in probability by (H.1), (E.1) and the continuous mapping
theorem (van der Vaart, 1998, Theorem2.3). Furthermore, the sequence is uniformly integrable for n ≥ N0 by (H.2), (E.3) and
the fact that the sums of random variables coming (respectively) from two uniformly integrable sequences form a uniformly
integrable sequence. Hence, Yn → 0 in L1. □

Since the distribution of X1−θn is rarely known, condition (E.3) in Proposition 2.1 is impractical to verify. The next lemma
fix this problem.

Lemma 2.3. Let θ ∈ R. Let X1, X2, X3, . . . be a sequence of i.i.d. random variables. Let h : R \ {0} → R be a measurable function.
Let θn ⊜ θn(X1, X2, . . . , Xn) be an estimator that satisfies
(E.4) If lim supx→0|h(x)| < ∞, we impose no condition. Otherwise, assume that there exist N1 ∈ N, α0 > 0 and a constant

Cα0 > 0 such that

sup
n≥N1

sup
A∈B>0([−α0,α0])

P(X1 − θn ∈ A)
Lebesgue(A)

≤ Cα0 < ∞,

where B>0([−α0, α0]) denotes the Borel sets of positive Lebesgue measure on the interval [−α0, α0].
(E.5) There exist N2 ≥ 2, C, γ , p > 0 and β0 > γ such that, for P(X1 − θ ∈ · )-almost-all x ∈ R, we have

• For all u ≥ (x + γ ) ∨ β0 and for all n ≥ N2,

P(θn − θ ≤ x − u | X1 − θ = x) ≤ Ce−|x−u|p .

• For all u ≤ (x − γ ) ∧ (−β0) and for all n ≥ N2,

P(θn − θ ≥ x − u | X1 − θ = x) ≤ Ce−|x−u|p .

(E.6) There exists N3 ∈ N such that for all n ≥ N3, there exists An ∈ B(R) such that P(X1 − θ ∈ An) = 1 and, for all x ∈ An,
the conditional measure P(x − (θn − θ ) ∈ · | X1 − θ = x), when restricted to {u ∈ R : |u|≥ β0, |x − u|> γ }, is absolutely
continuous with respect to the Lebesgue measure.
Assume that h(·) satisfies

(H.3) For all x0 ∈ R \ {0}, lim supx→x0 |h(x)| < ∞,
(H.4)

∫
|u|≤α0

|h(u)|du < ∞,
(H.5) 1. h(·) is absolutely continuous on bounded sub-intervals of (−∞,−β0) ∪ (β0,+∞);

2. There exists an integrable random variable M such that sup|t|≤γ |h(X1 − θ − t)| 1{|X1−θ−t|≥β0} ≤ M P-almost-surely;
3. lim|β|→∞|h(β)|e−|x−β|

p
= 0 for P(X1 − θ ∈ · )-almost-all x ∈ R, and {|h(β)|e−|X1−θ−β|

p
}|β|≥β0 is uniformly integrable;

4.
∫

|u|≥β0
E
[
|h′(u)| e−|X1−θ−u|p

]
du < ∞;

5. For almost-all |u|≥ β0, we have −sign(u)sign(h(u))h′(u) ≤ 0.
Then, (E.3) from Proposition 2.1 is satisfied, namely

{
1{X1 ̸=θn}h(X1 − θn)

}
n≥N0

is uniformly integrable, where N0 ⊜ N1 ∨ N2 ∨ N3.
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Remark 2.4. If X1 − θn has a density for n large enough and, in a neighborhood of 0, those densities are uniformly bounded
from above by the same positive constant, then (E.4) is satisfied. In general, when θn is even only slightly non-trivial, we
rarely know the distribution of X1−θn. However, if θn concentratesmore andmore around θ as n → ∞ (likemostmaximum
likelihood estimators for instance), then we expect the weight of the distribution of X1 around θ to dominate the weight of
the distribution of X1−θn around 0. In that case, we can expect (E.4) to be satisfiedwhen X1 has a regular enough distribution
around θ . Condition (E.5) is a way to control the tail behavior of θn’s distribution for the above heuristic to work. Since the
lemma is intended to be used when |h| blows up at 0, condition (E.4) is there to control the distribution of X1 − θn around 0.

Proof. We want to prove that for N0 ⊜ N1 ∨ N2 ∨ N3, we have

lim
K→∞

sup
n≥N0

E
[⏐⏐h(X1 − θn)

⏐⏐ 1{X1 ̸=θn}∩{|h(X1−θn)|≥K }

]
= 0.

By (H.3), h(·) is uniformly bounded on compact subsets of R \ {0}. It is therefore sufficient to show both

lim
α→0

sup
n≥N0

E
[⏐⏐h(X1 − θn)

⏐⏐ 1{X1 ̸=θn}∩{|X1−θn|≤α}

]
= 0, (2.6)

lim
β→∞

sup
n≥N0

E
[⏐⏐h(X1 − θn)

⏐⏐ 1{|X1−θn|≥β}

]
= 0. (2.7)

When lim supx→0|h(x)| < ∞, then (2.6) is satisfied because h(·) is uniformly bounded on compact subsets of R by (H.3).
When lim supx→0|h(x)| = ∞, then (2.6) follows directly from (E.4), (H.4) and the dominated convergence theorem (DCT).

Assume for the remaining of the proof that

n ≥ N0 and β > β0 > γ ,

where γ and β0 are fixed in (E.5). Separate the expectation in (2.7) in two parts :

(a) + (b) ⊜ E
[⏐⏐h(X1 − θn)

⏐⏐ 1{|X1−θn|≥β}∩{|θn−θ |≤γ }

]
+ E

[⏐⏐h(X1 − θn)
⏐⏐ 1{|X1−θn|≥β}∩{|θn−θ |>γ }

]
.

By (H.5).2 and the DCT, we have (a) → 0 as β → ∞, uniformly in n. For the term (b), condition on the value of X1 − θ ,
integrate by parts (see (E.6) and (H.5).1) and then use (E.5) and (H.5).5. We obtain

(b) =

∫
{(u,x) : |u|≥β, |x−u|>γ }

|h(u)|P((X1 − θn, X1 − θ ) ∈ d(u, x))

=

∫
∞

−∞

(∫
{u : |u|≥β, |x−u|>γ }

|h(u)|P(x − (θn − θ ) ∈ du | X1 − θ = x)
)
P(X1 − θ ∈ dx)

=

∫
−(β+γ )

−∞

⎧⎪⎪⎨⎪⎪⎩
[

− |h(u)|P(θn − θ ≤ x − u | X1 − θ = x)
]⏐⏐⏐−β

u=x+γ

+

∫
−β

x+γ
sign(h(u)) h′(u)P(θn − θ ≤ x − u | X1 − θ = x) du

⎫⎪⎪⎬⎪⎪⎭P(X1 − θ ∈ dx)

+

∫
∞

−∞

lim
t→∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
− |h(u)|P(θn − θ ≤ x − u | X1 − θ = x)

]⏐⏐⏐t
u=(x+γ )∨β

+

∫ t

(x+γ )∨β
sign(h(u)) h′(u)P(θn − θ ≤ x − u | X1 − θ = x) du

+

[
|h(u)|P(θn − θ ≥ x − u | X1 − θ = x)

]⏐⏐⏐(x−γ )∧(−β)

u=−t

−

∫ (x−γ )∧(−β)

−t
sign(h(u)) h′(u)P(θn − θ ≥ x − u | X1 − θ = x) du

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
P(X1 − θ ∈ dx)

+

∫
∞

β+γ

⎧⎪⎨⎪⎩
[
|h(u)|P(θn − θ ≥ x − u | X1 − θ = x)

]⏐⏐⏐x−γ
u=β

−

∫ x−γ

β

sign(h(u)) h′(u)P(θn − θ ≥ x − u | X1 − θ = x) du

⎫⎪⎬⎪⎭P(X1 − θ ∈ dx)

≤

∫
−(β+γ )

−∞

{
|h(x + γ )| + 0

}
P(X1 − θ ∈ dx)

+ C
∫

∞

−∞

⎧⎪⎪⎨⎪⎪⎩
|h((x + γ ) ∨ β)| e−|x−((x+γ )∨β)|p

+

∫
∞

β

|h′(u)| e−|x−u|pdu

|h((x − γ ) ∧ (−β))| e−|x−((x−γ )∧(−β))|p
+

∫
−β

−∞

|h′(u)| e−|x−u|pdu

⎫⎪⎪⎬⎪⎪⎭P(X1 − θ ∈ dx)

+

∫
∞

β+γ

{
|h(x − γ )| + 0

}
P(X1 − θ ∈ dx)
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≲ E
[
|h(X1 − θ + γ )|1{|X1−θ+γ |≥β}

]
+ E

[
|h(β)| e−|X1−θ−β|

p
]

+

∫
∞

β

E
[
|h′(u)| e−|X1−θ−u|p

]
du

+ E
[
|h(X1 − θ − γ )|1{|X1−θ−γ |≥β}

]
+ E

[
|h(−β)| e−|X1−θ+β|

p
]

+

∫
−β

−∞

E
[
|h′(u)| e−|X1−θ−u|p

]
du,

where y ≲ z means y ≤ (1 ∨ C)z. As β → ∞, the first and fourth terms go to 0 by (H.5).2 and the DCT, the second and fifth
terms go to 0 by (H.5).3 and the DCT, the third and sixth terms go to 0 by (H.5).4 and the DCT. None of the terms depended
on n, so the convergence is uniform in n ≥ N0. □

If {θ ⋆n }n∈N is a sequence ofM-estimators, then thenext lemmaproposes an easy-to-verify condition on the tail probabilities
of θ ⋆n for (E.5) in Lemma 2.3 to hold uniformly in the set of estimators

En,θ ⊜ {θ + v(θ ⋆n − θ )}v∈[0,1], for some θ ∈ R. (2.8)

Lemma 2.5. Let θ ∈ R and let X1, X2, X3, . . . be a sequence of i.i.d. random variables. Let {θ ⋆n }n∈N be a sequence of estimators
satisfying

n∑
i=1

ψ(Xi − θ ⋆n ) = 0, (2.9)

where ψ : R → R is measurable, non-decreasing and ψ(0) = 0. Assume that there exist N ≥ 1 and C, γ , p > 0 such that

sup
n≥N

P
(
|θ ⋆n − θ | ≥ |t|

)
≤ Ce−|t|p , for all |t| ≥ γ . (2.10)

Then, condition (E.5) from Lemma 2.3 is satisfied uniformly on En,θ , namely :

(E.5.unif) There exist N2 ≥ 2, C, γ , p > 0 and β0 > γ such that, for P(X1 − θ ∈ · )-almost-all x ∈ R, we have

• For all u ≥ (x + γ ) ∨ β0 and for all n ≥ N2,

sup
θn∈En,θ

P(θn − θ ≤ x − u | X1 − θ = x) ≤ Ce−|x−u|p .

• For all u ≤ (x − γ ) ∧ (−β0) and for all n ≥ N2,

sup
θn∈En,θ

P(θn − θ ≥ x − u | X1 − θ = x) ≤ Ce−|x−u|p .

Proof. For all n ≥ 2, let θ ⋆2:n ⊜ θ ⋆2:n(X2, X3, . . . , Xn) be an estimator that satisfies

n∑
i=2

ψ(Xi − θ ⋆2:n) = 0 and θ ⋆2:n
law
= θ ⋆n−1. (2.11)

Since ψ is non-decreasing and ψ(0) = 0,

• θ ⋆n ≤ X1 H⇒ ψ(X1 − θ ⋆n ) ≥ 0
(2.9)
H⇒

n∑
i=2

ψ(Xi − θ ⋆n ) ≤ 0
(2.11)
H⇒ θ ⋆2:n ≤ θ ⋆n ≤ X1, (2.12)

• θ ⋆n ≥ X1 H⇒ ψ(X1 − θ ⋆n ) ≤ 0
(2.9)
H⇒

n∑
i=2

ψ(Xi − θ ⋆n ) ≥ 0
(2.11)
H⇒ θ ⋆2:n ≥ θ ⋆n ≥ X1. (2.13)

Let θn ∈ En,θ for all n ∈ N. In order to prove (2.14) (respectively (2.15)), we use the following facts in succession :
θn − θ ≤ 0 H⇒ θ ⋆n − θ ≤ θn − θ (respectively θn − θ ≥ 0 H⇒ θ ⋆n − θ ≥ θn − θ ), (2.12) (respectively (2.13)), the
independence between X1 and θ ⋆2:n, (2.11), and (2.10).

• For all u ≥ (x + γ ) ∨ β0 > 0 (note that x − u ≤ −γ < 0) and for all n ≥ N + 1, we have

P(θn − θ ≤ x − u | X1 − θ = x) ≤ P(θ ⋆n − θ ≤ x − u | X1 − θ = x)
≤ P(θ ⋆2:n − θ ≤ x − u)
= P(θ ⋆n−1 − θ ≤ x − u)

≤ Ce−|x−u|p . (2.14)
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• For all u ≤ (x − γ ) ∧ (−β0) < 0 (note that x − u ≥ γ > 0) and for all n ≥ N + 1, we have

P(θn − θ ≥ x − u | X1 − θ = x) ≤ P(θ ⋆n − θ ≥ x − u | X1 − θ = x)
≤ P(θ ⋆2:n − θ ≥ x − u)
= P(θ ⋆n−1 − θ ≥ x − u)

≤ Ce−|x−u|p . (2.15)

Simply choose N2 ⊜ N + 1 in (E.5.unif). This ends the proof. □

We can now state the main result. The structure of the assumptions is illustrated in Fig. 2.1.

Theorem 2.6. Let θ ∈ R and let X1, X2, X3, . . . be a sequence of i.i.d. random variables satisfying
(X.1) P(X1 = θ ) = 0.

Let {θ ⋆n }n∈N be a sequence of estimators satisfying (E.5.unif) directly or the conditions in Lemma 2.5. Denote

En,θ ⊜ {θ + v(θ ⋆n − θ )}v∈[0,1],

and assume that

(E.1.unif) θ ⋆n
P

−→ θ ;
(E.2.unif) For all n ∈ N, all i ∈ {1, 2, . . . , n} and all θn ∈ En,θ , (Xi − θn, Xi − θ ) law

= (X1 − θn, X1 − θ );
(E.4.unif) If lim supx→0|h(x)| < ∞, we impose no condition. Otherwise, assume that there exist N1 ∈ N, α0 > 0 and a constant

Cα0 > 0 such that

sup
n≥N1

sup
θn∈En,θ

sup
A∈B>0([−α0,α0])

P(X1 − θn ∈ A)
Lebesgue(A)

≤ Cα0 < ∞.

(E.6.unif) There exists N3 ∈ N such that for all n ≥ N3 and for all θn ∈ En,θ , there exists An,θn ∈ B(R) such that
P(X1 − θ ∈ An,θn ) = 1 and, for all x ∈ An,θn , the conditional measure P(x − (θn − θ ) ∈ · | X1 − θ = x), when restricted to
{u ∈ R : |u|≥ β0, |x − u|> γ }, is absolutely continuous with respect to the Lebesgue measure.
Finally, assume

(H.1), (H.2) from Proposition 2.1,
(H.3), (H.4), (H.5) from Lemma 2.3.

Then, the conclusion in Proposition 2.1 holds uniformly for θn ∈ En,θ , namely

lim
n→∞

sup
θn∈En,θ

E

⏐⏐⏐⏐⏐1n
n∑

i=1

1{Xi ̸=θn}h(Xi − θn) − E
[
h(X1 − θ )

]⏐⏐⏐⏐⏐ = 0. (2.16)

Proof. Weknow that (E.5.unif) holds, either directly or via the conditions in Lemma 2.5. By combining (E.4.unif) to (E.6.unif)
and (H.3) to (H.5), a proof along the lines of Lemma 2.3 shows
(E.3.unif)

lim
K→∞

sup
n≥N0

sup
θn∈En,θ

E
[⏐⏐h(X1 − θn)

⏐⏐ 1{X1 ̸=θn}∩{|h(X1−θn)|≥K }

]
= 0.

By (E.3.unif), (H.2) and the identity |Un + Vn|1{|Un+Vn|≥2K } ≤ 2|Un|1{|Un|≥K } + 2|Vn|1{|Vn|≥K }, we deduce

lim
K→∞

sup
n≥N0

sup
θn∈En,θ

E
[⏐⏐h(X1 − θn) − h(X1 − θ )

⏐⏐1{X1 ̸=θn}∩{|h(X1−θn)−h(X1−θ )|≥K }

]
= 0. (2.17)

To conclude, we rerun the proof of Proposition 2.1 with our new assumptions. By (X.1), (H.2), (E.1.unif) and (E.2.unif),
the convergence in (2.2) is valid for supθn∈En,θ of the expectation. This implies that the convergence in (2.4) is also valid for
supθn∈En,θ of the expectation. Furthermore, by (H.1), (E.1.unif) and the continuous mapping theorem, we have, for all ε > 0,

lim
n→∞

sup
θn∈En,θ

P
(
1{X1 ̸=θn}

⏐⏐h(X1 − θn) − h(X1 − θ )
⏐⏐ > ε

)
= 0. (2.18)

By combining (2.17) and (2.18), the supθn∈En,θ of the expectation on the right-hand side of (2.5) converges to 0. In summary,
we have shown that supθn∈En,θ of the expectations in (2.2), (2.4) and (2.5) all converge (respectively) to 0. Hence, the
conclusion of Proposition 2.1 holds for supθn∈En,θ of the expectation, which is exactly the claim made in (2.16). □

Remark 2.7. By following the proof of Theorem 2.6, we see that (X.1), (H.1), (H.2), (E.1.unif), (E.2.unif) and (E.3.unif) alone
imply the conclusion in (2.16). The other assumptions in the statement of the theorem are simply there to give a more
practical way to verify (E.3.unif).
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Fig. 2.1. Logical structure of the assumptions and their implications.

3. Example

We now give an application of the previous theorem. The context of the problem is described at the end of Section 1.

Lemma 3.1. Let X1, X2, X3, . . . be a sequence of i.i.d. random variables with density function

fX1 (x) ⊜
1
4σ

e−
1
2

⏐⏐⏐ x−µσ ⏐⏐⏐
, x ∈ R,

where µ ∈ R and σ > 0. Define h : R \ {0} → R by

h(y) ⊜ sign(y) log|y|.

Let

µ⋆n ⊜ median(X1, X2, . . . , Xn) ⊜

⎧⎨⎩X((n+1)/2), if n is odd,
1
2
(X(n/2) + X(n/2+1)), if n is even.

(3.1)

For v ∈ [0, 1], define µ⋆n,v ⊜ µ+ v(µ⋆n − µ), and let En,µ ⊜ {µ⋆n,v}v∈[0,1]. Then,

lim
n→∞

sup
v∈[0,1]

E

⏐⏐⏐⏐⏐1n
n∑

i=1

1{Xi ̸=µ⋆n,v}h(Xi − µ⋆n,v) − E [h(X1 − µ)]

⏐⏐⏐⏐⏐ = 0. (3.2)

Proof. Without loss of generality, assume that µ = 0. Below, we verify the conditions of Theorem 2.6.

(X.1) P(X1 = 0) = 0. This is obvious.
(Conditions in Lemma 2.5) We show that the conditions are satisfied withψ(y) ⊜ sign(y) andψ(0) ⊜ 0. Indeed, by (3.1),

we know that
∑n

i=1ψ(Xi −µ
⋆
n) = 0. Furthermore, for N ∈ N and γ > 0 both large enough (depending on σ ), we have,

for all n ≥ N and all t ≥ γ ,

P(µ⋆n ≥ t) ≤

n∑
k=⌈n/2⌉

(
n
k

)
P(X1 ≥ t)k P(X1 ≤ t)n−k

≤ (n − ⌈n/2⌉) ·

(
n

⌈n/2⌉

)
· P(X1 ≥ t)⌈n/2⌉

≤ ⌊n/2⌋ · 2
2n

√
n

·

(1
2
e−

t
2σ

)⌈n/2⌉
≤

√
n
2

2ne−
nt
8σ · e−

nt
8σ ≤

1
2
e−t . (3.3)
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To obtain the third inequality, we use Stirling’s formula and assume that N is large enough. To obtain the last
inequality, assume that N ≥ 8σ and γ ≥ 8σ . This proves (2.10) with C = 1 and p = 1.

(E.1.unif) µ⋆n
P

−→ 0. This is explained in Example 5.11 of van der Vaart (1998).
(E.2.unif) For any v ∈ [0, 1], the estimator µ⋆n,v = vµ⋆n is symmetric with respect to its n variables because the median,

µ⋆n, is symmetric with respect to its n variables. Since the Xi’s are i.i.d., the condition is satisfied.
(E.4.unif) We have lim supx→0|h(x)| = ∞, so we need to verify the condition. For any n ≥ 2 and any v ∈ [0, 1], note that

X1 − vµ⋆n has a density function. It suffices to show that the densities are bounded, uniformly in n and v, by a positive
constant. Since the density u ↦→ fX1−vµ⋆n (u) is symmetric around 0, we will assume, without loss of generality, that
u > 0. For v ∈ (0, 1], denote z ⊜ (x − u)/v and notice that z < x.
When v ∈ (0, 1] and n ≥ 3 is odd, we have

fX1−vµ⋆n (u) =

∫
∞

−∞

fX1−vµ⋆n|X1 (u | x)fX1 (x)dx =

∫
∞

−∞

1
v
fµ⋆n|X1 (z | x)fX1 (x)dx

=

∫
∞

−∞

1
v

(
n

⌊n/2⌋

)
(FX1 (z))

⌊n/2⌋fX1 (z)(1 − FX1 (z))
⌊n/2−1⌋fX1 (x)dx

≤ C ∥fX1∥∞

∫
∞

−∞

1
v
fµ⋆n−2

(z)dx  
= 1

= C ∥fX1∥∞ < ∞.

In the inequality above, we took C ⊜ supn≥3
( n
⌊n/2⌋

)
/
( n−2
⌊(n−2)/2⌋

)
, which is finite by Stirling’s formula. When v ∈ (0, 1]

and n ≥ 4 is even, we can apply a similar argument and also obtain a uniform bound. Finally, when v = 0 and n ∈ N,
fX1−vµ⋆n (u) = fX1 (u) ≤ 1/(4σ ).
In summary, fX1−vµ⋆n (u) is uniformly bounded in u ∈ R, n ≥ 3 and v ∈ [0, 1], which proves (E.4.unif) with any α0 > 0
and any N1 ≥ 3.

(E.6.unif) In our case, this is trivial because the conditional density fX1−vµ⋆n|X1 (· | x) exists for all x ∈ R, all n ≥ 2 and all
v ∈ (0, 1].

(H.1) The function h is continuous on R \ {0}, so Dh = ∅ and thus P(X1 ∈ Dh) = 0.
(H.2) E

⏐⏐h(X1)
⏐⏐ ≤

∫
|x|≤1|log|x| |

1
4σ dx +

∫
|x|≥1|x|fX1 (x)dx ≤

2
4σ + 2σ < ∞.

(H.3) For all x0 ∈ R \ {0}, lim supx→x0 |h(x)| < ∞. This is obvious.
(H.4)

∫
|u|≤α0

|log|u| |du < ∞ is true for any α0 > 0 since
∫

|u|≤1|log|u| |du = 2.
(H.5) 1. This is obviously true for any β0 > 0 (use the fundamental theorem of calculus).

2. For any γ > 0 and any β0 > γ , the supremum sup|t|≤γ |h(X1 − t)|1{|X1−t|≥β0} is attained at the boundary
with probability 1 (not necessarily the same end of the boundary for different ω’s). Therefore, take M =

|h(X1 − γ )|1{|X1−γ |≥β0} + |h(X1 + γ )|1{|X1+γ |≥β0}. It is easy to show that E[M] < ∞ because |log|x| | ≤ |x| for
|x| ≥ 1 and

∫
|x|≥(1∨β0)

|x|fX1±γ (x)dx < ∞.
3. We need to verify this condition for p = 1 since this is the p that we used above to verify the conditions of

Lemma 2.5. First, lim|β|→∞|h(β)|e−|x−β|
p

= 0 is true for all x ∈ R and all p > 0 (true in particular for p = 1). For
the second part, assume that β ≥ 1. We have

E[e−|X1−β|
] =

∫
(−∞,0)∪(0,β)∪(β,∞)

e−|x−β|
·

1
4σ

e−
1
2σ |x|dx

≤
1
2
e−|β|

∫ 0

−∞

1
2σ

e−
1
2σ |x|dx  

= 1

+
|β|

4σ
e−(1∧ 1

2σ )|β|
+

1
4σ

e−
1
2σ |β|

∫
∞

β

e−|x−β|dx  
= 1

≤
|β|

2

(
1 ∨

1
2σ

)
e−(1∧ 1

2σ )|β|. (3.4)

By the symmetry of fX1 , we also have (3.4) for β ≤ −1. Hence, for any β0 ≥ 1,

sup
|β|≥β0

E
[(

|h(β)|e−|X1−β|

)2
]
< ∞,

which is a well-known sufficient condition for the uniform integrability of {|h(β)|e−|X1−β|
}|β|≥β0 , see e.g. Klenke

(2014, Corollary 6.21).
4. Take any β0 ≥ 1, then (3.4) implies∫

|u|≥β0

E
[
|h′(u)|e−|X1−u|]du ≤

1
β0

∫
|u|≥β0

E
[
e−|X1−u|]du < ∞.



P. Lafaye de Micheaux, F. Ouimet / Statistics and Probability Letters 142 (2018) 109–117 117

5. Take any β0 ≥ 1, then, for all |u|≥ β0,

− sign(u) · sign(h(u)) · h′(u) = −sign(u) · sign(u) ·
1
|u|

≤ 0.

This ends the proof. □
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