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6128, succursale Centre-ville, Montréal, Canada H3C 3J7
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Abstract

A non parametric test of the mutual independence between many numerical random
vectors is proposed. This test is based on a characterization of mutual independence
defined from probabilities of half-spaces in a combinatorial formula of Möbius. As
such, it is a natural generalization of tests of independence between univariate ran-
dom variables using the empirical distribution function. If the number of vectors
is p and there are n observations, the test is defined from a collection of processes
Rn,A, where A is a subset of {1, . . . , p} of cardinality |A| > 1, which are asymp-
totically independent and Gaussian. Without the assumption that each vector is
one-dimensional with a continuous cumulative distribution function, any test of in-
dependence can not be distribution free. The critical values of the proposed test are
thus computed with the bootstrap which is shown to be consistent. Another similar
test, with the same asymptotic properties, for the serial independence of a multi-
variate stationary sequence is also proposed. The proposed test works when some
or all of the marginal distributions are singular with respect to Lebesgue measure.
Moreover, in singular cases described in Section 4, the test inherits useful invariance
properties from the general affine invariance property.
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1 Introduction

Nonparametric tests of independence between random vectors are scarce in the
literature. Puri and Sen [17] defined a class of association parameters between
two vectors based on componentwise ranking which results in a non invariant
statistic. Gieser and Randles [13] proposed an invariant test of independence
between two vectors based on interdirections and obtained the asymptotic
distribution, with Pitman asymptotic relative efficiencies, when both vectors
follow an elliptically symmetric distribution. A generalization of the interdirec-
tion quadrant test is proposed in Um and Randles [19] who considered a test
of pairwise independence among many elliptically contoured vectors. Cléroux
et al. [5] derived a nonparametric test of no association between two vectors.
It is a test of the independence between each variable in one vector with any
variable in the other vector. Bilodeau and Lafaye de Micheaux [3] used the
empirical characteristic function to test the mutual independence among p
normally distributed vectors without specifying their joint distribution.

Earlier papers still of interest on nonparametric tests of independence between
random variables based on the empirical cumulative distribution function (cdf)
are those of Hoeffding [14] and Blum et al. [4]. In Hoeffding [14], the asymptotic
distribution of these processes for testing independence between two variables
is quite simple. In that case, the asymptotic covariance function is a product
of two covariance functions of brownian bridges. This description gets more
complicated when there are more than two variables. Blum et al. [4] proposed
a modification of the edf process which preserves the product structure of the
covariance function and they gave explicit expressions for the case of three
random variables. Ghoudi et al. [12] characterized independence between p
random variables with a Möbius transformation due to Deheuvels [9]. Let F
be the joint cdf of (X(j))p

j=1 and F (j) denote the marginal cdf of X(j). Let
Ip = {A ⊂ {1, . . . , p} : |A| > 1}, where |A| is the cardinality of the set A.
Note that the cardinality of Ip is 2p − p − 1. For any t = (t(j))p

j=1 ∈ Rp and
any A ∈ Ip, define

µA(t) =
∑

B⊂A

(−1)|A\B|F (tB)
∏

j∈A\B
F (j)(t(j)),

where
∏
∅ = 1. The vector tB = ((tB)

(j)
)p
j=1 ∈ Rp is defined as

(tB)(j) =





t(j), j ∈ B;

∞, j /∈ B.

They characterized independence as follows: X(1), . . . , X(p) are independent if
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and only if µA(t) = 0, for all t ∈ Rp and all A ∈ Ip. This characterization was
also given previously in a slightly different form in Deheuvels [8]. This led to
the processes

Vn,A(t) =
√

n
∑

B⊂A

(−1)|A\B|Fn(tB)
∏

j∈A\B
F (j)

n (t(j)),

where Fn and F (j)
n denote, respectively, the joint empirical cdf and the marginal

empirical cdf. The weak convergence of these processes can be stated as: {Vn,A :
A ∈ Ip} converges weakly to {VA : A ∈ Ip}, where VA are independent zero
mean Gaussian processes with covariance function

cov(VA(s), VA(t)) =
∏

k∈A

min{F (k)(s(k)), F (k)(t(k))} − F (k)(s(k))F (k)(t(k)).

The asymptotic processes being independent, it becomes tractable to consider
all sets A simultaneously via test statistics such as

∑
A Tn,A or maxA Tn,A,

where for a given set A, the Cramér-von Mises statistic

Tn,A =
∫

V 2
n,A(t)dFn(t)

is used. Moreover, identification of subsets A with large values of Tn,A can be
used as a tool for finding dependent subsets of variables. The construction of a
dependogram for this identification is illustrated in Genest and Rémillard [11].

The problem of serial independence is also treated. If Y1, Y2, . . . is a station-
ary sequence of random variables, the problem of serial independence is to
determine whether p consecutive observations are independent. In this serial
context, Ghoudi et al. [12] established that the same processes used in the non
serial problem possess the same asymptotic properties.

This paper treats the two problems in a multivariate setting: X(j) ∈ Rdj in
the non serial problem and Yj ∈ Rq in the serial problem. Section 2 introduces
two processes Rn,A and Sn,A obtained from the Möbius transformation of a
process indexed by cartesian products of half-spaces. For recent applications of
half-spaces in statistics, see Beran and Millar [2]. Unlike in the univariate case
where Ghoudi et al. [12] assume continuous marginal distribution function for
X(j) (or Yj) to obtain a distribution free statistic, the multivariate statistic can
not be distribution free, even in the continuous case. In Section 3, validity of
bootstrap technology is established to obtain critical values from the bootstrap
distribution. The wide range of applicability of the proposed methodology is
illustrated in Section 4. The test works when all or some of the variables are
singular with respect to Lebesgue measure and it inherits useful invariance
properties from the general affine invariance property. This means that, in the
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examples of Section 4, one can recode discrete variables or apply a rotation
to data on a sphere without affecting the conclusion. The main motivation for
the Kolmogorov-Smirnov approach adopted is its easiness to yield the affine
invariance property and its consequences in special cases treated in Section 4.
A method of Fisher to combine p-values is proposed in Section 5. Section 6
presents the basic elements of the algorithm used to evaluate the test statistic.
All the proofs are deferred to the Appendix.

2 Half-spaces and independence

The general multivariate case with X(j) ∈ Rdj is treated. Let | · | and 〈·, ·〉
denote, respectively, euclidian norm and inner product in cartesian spaces
Rdj . For j = 1, . . . , p, let Sdj

= {x(j) ∈ Rdj : |x(j)| = 1} be the unit sphere in

Rdj . For every (s(j), t(j)) ∈ Sdj
× R, define the half-space

H(s(j), t(j)) = {x(j) ∈ Rdj : 〈s(j), x(j)〉 ≤ t(j)}.

The collection of half-spaces in Rdj , which separate probabilities (Cramér and
Wold, 1936), is denoted

F (dj) = {H(s(j), t(j)) : (s(j), t(j)) ∈ Sdj
× R}.

Let P be the joint probability for (X(j))p
j=1 and P (j) be the marginal prob-

ability for X(j). The following basic characterization of independence follows
from characteristic functions: X(1), . . . , X(p) are independent if and only if

P (×p
j=1H(s(j), t(j))) =

p∏

j=1

P (j)(H(s(j), t(j))),

for all (H(s(j), t(j)))p
j=1 ∈ F (d1) × · · · × F (dp).

Let l∞(F), where F = F (d1)× · · · ×F (dp), be the set of all bounded functions
on F metrized with the supremum norm || · ||F . The σ-algebra in l∞(F) is that
generated by open sets, i.e. the Borel σ-algebra. The independence half-space
process in l∞(F) is defined as

√
n[Pn(×p

j=1H(s(j), t(j)))−
p∏

j=1

P(j)
n (H(s(j), t(j)))],

where Pn is the empirical probability distribution of X1, . . . , Xn i.i.d., and
where Xi = (X

(j)
i )p

j=1. The asymptotic distribution of this process is difficult
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when p ≥ 3, even in the univariate case (dj = 1), see e.g. Blum et al. [4] and
Ghoudi et al. [12].

However, if the Möbius transformation is applied, the equivalent criterion
follows: X(1), . . . , X(p) are independent if and only if νA((s(j), t(j))p

j=1) = 0 for

all (H(s(j), t(j)))p
j=1 ∈ F and all A ∈ Ip, where

νA((s(j), t(j))p
j=1) =

∑

B⊂A

(−1)|A\B|P (×p
j=1H

B(s(j), t(j)))

· ∏

j∈A\B
P (j)(H(s(j), t(j))).

Here, the notation

HB(s(j), t(j)) =





H(s(j), t(j)), j ∈ B;

Rdj , j /∈ B,

is used.

2.1 The non serial case

For each subset A, the Möbius independence half-space process in l∞(F) is
defined as

Rn,A((s(j), t(j))p
j=1) =

√
n

∑

B⊂A

(−1)|A\B|Pn(×p
j=1H

B(s(j), t(j)))

· ∏

j∈A\B
P(j)

n (H(s(j), t(j))).

A rejection region for an independence test is constructed by combining Kol-
mogorov test statistics for all subsets

∪A∈Ip {||Rn,A||F > rA} , (1)

for some critical values rA chosen to achieve an asymptotic preassigned global
significance level α. This test is invariant under the group of affine linear
transformations,

(X
(j)
i )p

j=1 7→ (A(j)X
(j)
i + b(j))p

j=1,
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where A(j) : dj×dj is any non singular matrix and b(j) ∈ Rdj is any vector. This
comes as a consequence that ||Rn,A||F is invariant. In the univariate setting,
half-space probabilities reduce to the distribution function. The process Rn,A

is thus a natural generalization of the process of Blum et al. [4] or Ghoudi et
al. [12].

The weak convergence of the Möbius independence half-space processes is now
described via the closely related processes R̆n,A defined as

R̆n,A((s(j), t(j))p
j=1) =

√
n

∑

B⊂A

(−1)|A\B|Pn(×p
j=1H

B(s(j), t(j)))

· ∏

j∈A\B
P (j)(H(s(j), t(j))).

which differ from Rn,A in that the empirical marginal probability P(j)
n is re-

placed by the true and unknown P (j). The approach to weak convergence
denoted by Ã and used to deal with measurability issues is that of Hoffmann-
Jørgensen [15] as described in van der Vaart and Wellner [20].

Theorem 1 If X(1), . . . , X(p) are independent, then

{R̆n,A : A ∈ Ip} Ã {RA : A ∈ Ip}.

The processes RA are independent zero mean Gaussian processes with covari-
ance function given by

CA((s(j), t(j))p
j=1, (s̃

(j), t̃(j))p
j=1) =

∏

k∈A

[
P (k)(H(s(k), t(k)) ∩H(s̃(k), t̃(k)))

−P (k)(H(s(k), t(k)))P (k)(H(s̃(k), t̃(k)))
]
.

The next result asserts that the two processes Rn,A and R̆n,A are asymptoti-
cally equivalent. This comes as a consequence of the Glivenko-Cantelli theorem
for half-spaces of Wolfowitz [22]; see also Dehardt [7] or Steele [18].

Theorem 2 For every A ∈ Ip, ||Rn,A− R̆n,A||F → 0, where convergence is in
outer probability.

The asymptotic significance level of the test (1) is given by

α = 1− ∏

A∈Ip

P {||RA||F ≤ rA} .

Thus, the critical values rA in (1) can be chosen, see Genest and Rémillard [11],
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as the β-quantile of the distribution of ||RA||F , where β = (1 − α)1/(2p−p−1).
However, in our case, the distribution of RA is no longer distribution free; it
depends on the individual distribution of the marginals X(k), k ∈ A. Thus, in
general, a different critical value rA is required, even for different subsets A of
the same cardinality. In the next section, it is shown that the critical values
rA can be approximated by the quantiles of the bootstrap distributions.

2.2 The serial case

The problem of testing for serial independence of a multivariate stationary
sequence is now addressed. The test statistic in the serial context is very
similar. Consider a stationary sequence Y1, Y2, . . . in Rq, where Yj is distributed
according to the probability Q. For any fixed p, let Xi = (Yi, . . . , Yi+p−1) and

X
(j)
i = Yi+j−1, where i = 1, . . . , n′, j = 1, . . . , p and n′ = n−p+1. For a given

A ∈ Ip, the process is

Sn,A((s(j), t(j))p
j=1) =

√
n′

∑

B⊂A

(−1)|A\B|Pn(×p
j=1H

B(s(j), t(j)))

· ∏

j∈A\B
Qn(H(s(j), t(j))).

where Pn is the empirical probability distribution of X1, . . . , Xn′ and Qn is the
empirical probability distribution of Y1, . . . , Yn. Note that Pn assigns weights
1
n′ , rather than 1

n
for Qn, to each observation. Here, the index set of the process

is the p-fold cartesian product F = (F (q))p. In the serial context, the subset A
and its translate, say A + k, lead essentially to the same process. Hence, the
test proposed for serial independence of p consecutive observations has critical
region

∪A∈Ap {||Sn,A||F > sA} , (2)

where Ap = {A ∈ Ip : 1 ∈ A} has now the cardinality 2p−1 − 1.

Theorem 3 Let Y1, Y2, . . . be i.i.d. Q. Then, for any fixed p,

{Sn,A : A ∈ Ap} Ã {SA : A ∈ Ap},

where SA are independent zero mean Gaussian processes with covariance func-
tion given by

DA((s(j), t(j))p
j=1, (s̃

(j), t̃(j))p
j=1) =

∏

k∈A

[
Q(H(s(k), t(k)) ∩H(s̃(k), t̃(k)))
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−Q(H(s(k), t(k)))Q(H(s̃(k), t̃(k)))
]
.

The critical points sA in the test (2) are the β-quantiles, β = (1−α)1/(2p−1−1), of
the distributions of ||SA||F . These quantiles will also be approximated using
the bootstrap distributions. However, unlike the non serial case, since the
sequence is assumed to be stationary a common critical value sA can be chosen
for all subsets A of the same cardinality.

3 Bootstrap of Rn,A and Sn,A

In the univariate setting, transformation of marginals to uniform variables
shows that Kolmogorov-Smirnov or Cramér-von Mises statistics are distribu-
tion free. However, in the multivariate context, critical values for the tests are
obtained by bootstrap methodology since the asymptotic distribution is no
longer distribution free.

3.1 Bootstrap of Rn,A

Under the hypothesis of independence, the unknown parameters in the non se-
rial case are the marginal probabilities (P (j))p

j=1. The nonparametric bootstrap
distribution is constructed by sampling independently (the null distribution)
from the empirical marginal distribution for each subvector. Recall that P(j)

n is

the empirical probability of the subvectors X
(j)
1 , . . . , X(j)

n . A bootstrap sample
is thus a sample X∗

1 , . . . , X
∗
n i.i.d. P(1)

n × · · · × P(p)
n . Template A in Beran [1],

rephrased for tests, outlines a way to verify that the bootstrap distributions
converge correctly and that the asymptotic rejection probability is as intended.

To this end, the semimetric dR between two finite collections of probability
distributions is defined through the quarter-space semimetric

dR

(
(P (j))p

j=1, (Q
(j))p

j=1

)

=
p∑

j=1

sup
H1,H2∈F(dj)

|P (j)(H1 ∩H2)−Q(j)(H1 ∩H2)|.

The empirical marginal probabilities converge in this semimetric,

dR

(
(P(j)

n )p
j=1, (P

(j))p
j=1

)
→ 0
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in probability. This holds since F (dj), and thus F (dj) ∩ F (dj), are Vapnik-
Červonenkis (VC) classes (van der Vaart and Wellner 1996, p. 147). Thus,
they are also Glivenko-Cantelli classes.

The triangular array convergence for the Möbius independence processes is
now established. Let (P (j)

n )p
j=1, n = 1, 2 . . . be any sequence. Assume that the

sample Xn1, . . . , Xnn is i.i.d. from the product probability P (1)
n ×· · ·×P (p)

n and
let P̂n be the empirical probability of Xn1, . . . , Xnn. Define the process

R∗
n,A((s(j), t(j))p

j=1) =
√

n
∑

B⊂A

(−1)|A\B|P̂n(×p
j=1H

B(s(j), t(j)))

· ∏

j∈A\B
P̂(j)

n (H(s(j), t(j))).

Theorem 4 If (P (j)
n )p

j=1, n = 1, 2 . . . is any sequence such that

dR

(
(P (j)

n )p
j=1, (P

(j))p
j=1

)
→ 0, (3)

then {R∗
n,A : A ∈ Ip} Ã {RA : A ∈ Ip}, where the limiting distribution is as

in Theorem 1.

The last condition in Template A is the continuity of the limiting cdf. In
our setting, it becomes the continuity of the cdf of ||RA||F . This follows from
Proposition 2 in Beran and Millar [2].

3.2 Bootstrap of Sn,A

The asymptotic bootstrap distribution in the serial case is treated similarly.
Let Qn be the empirical distribution of Y1, . . . , Yn. A bootstrap sequence fol-
lowing the null hypothesis is Y ∗

1 , . . . , Y ∗
n i.i.d. Qn.

A similar semimetric between any two probabilities Q1 and Q2 on Rq is defined
as

dS(Q1, Q2) = sup
H1,H2∈F(q)

|Q1(H1 ∩H2)−Q2(H1 ∩H2)|.

The Glivenko-Cantelli theorem for ergodic stationary sequences in Steele [18]
gives the convergence dS(Qn, Q) → 0 in probability.

The triangular array convergence also holds here. Let Qn, n = 1, 2, . . . be
any sequence of probability distributions on Rq. Assume that the sequence
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Yn1, . . . , Ynn is i.i.d. Qn. Construct as before the overlapping (m-dependent)
sequence Xn1, . . . , Xnn′ , where n′ = n−p+1. Let Q̂n be the the empirical prob-
ability of Yn1, . . . , Ynn and let P̂n be the empirical probability of Xn1, . . . , Xnn′ .
The next theorem asserts that the triangular array process

S∗n,A((s(j), t(j))p
j=1) =

√
n′

∑

B⊂A

(−1)|A\B|P̂n(×p
j=1H

B(s(j), t(j)))

· ∏

j∈A\B
Q̂n(H(s(j), t(j)))

converges nicely.

Theorem 5 If Qn, n = 1, 2 . . . is any sequence such that dS(Qn, Q) → 0,
then {S∗n,A : A ∈ Ap} Ã {SA : A ∈ Ap}, where the limiting distribution is as
in Theorem 3.

The variable ||SA||F has a continuous cdf just like the variable ||RA||F before.
Thus, the conditions of Template A are fulfilled.

The critical values sA in (2) corresponding to subsets of the same cardinality
are identical. In this case, for all the subsets A of a given cardinality, say
|A| = k, it is suggested to amalgamate the

(
p
k

)
· B bootstrap values ||S∗n,A||F ,

where B is the number of bootstrap sequences. The common critical value sA

is estimated by the β-quantile, β = (1 − α)1/(2p−1−1), of these amalgamated
bootstrap values.

4 Examples and applications

A dependogram, a word coined by Genest and Rémillard [11], is a graphical
display in which, for each subset A, a vertical bar is drawn of height corre-
sponding to the values of ||Rn,A||F . A star at the height given by the bootstrap
approximation to the β-quantile, β = (1− α)1/(2p−p−1), of ||RA||F is added to
the graph. Subsets such that the vertical bar exceeds this quantile can be
flagged for dependent variables. The lexicographic order of the subsets in the
non serial dependogram for p = 4 is as in Table 1, whereas Table 2 gives the
lexicographic order for the serial dependogram.

For testing serial independence of a stationary sequence, a similar dependo-
gram can be constructed. As mentioned before, a single critical value sA can
be used for all the subsets with the same cardinality. This common critical
value serves to draw an horizontal line over all the vertical bars corresponding
to the subsets A of common cardinality |A|.
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Subsets

1 {1,2} 4 {2,3} 7 {1,2,3} 10 {2,3,4}
2 {1,3} 5 {2,4} 8 {1,2,4} 11 {1,2,3,4}
3 {1,4} 6 {3,4} 9 {1,3,4}

Table 1
Lexicographic order of the subsets for p = 4 in the non serial dependogram.

Subsets

1 {1,2} 3 {1,4} 5 {1,2,4} 7 {1,2,3,4}
2 {1,3} 4 {1,2,3} 6 {1,3,4}

Table 2
Lexicographic order of the subsets for p = 4 in the serial dependogram.

All the dependograms in the examples to follow were done at the global sig-
nificance level α = .05. The critical values rA (or sA) were computed on the
basis of B = 2000 bootstrap samples. Computations were done on a Pen-
tium 4 with a CPU of 2 Ghz with a RAM of 1 Gb running under Windows
XP. The elaborate programs, including the graphical interface, were written
in R with C++ subroutines to compute the statistics. Computation times are
reported in each example. They are reasonable for univariate problems, but
they can be lengthy for small multivariate situations. Parallel programming
which is suited to bootstrap methodology would be the next step to reduce
computation times.

4.1 Dependence among four discrete variables

The asymptotic distribution of the Cramér-von Mises test of Deheuvels [9],
Ghoudi et al. [12] or Genest and Rémillard [11] does not apply when some
discrete components can not by all means be treated as continuous.

As an example, a sample of size n = 100 on four variables is generated from the
following distribution. Firstly, W1, W3, W4 and W6 are independent Poisson(1)
variables. Secondly, and independently from the first step, W2 and W5 are two
independent Poisson(3) variables. The observed variables are X(1) = W1+W2,
X(2) = W2 + W3, X(3) = W4 + W5, and X(4) = W5 + W6. This yields a pair
(X(1), X(2)) independent of the pair (X(3), X(4)) with each pair having a corre-
lation of 3

4
. The dependogram evaluated in 6.6 mins is shown in Figure 1. It dis-

plays significant values for the subsets 1 and 6 which correspond, respectively,
to the two subsets A = {1, 2} and A = {3, 4}. The subset A = {1, 2, 3, 4}
yields also a significant value. The reason for this last significant value is
made clear from a detailed analysis of the independence characterization. Un-
der this specific model, all the quantities νA (given here without the half-space
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0 2 4 6 8 10 12

0.0
0.5

1.0
1.5

Dependogram

Subsets

||R
nA

||
* * * * * *

* * * *

*

Fig. 1. The two structures of dependence are evident in subsets 1 and 6 which
correspond, respectively, to the two subsets A = {1, 2} and A = {3, 4}.
arguments) are null except ν{1,2} = P (1,2)−P (1)P (2), ν{3,4} = P (3,4)−P (3)P (4),
and ν{1,2,3,4} = (P (1,2)−P (1)P (2))(P (3,4)−P (3)P (4)), where P (i1,...,is) is the joint
probability of the variables corresponding to the indices. When the sample
is large enough to draw enough power, the last subset will also come out as
significant.

4.2 Dependence between three bivariate vectors

This example considers n = 50 observations on six variables Wi, i = 1, . . . , 6,
jointly distributed as a multivariate normal with mean vector 0 and covariance
matrix




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 .4 .5

0 0 0 1 .1 .2

0 0 .4 .1 1 0

0 0 .5 .2 0 1




.

The structure of dependence among the three subvectors X(1) = (W1,W2)
X(2) = (W3, W4) and X(3) = (W5,W6) is seen clearly from the third subset
A = {2, 3} in Figure 2 which required 3.8 hours of computations. The more
powerful normal theory likelihood ratio test Λ could be used here. However,
this test is very sensitive to non normality. In fact, it should not be used,
even for heavy-tailed elliptically contoured distributions without a kurtosis
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1.0

1.2
1.4

Dependogram
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||R
nA

||

* * *

*

Fig. 2. The dependence between the last two subvectors shows up in the third subset
A = {2, 3}.
correction; see Muirhead and Waternaux [16]. The proposed test shares with
the likelihood ratio test the property of affine invariance.

4.3 4-dependent variables which are 2-independent and 3-independent

Define the uniform variable W on the set {1, 2, 3, 4, 5, 6, 7, 8}. The vector X =
(X(1), X(2), X(3), X(4)) is built from W through the indicator functions

X(1) = I{W ∈ {1, 2, 3, 5}}, X(2) = I{W ∈ {1, 2, 4, 6}}
X(3) = I{W ∈ {1, 3, 4, 7}}, X(4) = I{W ∈ {2, 3, 4, 8}}.

These four dependent binary variables are 2-independent or pairwise inde-
pendent; they are also 3-independent. A sample of size n = 100 on these 4
variables was generated from which the dependogram in Figure 3 resulted in
6.1 mins. Note that affine invariance can be used to recode the data without
affecting the resulting dependogram.

4.4 Serial independence of a binary sequence of zeros and ones

An i.i.d. sequence W1, . . . , Wn of length n = 100 was used, where the binary
variable Wi takes values 0 and 1 with probabilities 0.2 and 0.8, respectively.
The product sequence Yi is defined by Yi = WiWi+3, i = 1, . . . , n− 3, which is
dependent at lag 3. Figure 4 shows the dependograms (which took 8.25 mins)
of the original sequence Wi and of the product sequence Yi. Values of p = 2
or p = 3 could not possibly detect this dependence. The minimal value p = 4
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Fig. 3. This dependogram identifies the 4-dependence in the last subset
A = {1, 2, 3, 4}. No other dependencies were declared significant.
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Fig. 4. The upper dependogram does not declare any serial dependence in the
i.i.d. sequence Wi. The lower dependogram for the sequence Yi exhibits a serial
dependence at lag 3 through the subset 3 corresponding to A = {1, 4}.
was used, although a larger value could also have been used. The sequence
could be recoded without any effect.

4.5 Serial independence of directional data

The number of test statistics for serial independence of a stationary sequence of
observations on the sphere in Rq is very limited; see Watson [21]. For (s(j), t(j))
in Sq × [−1, 1], the half-space H(j) = {x(j) ∈ Sq : 〈s(j), x(j)〉 ≤ t(j)} becomes
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the polar cap with the pole located at s(j) and of size determined by the
angle θ = arccos(t(j)). Thus, the asymptotic covariance of the process Sn,A

is expressed in terms of probabilities of polar caps and intersections of polar
caps. The test statistic based on Sn,A is applicable in this context.

As an example of a sequence on the circle, an i.i.d. sequence Ui of length
n = 75 was generated according to the bivariate normal distribution with mean
vector 0 and covariance matrix I2, the identity matrix. A sequence with serial
dependence at lag 1 was created by letting Wi = Ui +

√
2Ui+1, i = 1, . . . , n−1.

This yields a correlation matrix cor(Wi,Wi+1) = 2
3
I2 between two observations

at lag 1. The final angular gaussian sequence on the circle is obtained by the
normalization, Yi = Wi/|Wi|. The minimal value p = 2 could detect this
dependence, however the larger value p = 3 was used. The dependogram
computed in 7.9 hours is shown in Figure 5.
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||S
nA

||

Fig. 5. The dependogram for the angular gaussian sequence Yi on the circle exhibits
a serial dependence at lag 1 through the first subset corresponding to A = {1, 2}.

The general technique presented yields also tests for serial independence of
random axes (represented as random orthogonal projection matrices of rank
one) or for serial independence of random rotations (represented as random
orthogonal matrices). These tests and the directional example treated in detail
are invariant under rotations of the coordinate system.

5 Fisher’s combined p-values

Following Genest and Rémillard [11], if FA,n denotes the distribution func-
tion under the hypothesis of independence of ||Rn,A||F , the p-values 1 −
FA,n(||Rn,A||F) are approximately uniform on [0, 1]. Since the variables ||Rn,A||F
are asymptotically independent (with a continuous limiting cdf), then combi-
nation of p-values in the manner of Fisher yields the overall test of indepen-
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dence

Wn = −2
∑

A∈Ip

log{1− FA,n(||Rn,A||F)}

which should be approximately distributed as chi-square with 2(2p − p − 1)
degrees of freedom. However, FA,n being unknown, in practice, the test could
be run as follows.

Step 1. Compute ||Rn,A||F , for every A ∈ Ip, from the original sample of size
n.

Step 2. Generate B = 2000 (say) bootstrap samples of size n from the prod-
uct measure P(1)

n ×· · ·×P(p)
n . For each bootstrap sample, compute ||R∗

n,A,i||F ,
i = 1, . . . , B.

Step 3. Let

F ∗
A,n(u) =

1

B

B∑

i=1

I
{
||R∗

n,A,i||F ≤ u
}

, u ≥ 0.

Compute

Ŵn = −2
∑

A∈Ip

log{1− F ∗
A,n(||Rn,A||F)}.

Step 4. An approximate p-value is given by

1

B

B∑

i=1

I{W ∗
n,i ≥ Ŵn},

where

W ∗
n,i = −2

∑

A∈Ip

log{1− F ∗
A,n(||R∗

n,A,i||F)}, i = 1, . . . , B.

Note that F ∗
A,n(||R∗

n,A,i||F) is easily evaluated as Ri/B, where Ri is the rank
of ||R∗

n,A,i||F among ||R∗
n,A,1||F , . . . , ||R∗

n,A,B||F .

A simulation was conducted, in the context of univariate discrete marginals,
to investigate the speed of convergence to chi-square, as n increases. The
assumed distribution is that of (X(1), . . . , X(p)) where all the p components
are independent Poisson(1) variables. The simulation generates M = 2000
samples of size n from this assumed distribution. Then, for each of these M
samples, a value Ŵn,i, i = 1, . . . ,M , was computed by going through steps

1-3 above. For a test of size α = 5%, the quantile Ŵn,b0.95Mc is then compared
to the 0.95 quantile of a chi-square distribution with 2(2p − p − 1) degrees
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of freedom found in the last row of Table 3. Another way of making the
comparison is to compute the empirical probability

P [Ŵn ≥ c] ≈ 1

M

M∑

i=1

I{Ŵn,i ≥ c},

where c = χ2
2(2p−p−1)(.95).

p = 2 p = 4

n Ŵn,b0.95Mc prob Ŵn,b0.95Mc prob

20 6.14 0.055 37.26 0.089

50 6.07 0.051 35.40 0.062

100 5.91 0.047 34.87 0.058

∞ 5.99 0.050 33.92 0.050
Table 3
Critical points and empirical probabilities of Fisher’s test with α = 5% based on
M = 2000 random samples of size n and B = 2000 bootstrap samples. Each of the
n observations consists of p independent Poisson(1) variables.

For p = 2, the level of significance is reasonably satisfied even for values of
n as small as n = 20. A larger value of n would be required when p = 4. A
similar test can be devised for a test of serial independence based on ||Sn,A||F .
Presumably, still larger values of n would be required in this case since n−p+1
plays the role of n.

6 Numerical evaluation of ||Rn,A||F

The sphere on R1 contains only two points ±1. The sphere on Rd requires a
discretization of its parametric space which is (0, π)d−2× (0, 2π). The interval
(0, π) is discretized into N points and (0, 2π) into 2N points. This gives 2Nd−1

points on the sphere. For example, in a two components problem with d1 = 3
and d2 = 2, this gives, for N = 10, 200 × 20 = 4000 choices of directions s(1)

and s(2). For each choice of directions, the 2p−p−1 (singletons and the empty
set excluded) processes are evaluated with the formula

Rn,A((s(j), t(j))p
j=1) =

1√
n

n∑

i=1

∏

k∈A

[
I{X(k)

i ∈ H(s(k), t(k))}

−P (k)
n (H(s(k), t(k)))

]
.
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For a given choice of s(1), . . . , s(p), we need to evaluate p matrices of order
n× n constructed as follows. For s(k), evaluate the n values 〈X(k)

j , s(k)〉 ≡ t
(k)
j .

The n× n matrix for s(k) has an element in position (i, j) given by

I{〈X(k)
i , s(k)〉 ≤ t

(k)
j }.

This matrix is then modified by subtracting to each element (i, j) the propor-
tion of ones in column j. For a given subset A, one multiplies together the
appropriate |A| such matrices to obtain an n×n matrix ΨA (say). An n-vector
ψA is then obtained by adding the rows of ΨA. The maximum value of |Rn,A|
(for the given choice of directions) is the largest (in absolute value) compo-
nent of ψA divided by

√
n. The global max is obtained by varying the choice of

directions. When changing directions one can rewrite over the previous n× n
matrices used before.

A random search to reduce computational times can be done easily. One gener-
ates random vectors s(k) uniformly distributed over the unit spheres (normed
multivariate Ndk

(0, I)). The rest of the algorithm is the same as with the
non-random procedure.

A Proofs

The proofs of Theorems 1, 2 and 3 follow from modifications to those in Ghoudi
et al. [12]. They are included for completeness.

Proof of Theorem 1. Following van der Vaart and Wellner [20, p. 35], weak
convergence of the marginals and asymptotic tightness are established. As in
Ghoudi et al. [12], the multinomial formula yields the equivalent representation
as an i.i.d. sum

R̆n,A((s(j), t(j))p
j=1) =

1√
n

n∑

i=1

∏

k∈A

[
I{X(k)

i ∈ H(s(k), t(k))} (A.1)

−P (k)(H(s(k), t(k)))
]
.

Finite dimensional convergence for the pair

(
R̆n,A((s(j), t(j))p

j=1), R̆n,B((s̃(j), t̃(j))p
j=1)

)

thus follows from the central limit theorem. If A = B, the asymptotic covari-
ance is that given in Theorem 1. However, if A 6= B, then there is at least one
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index in A which is not in B (or the converse). Then, for this index k,

E
[
I{X(k)

i ∈ H(s(k), t(k))} − P (k)(H(s(k), t(k)))
]

= 0.

This proves weak convergence of the marginals to the appropriate Gaussian
distribution. Next, another representation used in Ghoudi et al. [12] becomes

R̆n,A((s(j), t(j))p
j=1) =

∑

B⊂A

(−1)|A\B|
∏

j∈A\B
P (j)(H(s(j), t(j)))

· 1√
n

n∑

i=1


 ∏

j∈B

I{X(j)
i ∈ H(s(j), t(j))} − ∏

j∈B

P (j)(H(s(j), t(j)))


 ,

for half-space processes. For each subset B, the last sum over i is an empirical
process indexed by sets in the collection FB = ×j∈BF (dj). Since each collec-
tion F (dj) is a Vapnik-Červonenkis class of index dj + 2 (van der Vaart and
Wellner [20, p. 152]), then FB is also a VC-class of index

∑
j∈B dj +|B|+1 (van

der Vaart and Wellner [20, p. 147]). Asymptotic tightness is thus satisfied for
each B and since there is only a finite number of B’s, the proof is complete. ¤

Proof of Theorem 2. The following expression holds

Rn,A((s(j), t(j))p
j=1)− R̆n,A((s(j), t(j))p

j=1) =
∑

B⊂A,B 6=∅
(−1)|B|

· ∏

j∈B

[
P(j)

n (H(s(j), t(j)))− P (j)(H(s(j), t(j)))
]
· R̆n,A\B((s(k), t(k))p

k=1).

Hence,

||Rn,A − R̆n,A||F ≤
∑

B⊂A,B 6=∅

∏

j∈B

||P(j)
n − P (j)||F(dj) · ||R̆n,A\B||F

The result follows because ||R̆n,A\B||F converges weakly from Theorem 1 and
since the Glivenko-Cantelli theorem for half-spaces in Wolfowitz [22] holds. ¤

Proof of Theorem 3. As in the non serial context, use the expression

S̆n,A((s(j), t(j))p
j=1) =

1√
n′

n′∑

i=1

∏

k∈A

[
I{X(k)

i ∈ H(s(k), t(k))}

−Q(H(s(k), t(k)))
]
.
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Weak convergence of the marginals is proved. Because of the overlapping of
Yj’s in consecutive Xi’s, the Xi’s form an m-dependent sequence with m = p−
1, see e.g. Ferguson [10, p. 69]. Thus, the central limit theorem for m-dependent
sequences establishes that S̆n,A((s(j), t(j))p

j=1) and S̆n,B((s̃(j), t̃(j))p
j=1) are asymp-

totically and jointly normal with asymptotic covariance σ00+2σ01+· · ·+2σ0m,
where

σ0u = E





∏

k∈A

[
I{X(k)

i ∈ H(s(k), t(k))} −Q(H(s(k), t(k)))
]

· ∏

k∈B

[
I{X(k)

i+u ∈ H(s̃(k), t̃(k))} −Q(H(s̃(k), t̃(k)))
]


 .

All of the above expectations are null unless A = B (both in Ap) and u = 0.
Next, to establish asymptotic tightness, assume without loss of generality that
n′ is a multiple of p, say n′ = rp. This amounts to neglecting at most p − 1
terms in the sequence. Rewrite the sequence X1, X2, . . . as an array with p
rows, each consisting of r i.i.d. vectors,

X1 X1+p · · · X1+(r−1)p

X2 X2+p · · · X2+(r−1)p

...
...

. . .
...

Xp Xp+p · · · Xp+(r−1)p.

Then, the expression

S̆n,A((s(j), t(j))p
j=1) =

1√
p

p∑

h=1

∑

B⊂A

(−1)|A\B|
∏

j∈A\B
Q(H(s(j), t(j)))

· 1√
r

r−1∑

i=0


 ∏

j∈B

I{X(j)
pi+h ∈ H(s(j), t(j))} − ∏

j∈B

Q(H(s(j), t(j)))




establishes asymptotic tightness since for each pair (h,B) in finite number,
the last sum over i is an empirical process indexed by a VC-class. Finally, the
proof that Sn,A and S̆n,A are equivalent processes is based on the inequality

||Sn,A − S̆n,A||F ≤
∑

B⊂A,B 6=∅
||Qn −Q|||B|F(q) · ||S̆n,A\B||F

and is the same as for Theorem 2. ¤
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Proof of Theorem 4. Define

R̆∗
n,A((s(j), t(j))p

j=1) =
√

n
∑

B⊂A

(−1)|A\B|P̂n(×p
j=1H

B(s(j), t(j)))

· ∏

j∈A\B
P (j)

n (H(s(j), t(j))).

With the representation (A.1), the Lindeberg condition for the triangular array
of the i.i.d. random variables

∏

k∈A

[
I{X(k)

ni ∈ H(s(k), t(k))} − P (k)
n (H(s(k), t(k)))

]
, i = 1, 2, . . .

is applied. Thus, the finite dimensional convergence for the pair
(
R̆∗

n,A((s(j), t(j))p
j=1), R̆

∗
n,B((s̃(j), t̃(j))p

j=1)
)

follows with the same limiting normal distribution as in Theorem 1. The other
representation

R̆∗
n,A((s(j), t(j))p

j=1) =
∑

B⊂A

(−1)|A\B|

 ∏

j∈A\B
P (j)

n (H(s(j), t(j)))


 (A.2)

·Un,B((s(j), t(j))j∈B),

where

Un,B((s(j), t(j))j∈B) =
1√
n

n∑

i=1


 ∏

j∈B

I{X(j)
ni ∈ H(s(j), t(j))} (A.3)

− ∏

j∈B

P (j)
n (H(s(j), t(j)))


 ,

is used to establish asymptotic tightness. Since the term between brackets in
(A.2) converges as n → ∞, it suffices to establish that the triangular array
empirical process Un,B is asymptotically tight. This follows from Lemma 2.8.8
in van der Vaart and Wellner [20, p. 174] with the semimetric on ×j∈BF (dj), for
their condition (2.8.5) implied by our condition (3), defined with the symmetric
difference between half-spaces

ρP

(
(H(s(j), t(j)))j∈B, (H(s̃(j), t̃(j)))j∈B

)

=
∑

j∈B

P (j)
[
H(s(j), t(j))4H(s̃(j), t̃(j))

]
.
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Finally, ||R∗
n,A − R̆∗

n,A||F → 0 in outer probability follows as in Theorem 2 by

establishing ||P̂(j)
n − P (j)

n ||F(dj) → 0 in outer probability, for each j ∈ A. This
last assertion follows again from Lemma 2.8.8 cited above whose conclusion is
that

√
n(P̂(j)

n − P (j)
n ) converges weakly. ¤

Proof of Theorem 5. Define the process

S̆∗n,A((s(j), t(j))p
j=1) =

1√
n′

n′∑

i=1

∏

k∈A

[
I{X(k)

ni ∈ H(s(k), t(k))}

−Qn(H(s(k), t(k)))
]
.

Asymptotic normality of the marginals is established by considering any linear
combination

aS̆∗n,A((s(j), t(j))p
j=1) + bS̆∗n,B((s̃(j), t̃(j))p

j=1).

This linear combination involves the sum of the variables

Ln,i = a
∏

j∈A

[
I{X(j)

ni ∈ H(s(j), t(j))} −Qn(H(s(j), t(j)))
]

+b
∏

j∈B

[
I{X(j)

ni ∈ H(s̃(j), t̃(j))} −Qn(H(s̃(j), t̃(j)))
]
, i = 1, . . . , n′,

which form a triangular array in which each row is an m-dependent sequence.
At this point, the proof is a slight extension to triangular arrays of the classical
proof of the central limit theorem for m-dependent sequences, see e.g. Theo-
rem 11 in Ferguson [10, p. 70], in which intervenes Markov’s idea of splitting
the sum into big blocks and little blocks. Write n′ = s(k + m) and let

S ′n,k =
s−1∑

j=0

Vn,k,j, S ′′n,k =
s−1∑

j=0

Wn,k,j,

where the big blocks of size k and the little blocks of size m are, respectively,

Vn,k,j =
k∑

i=1

Ln,j(k+m)+i, Wn,k,j =
k+m∑

i=k+1

Ln,j(k+m)+i.

Then, the Vn,k,j, for j = 0, . . . , s − 1, are i.i.d. variables with distribution
depending on k and n.

Firstly, it is shown that S ′n,k/
√

n is asymptotically normal when k is fixed and
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n → ∞ (and thus s → ∞). Since the variables Vn,k,j are independent, the
Lindeberg condition amounts to

1

Var(Vn,k,j)
E

[
V 2

n,k,jI
{
|Vn,k,j| ≥ ε (s Var(Vn,k,j))

1
2

}]
→ 0, as n →∞.

Note that |Vn,k,j| ≤ k(|a|+ |b|) and

1

k
Var(Vn,k,j)

n→∞→ a2
∏

j∈A

[Q(H(s(j), t(j)))−Q(H(s(j), t(j)))2]

+ b2
∏

j∈B

[Q(H(s̃(j), t̃(j)))−Q(H(s̃(j), t̃(j)))2]

+ I {A = B} 2ab
∏

j∈A

[Q(H(s(j), t(j)) ∩H(s̃(j), t̃(j)))

−Q(H(s(j), t(j)))Q(H(s̃(j), t̃(j)))]

= Var[aSA((s(j), t(j))p
j=1) + bSB((s̃(j), t̃(j))p

j=1)]

≡ c.

Thus, the Lindeberg condition is satisfied and one may conclude that, as n →
∞, S ′n,k/

√
s

D→ N(0, ck) and also S ′n,k/
√

n
D→ Zk, where Zk ∼ N(0, ck/(k+m)).

Finally, if k →∞, then Zk
D→ N(0, c).

Secondly, it is established that S ′′n,k/
√

n → 0 in probability as k → ∞, uni-
formly in n. Let Sn,m =

∑m
i=1 Ln,i. The inequalities

P

[ |S ′′n,k|√
n

> δ

]
≤ Var

(
S ′′n,k

) 1

nδ2
≤ Var (Sn,m)

1

kδ2
(A.4)

hold. It can be checked that Var (Sn,m) converges to some positive constant as
n → ∞. Thus, one can find an upper bound (not depending on n) for (A.4)
converging to 0 as k →∞.

Asymptotic tightness is established with the representation in the proof of
Theorem 3

S̆∗n,A((s(j), t(j))p
j=1) =

1√
p

p∑

h=1

∑

B⊂A

(−1)|A\B|

 ∏

j∈A\B
Qn(H(s(j), t(j)))




·Wn,h,B((s(j), t(j))j∈B),

where
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Wn,h,B((s(j), t(j))j∈B) =
1√
r

r−1∑

i=0


 ∏

j∈B

I{X(j)
n,pi+h ∈ H(s(j), t(j))}

− ∏

j∈B

Qn(H(s(j), t(j)))


 .

Thus, it suffices that the processes Wn,h,B be asymptotically tight, for all h
and B, and this follows in the same manner as for the process Un,B in the proof

of Theorem 4. The equivalence of the two processes, ||S∗n,A − S̆∗n,A||F → 0 in
outer probability, is also derived as in Theorem 4. ¤
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