
Journal of Biopharmaceutical Statistics, 24: 378–397, 2014
Copyright © Taylor & Francis Group, LLC
ISSN: 1054-3406 print/1520-5711 online
DOI: 10.1080/10543406.2013.860156

POWER AND SAMPLE SIZE DETERMINATION IN
CLINICAL TRIALS WITH MULTIPLE PRIMARY
CONTINUOUS CORRELATED ENDPOINTS

Pierre Lafaye de Micheaux1, Benoit Liquet2�3�4, Sébastien Marque5,
and Jérémie Riou2�3�5
1Department of Mathematics and Statistics, Université de Montréal,
Quebec, Canada
2University of Bordeaux, ISPED, INSERM, Bordeaux, France
3INSERM, ISPED, Bordeaux, France
4The University of Queensland, Brisbane, Australia
5Danone Research, Palaiseau Cedex, France

The use of two or more primary correlated endpoints is becoming increasingly common.
A mandatory approach when analyzing data from such clinical trials is to control the
family-wise error rate (FWER). In this context, we provide formulas for computation
of sample size and for data analysis. Two approaches are discussed: an individual
method based on a union–intersection procedure and a global procedure, based on a
multivariate model that can take into account adjustment variables. These methods
are illustrated with simulation studies and applications. An R package known as
rPowerSampleSize is also available.
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1. INTRODUCTION

The use of multiple endpoints to characterize product efficacy and safety
measures is an increasingly common feature in recent clinical trials. Efficacy is often
defined not by a unique endpoint but by a combination of several parameters.
Regulatory agencies commonly require more than one endpoint to measure different
aspects of product efficacy in confirmatory clinical trials. However, the use of
multiple endpoints is a source of debate (Sankoh, 1997), and a lot of statistical
literature on the subject has been published. In general, national health authorities
recommend, on the basis of the biostatistics guideline developed by the International
Conference on Harmonization (ICH E9 Expert Working Group, 1999), the selection
of one primary endpoint to provide strong scientific evidence of the efficacy of a
test treatment. However, this strategy has clear limitations, notably when it leads to
arbitrary classification of different endpoints. While it reduces the dimension of the
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problem, if the classification is not sufficiently robust, real effects may be ignored
or left undetected. Consequently, many clinical trials incorporate multiple primary
endpoints to demonstrate the efficacy of the product.

Consideration of multiple endpoints nonetheless brings with it several
challenges to the design and analysis of trial data (Cook and Farewell, 1996;
O’Brien, 1984; Pocock et al., 1987). Several authors have discussed power
calculations in clinical trials when two or more primary endpoints are given as
continuous variables (Chuang-Stein et al., 2007; Dunnett and Tamhane, 1992; Senn
and Bretz, 2007). On the one hand, one strategy following the same philosophy
as that of the guidelines is to reduce as far as possible the number of endpoints
(Neuhäuser, 2006). However, this strategy may result in a loss of information
concerning endpoints and does not address the scientific problem of the selection
of parameters. On the other hand, an alternative strategy is to consider all primary
endpoints. We have focused on the situation of treating all endpoints equally,
thus referred to as co-primary endpoints. However, in clinical practice, it can
also be interesting to consider a different weighting for each endpoint (Bretz
et al., 2009, 2011; Burman et al., 2009). Depending on the scientific question
raised, statisticians may be interested in “or” comparisons (detecting at least one
significant primary endpoint) or in multiple must-win comparisons (detecting at
least r among m comparisons); see Julious and McIntyre (2012). Several authors
developed multiple testing procedures in the context of a “win” on all co-primary
endpoints; see for example, Berger (1982) and Sozu et al. (2006, 2010, 2011). We
have limited this report to the detection of at least one primary endpoint for the
“two treatments” case. In this context, the most common strategy is to use either
single-step (Simes, 1986; Sidak, 1967) or stepwise (Holm, 1979; Hochberg, 1988;
Hommel, 1988) procedures. For single-step methods, the rejection or nonrejection
of a single hypothesis does not account for the outcome of any other hypotheses. A
well-known example of single-step procedures is the Bonferroni test. In contrast, for
stepwise methods, the rejection or nonrejection of a particular hypothesis may take
into account the outcome of other hypotheses. Stepwise methods are more powerful
than single-step procedures. The equally well-known Holm procedure is a stepwise
extension of the Bonferroni test using a closure principle. Both types of procedures
are conservative (lead to wrongly “accepting” the null hypothesis) and might lead
to biased test decisions, as information about correlations of the endpoints is
not exploited. This implies a strong control of the type I error probability and
consequently, a decrease in the power of each test. An extensive work has been
done by Sankoh (1997) in order to characterize the advantages and limits of
adjusted methods. Gatekeeping procedures (Dmitrienko et al., 2003), which consist
of scheduling the hypotheses and analyzing the data with multiple families of null
hypotheses, suffer from similar problems and need an order of priority among the
endpoints. Another alternative is to use the union–intersection test procedure (Roy,
1953). This method can control the family wise error rate (FWER), and correlations
among endpoints can be taken into account. Finally, global methods that take
correlations into account, such as the T 2 test of Hotelling (1953), can be used “where
the endpoints are alternative measures of the same fundamental quantity” (Sankoh,
1997). One limitation of this procedure is that it gives a global and nondirectional
result. This problem has been pointed out by Sankoh et al. (1999). Furthermore,
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in the context of data missing completely at random (MCAR), Yoon et al. (2011)
recently showed that this is a less powerful method.

The aim of this article is to provide sample size calculation methods, as
well as corrections, for type I error probabilities based either on a global method
with a multivariate linear model or on an individual method involving a union–
intersection procedure. The approach of the global method is to generalize the T 2

test of Hotelling to deal with adjustment variables. Finally, we compare power
and FWER control of both methods with common methods for different scenarios
of correlation and adjustment. In section 2, we present the statistical methods
related to simultaneous testing, as well as power and sample size calculations.
In section 3, we present the results of a simulation study, and an application in
two nutritional clinical studies. Lastly, the results are discussed and a conclusion
including limitations and perspectives is provided in section 4.

2. METHODS

Two different approaches are presented in this section. First, we present an
individual testing procedure with an exact control of the FWER. In this context, the
power and the sample size determination are defined under different assumptions.
Second, we propose a global procedure based on a multivariate model involving
adjustment variables.

2.1. Overview

We consider the context where a vector X = �X1� � � � � Xm�
T of m quantitative

variables (endpoints) is measured in a group of 2n subjects taken at random in
two subpopulations: a control group (C) and a test group (T ). Let Xj

1� � � � �X
j
n be

n independent and identically distributed (conditional on group j) random vectors,
with expectation �j and some covariance matrix �, where j = C stands for the
control group and j = T stands for the test product. The kth component X

j
i�k of

vector Xj
i denotes the ith observation �1 ≤ i ≤ n�, on the kth endpoint �1 ≤ k ≤ m�

for product j. Let � = ��1� � � � � �m�
T = �T − �C , with �k = �T

k − �C
k be the vector of

true mean differences between the test and control products respectively, where
T denotes vector or matrix transposition. The test product will be considered to be
different from the control product on the kth endpoint, if �k �= 0. The clinical aim
is to be able to detect a mean difference between the test and the control product
for at least one endpoint among m. This can be stated under a statistical hypothesis
formalism as:

�0� � = 0m versus �1� � �= 0m� (1)

where 0m = �0� � � � � 0�T is the null vector of length m. In Section 2.3, we use a
global test of �0 to address this problem. Another avenue is to consider a so-called
individual testing procedure based on the m following single hypotheses:

�0
k � �k = 0 versus �1

k � �k �= 0� (2)
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noting that

�0 =
m⋂

k=1

�0
k and �1 =

m⋃
k=1

�1
k � (3)

This latter approach, based on the family hypothesis 	�0
1 � � � � ��

0
m
, is considered

first.

2.2. Individual Testing Procedure

In the context of individual testing procedures, we need to define all the
test statistics used. When the variances �2

k = �ar�Xj
1�k�, 1 ≤ k ≤ m, are known, the

standardized test statistic that will be used to test (2) is:

Z
�n�
k = �XT

k −�XC
k√

2
n
�k

� (4)

where �Xj
k = 1

n

∑n
i=1 X

j
i�k is the sample mean for group j.

When the �2
k’s are unknown, they will be estimated by the pooled variance

�̂2
k =

1
2n− 2

n∑
i=1

[(
XC

i�k −�XC
k

)2 + (XT
i�k −�XT

k

)2]
and the “studentized” test will be used instead

T
�n�
k = �XT

k −�XC
k√

2
n
�̂k

� (5)

In the sequel, Z�n�
k will be replaced with T

�n�
k when the �k’s are unknown.

2.2.1. A Direct Approach to Control the FWER. We reject the individual
null hypothesis �0

k if �Z�n�
k � is larger than a suitable multiplicity adjusted critical

point c�. Since �1 = ∪m
k=1�

1
k , it seems natural to decide �1 if at least one member

of the family 	�0
1 � � � � ��

0
m
 is rejected using an individual procedure. The type-I

error probability of the global procedure is then exactly equal to the FWER of the
multiple procedure, defined as:

FWER = P�reject at least one �0
k � 1 ≤ k ≤ m ��0 is true�

= 1− P
{(

�Z�n�
1 � ≤ c�

)
∩ · · · ∩ (�Z�n�

m � ≤ c�
) ��0 is true

}
� (6)

The adjusted critical value c� is chosen to satisfy FWER = �, for a fixed significance
level �. Obviously, the joint distribution of Zn = �Z

�n�
1 � � � � � Z�n�

m �T, or of Tn =
�T

�n�
1 � � � � � T �n�

m �T when the �k’s are estimated, has to be known or at least
approximated to some degree (see Section 2.2.3). Note that this procedure allows
us to explicitly specify the value of the FWER, which is better than controlling its
value using an upper limit, as is usually the case.
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2.2.2. Power and Sample Size Determination. An important task in the
design phase of clinical trials, is to determine the sample size n that guarantees
a prespecified power, noted hereafter as 1− . In single testing situations, power
is defined as the probability of rejecting the null hypothesis under investigation,
when it is false. For multiple testing and multiple comparisons, Westfall et al. (1999)
propose other definitions of power. The clinical interest here is to detect at least
one significant endpoint among m with a given power, so we use the the so-called
minimal power (referred to as disjunctive power by Senn and Bretz (2007)), which
is given by

1−  = P
(
reject at least one �0

k � 1 ≤ k ≤ m ��1 is true
)

= 1− P
{(

�Z�n�
1 � ≤ c�

)
∩ · · · ∩ (�Z�n�

m � ≤ c�
) ��1 is true

}
� (7)

In this article, we want to determine the common adjusted critical value c�,
as well as the sample size n, in order to control the FWER at a fixed significance
level � and to guarantee a prespecified minimal power 1− . We use an iterative
procedure based on equations (6) and (7) with two unknown parameters (c� and n).
Clearly, the joint distribution of the test statistics used in equations (6) and (7) has
to be known under �0, as well as under �1. In the latter case, this distribution will
depend on the value of the vector of mean differences between the test and control
products (reported hereafter as �∗ �= 0), and also on � or an estimate of it. This is
investigated thereafter.

Remark. Equation (6) can also be used alone for determining c� in order to control
the FWER when the aim is to analyze a data set.

2.2.3. Distribution of Zn and Tn.

Normality assumption and known covariance matrix. We assume that
the random vectors Xj

1� � � � �X
j
n follow a �m��

j� �� distribution with � known. In
this context, it is easy to show that

Zn

�0∼ �m �0m� R� and Zn

�1∼ �m

(√
n

2
P�∗� R

)
�

where �∗ �= 0m is the value of � under �1 and where R = P�P is the m×m

correlation matrix associated with �, with P the diagonal matrix whose kth element
is 1/�k.

Remark. Senn and Bretz (2007) proposed an alternative method based on a
common latent variable in the case where you have a single unvarying pairwise
correlation and if the components of P�∗ (noncentrality parameters) are all the
same.
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Normality assumption and unknown covariance matrix. In this context, allowing
Yk = �XT

k −�XC
k√

2
n �k

and Uk = �
�̂2k
�2k
, we use the vector

Tn =
(
T

�n�
1 � � � � � T �n�

m

)T =
(

Y1√
U1/�

� � � � �
Ym√
Um/�

)T

�

where, under the global null hypothesis �0, the vector Y = �Y1� � � � � Ym�
T follows an

m-dimensional normal distribution with correlation matrix R and where U1� � � � � Um

are dependent �2 random variables with � = 2n− 2 degrees of freedom. The
distribution of the vector Tn is a type II multivariate Student distribution with
� degrees of freedom, generalization of a bivariate t-distribution considered by
Siddiqui (1967), representing the situation of two endpoints. It has not been
possible, as far as we know, to obtain an expression of the density or distribution
function of this law in a closed form. Hasler and Hothorn (2011) propose, without
justification, to approximate this distribution by an m-variate type I t-distribution
with � = 2n− 2 degrees of freedom and with correlation matrix R̂, an estimate of
R. Using the same approximation as these authors, the distribution of the vector
Tn under the alternative hypothesis is approximated by an m-variate type I t-
distribution with the noncentrality parameter

√
n
2P�

∗ and with � = 2n− 2 degrees
of freedom.

Asymptotic context. In order to be more general, we can consider that the
covariance matrices differ between the control and test group respectively, namely,
that we have �ar

(
Xj

1

)
= �j , j = C� T . Then, the usual individual test statistic T

�n�
k

is defined by

T
�n�
k = �XT

k −�XC
k√

�̂2k�C
n

+ �̂2k�T
n

� (8)

where �̂2
k�j = 1

n−1

∑n
i=1�X

j
i�k −�Xj

k�
2 for j = C� T . The multivariate central limit

theorem enables us to state

√
n
[
��XT −�XC�− ��T − �C�

] L−→ �m�0m����

where �Xj = 1
n

∑n
i=1 X

j
i and where � = �C + �T since the two groups are

independent. We thus have

R−1/2
[√

nV��XT −�XC�−√
nV�∗

] L−→ �m�0m� Im�� (9)

where here R = V�V T with V = diag
(
1/
√
�2
k�C + �2

k�T

)
. In this context, under very

general conditions (Cox and Hinkley, 1994, pp. 258–266), we can estimate �j by :

�̂j = 1
n− 1

n∑
i=1

(
Xj

i −�Xj
) (

Xj
i −�Xj

)T
�
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Then R̂ = V̂ �̂ V̂ is a consistent estimator of R, the correlation matrix of Tn =√
nV̂ ��XT −�XC�, where V̂ = diag

(
1/
√
�̂2
k�C + �̂2

k�T

)
and �̂ = �̂C + �̂T . Now, using

Slutsky’s theorem, we obtain

R̂−1/2Tn

L−→ �m �0m� Im� � under �0�

and
R̂−1/2

(
Tn −

√
nV̂�∗

)
L−→ �m �0m� Im� � under �1� � = �∗ �= 0m�

2.2.4. Practical Implementation. Computation of the adjusted critical
value c� and determination of the sample size n are done in R, an open-source
statistical software (R Development Core Team, 2011). We used the pmvnorm( )
and pmvt( ) functions from the mvtnorm package (Genz and Bretz, 2009; Genz
et al., 2012) for the computation of the multivariate normal and of the multivariate
type I t-distribution probabilities. The sample size computation involves an effect
size parameter. We recall that the effect size for the kth endpoint is defined as �k =
�Tk −�Ck

�∗k
, where �∗

k is the population standard deviation of variable Xk. Note that �∗
k can

be expressed in terms of the standard deviations of the variables XC
k and XT

k . In our
framework of normality assumption with known or unknown covariance matrix,
the standard deviation �∗

k equals �k and the vector of effect size for the m endpoints
corresponds to the term P�∗. In the asymptotic context, as we consider a standard
deviation in the control group that is different from the test group (�k�T �= �k�C), the
vector of effect size corresponds to

√
2V�∗. In this latter definition, we consider that

�∗
k =

√
�2k�C+�2k�T

2 .
Two iterative procedures have been defined according to the assumptions

made.

Normality assumption and known covariance matrix. Briefly, the
procedure based on the pmvnorm( ) function consists of performing the following
steps:

(i) Specifying the effect size P�∗ for all endpoints, the correlation matrix R, the
significance level � and the desired power 1− .

(ii) Determining c� as a solution of FWER = � in equation (6).
(iii) For a starting value n0 of sample size, computing the minimal power 1− 

using equation (7) with n0 and c� from step (ii).
(iv) Going back to step (iii) with an incremented or decremented sample size n0

until the desired power.

Normality assumption and unknown covariance matrix. The procedure
(based on the pmvt( ) function) is slightly different because the distribution of Tn

under the null hypothesis depends on the sample size:

(i) Specifying the effect size for all endpoints defined by P�∗, the correlation matrix
R̂ (which can be given by a pilot study), the significance level �, and the desired
power 1− .
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(ii) For a starting value n0 of sample size, determining c� as a solution of
FWER = � in equation (6).

(iii) Computing the minimal power 1−  using equation (7) with n0 and c� from
step (ii).

(iv) Going back to step (ii) with an incremented or decremented sample size n0 until
the desired power.

Asymptotic context. The principle of the procedure is the same as the
procedure for the normality assumption and known covariance matrix case. Only
the specification of the effect size for all endpoints defined by

√
2V�∗ and of the

correlation matrix R̂ change and can be defined by a pilot study. This definition of
the effect size parameter permits a homogeneous notation with both previous cases.

2.3. Global Procedure

2.3.1. Model. We propose the following multivariate linear regression
model to represent the data generation process:

Y = �B + E� (10)

where YT = �XC
1 � � � � �X

C
n �X

T
1 � � � � �X

T
n � is a m× 2n matrix, � = �12n� g�A� is the

2n× �p+ 2� design matrix, with 12n = �1� � � � � 1�T, g = �1Tn� 0
T
n �

T, being an indicator
variable of each group (1 for the control group and 0 for the treatment group),
A is a 2n× p matrix whose lth column al = �aC

l1� � � � � a
C
ln� a

T
l1� � � � � a

T
ln�

T contains
the measurements of the lth adjustment variable (1 ≤ l ≤ p) on the 2n subjects,
B is a �p+ 2�×m matrix of unknown coefficients associated with the design
matrix, and E is a 2n×m random matrix of errors such that vec�E� follows a
�2n×m�0m� I2n ⊗ �� distribution, where vec�·� denotes the column-stacking operator
and ⊗ denotes the Kronecker symbol. We let � be the second row of the matrix
B, which represents the adjusted group effect for the m endpoints. It is worthwhile
mentioning that � = ��XC

i − XT
i �ai�. In the sequel, we note ā

j
l = �1/n�

∑n
i=1 a

j
li and

alal′
j = �1/n�

∑n
i=1 a

j
lia

j
l′i, j = C� T .

To overcome the multiple testing problem, we propose using a global test of
the hypothesis

�0� � = 0m versus �1� � �= 0m�

In the framework of model (10), this can be restated as

�0� CB = 0Tm versus �1� CB �= 0Tm�

using the contrast row vector C = �0� 1� 0Tp� of size 1× �p+ 2�.
Under the multinormality assumption of the disturbances, the least square

estimator of matrix B is given by:

B̂ = (�T�
)−1

�TY ∼ ��p+2�×m

(
B�
(
�T�

)−1 ⊗ �
)
�
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We can thus state

CB̂ = C
(
�T�

)−1
�TY ∼ �m �CB�W� �

where
W = �C ⊗ Im�

[(
�T�

)−1 ⊗ �
] (

CT ⊗ Im
)
� m×m� (11)

This leads to

W−1/2
[
CB̂− CB

]
= W−1/2

[
C
(
�T�

)−1
�TY − CB

]
∼ �m�0m� Im��

2.3.2. Statistical Procedure and Distribution.

Known covariance matrix �. In this context, the test statistic considered is:

Z2
n =

(
CB̂
)
W−1

(
CB̂
)T

�

After some relatively easy but tedious computations, we were able to show, using
a formula for matrix inversion in block form, that W from equation (11) can be
written as

W = ��T��−1
2�2� = 1

n

(
2+ vTM−1v

)
��

where v is a p× 1 vector whose lth component is vl = āC
l − āT

l , and where M is a

p× p matrix with general term Ml�l′ =
(
alal′

C − āC
l ā

C
l′
)+ (alal′

T − āT
l ā

T
l′
)
.

It can be shown (Bilodeau and Brenner, 1999) that, under the null hypothesis,
Z2
n follows a �2 distribution with m degrees of freedom, reported as �2m. We

then reject the null hypothesis �0 if the observed value of the test statistic Z2
n

is greater than qm
1−�, the quantile of order 1− � of the �2m. Under the alternative

hypothesis �1 � CB = �∗T (with �∗ �= 0m), the test statistic Z2
n follows a noncentral

�2 distribution with m degrees of freedom and decentrality parameter

�n = �∗TW−1�∗� (12)

Unknown covariance matrix �. In this context, the test statistic
considered is

T 2
n =

(
CB̂
)
Ŵ−1

n

(
CB̂
)T

�

where Ŵn = �C ⊗ Im����
T��−1 ⊗ �̂��CT ⊗ Im� = 1

n
�2+ vTM−1v��̂, with �̂ an

unbiased estimator of � (see Appendix 2 for an explicit definition). In this case,
under the null hypothesis, T 2

n converges in distribution to a �2 distribution with
m degrees of freedom. We also prove that, under the alternative hypothesis
�1 � CB = �∗T �= 0Tm, the test statistic T 2

n converges in distribution to a noncentral
�2 distribution with m degrees of freedom and decentrality parameter

�n = �∗TŴ−1
n �∗� (13)
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We note that, without adjustment variables in model (10), the test statistic T 2
n

reduces to the classical Hotelling’s test statistic (see Appendix 2 for a proof of this
result).

2.3.3. Power and Sample Size Determination. In the context of this
global test, the power function for the statistic Z2

n (or T 2
n ) is

1−  = P
(
Z2
n > qm

1−���1
) = 1− F�2m��n�

�qm
1−��� (14)

where F�2m��n�
�·� is the cumulative distribution function of the noncentral �2m with

decentrality parameter �n. The sample size required to achieve the desired power
1−  is given as the smallest integer satisfying equation (14), using the decentrality
parameter �n as given in equation (12) (or (13)).

2.3.4. Practical Implementation. To achieve the sample size computation,
the user specifies the vector �∗ of mean differences between the test and the
control products, the covariance matrix � between the outcomes, the desired
significance level �, and the desired power 1− . The R program we developed
enables computation of the decentrality parameter �n using equation (12), and the
sample size using equation (14) (or (13)).

In the presence of a single adjustment variable, the decentrality parameter �n
from equation (13) reduces to

�n = �∗T

1
n

2+ �āC
1 − āT

1 �
2

a2
1

C − �āC
1 �

2 + a2
1

T − �āT
1 �

2

 �̂


−1

�∗�

where a
j
1 = �1/n�

∑n
i=1 a

j
1i, a

2
1

j = �1/n�
∑n

i=1 a
2
1i
j and where a

j
1i is the value of the

adjustment variable for the i-th subject for treatment j (j = C: control; j = T :
treatment). From a practical point of view, the user has to specify this parameter,
which can be evaluated after a pilot study has been conducted. Note that for
a binary adjustment variable, for example, gender (1 = women and 0 = men),
the user only has to specify the frequency of women in each group (since in this

case a2
1

C = āC
1 ). Moreover, if the number of women in each group is the same,

the computation of the decentrality parameter �n reduces to the case without an
adjustment variable.

3. RESULTS

3.1. Simulations

A simulation study was performed to evaluate the performance of the two
proposed approaches. We first studied how the individual testing procedure was
able to control the FWER. We investigated three different assumptions: normality
and known covariance matrix (termed “NormKnown”), normality and unknown
covariance matrix (termed “NormUnKnown”), and the asymptotic context (termed
“Asympt”). We also compared the results obtained with the Bonferroni method
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and with the “naive method,” which consists of choosing the most significant test
without any correction of the FWER. We then investigated the power of our
proposed approaches and compared them to standard approaches such as Holm
(1979), Hochberg (1988), and Bonferroni and Hotelling (1953); methods that are
implemented using the multtest R package (Pollard et al., 2005).

All data for these simulations came from the model defined in equation (10)
with one adjustment variable (p = 1), which follows a Bernoulli distribution with
a probability of success � = 0�6. Each simulation was carried out on 200 subjects
in each group. To simplify the interpretation and shorten the simulation study, we
considered a compound symmetric covariance matrix � with diag��� = 1m. Note
that we thus have a constant pairwise correlation � for all pairs of outcomes.
Moreover, as multiple endpoints are often correlated in the same direction, we
only investigated positive correlations (� > 0). We used 5,000 replications for all
simulations. In the sequel, we define BT = �b0� �� b1� where the vector b0 (m× 1)
represents the intercept of the model and where b1 represents the coefficient vector
associated with the adjustment variable.

3.1.1. FWER. We first investigated, for different numbers of endpoints
(m ∈ 	1� � � � � 15
), the control of the FWER for the individual testing procedure
(under the three assumptions), for the Bonferroni method and for the naive
approach. Under the null hypothesis (� = 0m), the FWER was estimated by the
proportion of the Monte Carlo experiments that lead to a rejection of the null
hypothesis (pvalue < 0�05). In this simulation, we considered a model without an
adjustment variable (b1 = 0m), the intercept vector was fixed at b0 = 1m, and finally
� was set to 0.6. Figure 1 shows the evolution of the FWER for different numbers
of endpoints.

The naive method, without correction for the multiple testing problem,
increased with the number of endpoints. The error rate calculated by the Bonferroni
method decreased with the number of endpoints. This correction was therefore too
conservative whereas the individual testing procedure gave a type I error rate close
to the nominal 0.05 value, under the three assumptions.

Figure 1 FWER as a function of the number of endpoints for the naive, Bonferroni, and individual
testing procedure.
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Figure 2 Minimal power study of different methods as a function of the correlation coefficient �

from data that came from a model with no adjustment variable effect.

3.1.2. Power. We investigated the performance of the proposed approaches
with varying correlations among the outcomes. We considered m = 3 correlated
endpoints. First, we investigated the case where the adjustment variable has no effect
(b1 = 0m) on the outcomes. We then used b1 = �1�0� 0�8� 0�6�T in order to determine
the effect of an adjustment variable. In the two simulations cases, we fixed the
treatment effect at � = �0�31� 0�13� 0�19�T and the intercept at b0 = �2� 3� 1�T.

No effect of the adjustment variable. The results of the minimal power for
the different methods are presented in Fig. 2. We can see that for low correlation
(� < 0�2) and high correlation (� > 0�7), the global method seems to be more
powerful than the individual testing procedure, which was more powerful than
the other methods. For medium correlation, the individual testing method was the
most powerful and the global procedures were less so. Finally, for high correlation
(� > 0�6), as expected, the methods that do not take into account the correlation
between the endpoints were the least powerful.

Effect of the adjustment variable. The results of the minimal power
for the different methods are presented in Fig. 3. In this simulation, we can
see that the global procedure and the individual testing procedure with known
covariance matrix assumption were more powerful than the others. The global
method was more powerful for low and high correlation, whereas the individual
testing procedure for known covariance matrix assumption gave better results for
medium correlation. In this situation, the global method outperformed Hotelling’s
test. Taking into account an adjustment variable improves the estimation of the
covariance matrix, which results in an increase of the power with the global method.
The other methods are less powerful in this situation since they do not take into
account the adjustment variable. However, the individual testing procedure was still
more powerful than methods that do not take into account the correlation between
endpoints.

3.2. Sample Size Computation

We present some results about sample size calculation in the context of three
endpoints with the following parameters: the vector �∗ = �0�2� 0�3� 0�4�T of mean
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Figure 3 Minimal power study of different methods as a function of the correlation coefficient � for
data generated from a model involving an adjustment variable.

differences between the test and the control products, and a compound symmetric
covariance matrix � between the outcomes, with diag��� = �1�12� 1�22� 2�32�T. The
desired significance level was chosen at � = 0�05. For the global method with a
binary adjustment variable, the frequency of this variable in each group is fixed for
samples of any size to āC = 0�4 and āT = 0�6. The results in Table 1 are coherent
with the previous power simulation study. The sample size of each group required
to reach a desired minimal power increases with the correlation coefficient for the
Bonferroni procedure. We can also observe that for low (� < 0�2) and high (� > 0�6)
correlations, the procedure based on the model requires fewer subjects than the
other methods. For medium correlations, it is the individual testing procedure
which requires the smallest sample size. We note that the global method with
an adjustment variable (MA) requires more subjects than a model without an
adjustment variable (M). While this may appear strange in regards to the previous

Table 1 Sample size n of each group required to achieve the desired level of minimal power: for
Bonferroni (B), for our individual testing procedure for known (K) or unknown (U) covariance matrix,
and in the asymptotic context (A), for our global method based on a multivariate model without an
adjustment variable (M), and with a binary adjustment variable (MA), for various correlations � and
with FWER= 0.05.

Power (0.80) Power (0.90)

� B K/A U M MA B K/A U M MA

0 221 219 222 174 181 287 285 288 226 235
0.1 233 231 233 207 215 304 303 305 268 280
0.2 246 243 245 238 248 322 319 321 309 322
0.3 258 255 256 268 279 340 336 337 349 363
0.4 272 265 267 296 308 358 350 352 385 401
0.5 285 276 277 320 334 376 365 366 416 434
0.6 299 285 286 339 354 393 376 378 441 459
0.7 312 292 293 349 363 409 386 387 453 472
0.8 325 295 297 338 352 423 390 391 440 458
0.9 333 291 292 278 289 431 383 385 361 376
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power simulation study, in fact, the sample size calculation assumes that � is known.
Therefore, adding an adjustment variable to improve the estimation of � is not
useful. However, in practice � is unknown (even if it has been estimated in a
previous study with a very large sample size). We recommend that the sample size be
determined using an adjustment variable if further data analysis is to be performed.

3.3. Application in Clinical Studies in Nutrition

The purpose of this section is to present the results obtained using our
methods, in terms of sample size determination and the statistical data analysis.
The two following applications deal with clinical studies performed in nutrition.
Both studies were double-blind randomized controlled trials (DB-RCT) performed
according to Good Clinical Practices (ICH-GCP).

3.3.1. Example 1: Sample Size Calculation. The first application is the
sample size determination of a new DB-RCT with the objective of demonstrating
the efficacy of the consumption of a dairy product on seric antibody titers for
three strains of Influenza virus. For kth strain, the individual null hypothesis is
�0

k � �k = �T
k − �C

k = 0. The product will be considered as effective if at least one out
of the three strains is statistically significant. According to the usual standard, the
type II error probability is fixed at 20% in order to obtain a power of 80% and the
family-wise error rate must be controlled at 5%.

Two pilot studies were planned to define the product effects and variability.
Both were DB-RCT multicentric studies conducted in France among elderly
volunteers during the two vaccination seasons 2005 and 2006. Details are reported
in Boge et al. (2009). Based on the results, the product’s effects defined by means
and correlations were calculated. The mean differences between both groups is

�̂ = �0�35� 0�28� 0�46�T and the covariance matrix was �̂ =
(

5�58 2�00 1�24
2�00 4�29 1�59
1�24 1�59 4�09

)
. Following

experts consensus, the mean differences obtained could be considered as clinically
relevant. Based on these assumptions, we compared the most powerful methods,
namely, the global and the individual procedure for known covariance matrix.
Table 2 shows that the sample size may be reduced significantly depending on the
method used. Indeed, with an individual procedure for known covariance matrix
and an adjusted type I error probability at 0.0178, the sample size falls to 336
subjects required to see a significant difference for at least one outcome, versus 359
for the global method.

Table 2 Sample size computation with global method and
individual procedure

Method Type I error Sample size (n)

Global 0.05 359
Indiv 0.0178 336

Note. Global: Global method based on multivariate model.
Indiv: Individual procedure for known covariance matrix.
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Table 3 Adjusted pvalue estimation on 11 immunological markers
for various multiple testing procedures, in an efficacy study of
fermented dairy product

Endpoint Naive Bonferroni Holm Hochberg Asympt

1 0.13 1.00 0.74 0.60 0.62
2 0.15 1.00 0.74 0.60 0.67
3 0.45 1.00 0.90 0.67 0.98
4 0.67 1.00 0.90 0.67 1.00
5 0.10 1.00 0.70 0.60 0.52
6 0.02∗ 0.21 0.19 0.18 0.14
7 0.00∗ 0.01∗ 0.01∗ 0.01∗ 0.01∗

8 0.30 1.00 0.90 0.67 0.91
9 0.12 1.00 0.74 0.60 0.59
10 0.07 0.76 0.55 0.55 0.40
11 0.02∗ 0.22 0.19 0.18 0.14

∗: Significant association.

3.3.2. Example 2: Analysis of Clinical Study Data. In order to
demonstrate the effect of a fermented dairy product on the immune system,
a monocentric, DB-RCT, parallel study with two groups was performed in
1,000 healthy subjects. Results are reported in Guillemard et al. (2009). As an
exploratory analysis, the immune function of interest was characterized by a set
of 11 biomarkers. According to the exploratory concept of this analysis, the
product efficacy was assumed if at least one out of the 11 markers was statistically
significant. During this analysis, the covariance matrix between parameters and the
means vector was estimated on the actual data.

The statistical analysis was performed using a test of comparison of
means with common multiple testing procedures and with the proposed
asymptotic individual testing procedure defined in Section 2. A global procedure
involving a model without an adjustment variable was also used. The functions
indiv.1m.analysis( ) and global.1m.analysis( ) from the R package
rPowerSampleSize were used to perform the analysis.

The results for the individual method (three assumptions) in terms of “adjusted
pvalue” estimation are summarized in Table 3.

The importance of using a type I error correction can be seen in this table.
Without any correction (“naive method”), we could conclude that there are three
significant endpoints (markers 6, 7, and 11). But, when a correction method is used,
only one significant endpoint is found (marker 7). This conducts to conclude to the
efficacy of the product. The global method, which gives us only a single result, is
also significant with a pvalue less than 0.01 and confirms that we have at least one
marker that is significant.

4. CONCLUDING REMARKS

In this article, we considered two approaches (individual and global) for
sample size determination and for the analysis of data with multiple continuous
endpoints. The global method we have developed leads to a generalization of the
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well-known Hotelling (1953) statistic, involving adjustment variables. The methods
developed allow consideration of cases when the covariance matrix is known
or estimated. When designing clinical studies, assumptions for the sample size
calculation may come from different sources that are more or less biased. The best
situation is to be able to gather data from a well-designed pilot study, among defined
populations on relevant and well-measured endpoints. In this case, the estimator
of the mean differences could be considered as nonbiased or slightly biased. An
interesting approach would be to consider the lower and upper boundaries of the
confidence interval of the estimator and to calculate the two sample sizes associated
to them. Regarding the covariance matrix, the bias may be more sensitive but several
approaches might be used in order to correct this bias, as described, for instance, by
Julious and Owen (2006). In any case, it is important to consider the results from
literature or previous studies not as “known values” but always as estimations with
their variability.

Simulation studies showed that the method based on the global model
with adjustment variables is a powerful method when the true covariance matrix
is unknown. Consequently, better sample size computations are possible. When
adjustment variables are not available, the individual method seems to be more
powerful, except for low and high correlation cases. Furthermore, in this context,
the methods developed perform favorably compared to common procedures.
Therefore, the choice of the method depends mainly on the aim of the study; for
example, the global method gives only a global result and not a directional one.
However, the choice also depends on the value of the correlation coefficient between
the endpoints. Note that work on the generalization of the individual method in the
context of detecting r significant endpoints among m is ongoing. Note also that we
have implemented various methods in an R package called rPowerSampleSize.
In this article, we have focused our analysis on bilateral tests, however, our package
also takes into account the unilateral case for the individual procedure.
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APPENDIX 1: rPowerSampleSize PACKAGE

The rPowerSampleSize package was developed in R, an open source statistical
software available at http://www.r-project.org. It contains, for the moment,
five functions: three for the sample size computation (one for the individual
procedure, one for the global method, and one for the Bonferroni procedure) and
two for the analysis of real data in order to solve the multiple testing problem (one
for the individual procedure, one for the global method). We present an illustration
of the main rPowerSampleSize functions next.

Briefly, concerning the sample size determination, the user needs to specify in
the indiv.1m.ssc( ) function the alternative hypothesis (bilateral or unilateral),
the effect size and the correlation between the endpoints. However, for the global
method, the user also needs to specify in the global.1m.ssc( ) function, the
difference of means between the two groups (�∗), and the vector of the standard
deviations of each endpoint, instead of the effect size. With an adjustment variable,
the user also needs to enter the mean of the adjustment variable for each group. The
functions for sample size computation provide the adjusted significance level and
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the required sample size. The bonferroni.1m.ssc( ) function is not displayed
in the following.

# Sample size computation for the individual method:
> indiv.1m.ssc(method = "Known",ES=c(0.1,0.2,0.3),
cor=diag(1,3))

Sample size: 183
Adjusted significance level: 0.0170

# Sample size computation for the global method:
> global.1m.ssc(method = "Adj.Model",mean.diff=c(0.1,0.2,

0.3), sd=c(1,1,1),cor=diag(1,3),v=-0.2,M=0.46)

Sample size: 163

Concerning the analysis of the data, the user needs to specify in the
indiv.1m.analysis( ) function, the alternative hypothesis (bilateral or
unilateral), and the assumption used: asymptotic test or normality assumption. The
function provides the adjusted pvalue associated to each endpoint. For the analysis
based on the multivariate model, the user specifies the adjustment covariable in the
global.1m.analysis( ) function that returns the pvalue of the global test.

> data(data.sim)
> n <- nrow(data)/2
> XC <- data[1:n,1:3]
> XT <- data[(n+1):(2*n),1:3]

# Data analysis for the individual method:
> indiv.1m.analysis(method = "UnKnown",XC=XC,XT=XT,n=n)

Endpoint 1 2 3
Adjusted p-value 0.4164 0.1419 0.0076

# Data analysis for the global method:
> global.1m.analysis(XC=XC,XT=XT,A=data[,5],n=n)

p-value: 0.0023

APPENDIX 2: STATISTIC T
2
n REDUCES TO HOTELLING’S TEST STATISTIC

Without adjustment covariates in the multivariate model, the matrix Ŵn =
�C ⊗ Im����

T��−1 ⊗ �̂��CT ⊗ Im� reduces to Ŵn = 2
n
�̂. Then the statistic T 2

n is defined
as

T 2
n = n

2
�CB̂��̂−1�CB̂�T�

where

B̂ = ��T��−1�TY
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and

�̂ = 1
2n− �2+ p�

�Y − �B̂�T�Y − �B̂��

with p the number of adjustment variables. In the context of no adjustment variable,
we obtain

B̂ = [�XT ��XC −�XT
]T

and thus

�̂ = 1
2n− 2

n∑
i=1

[(
XC

i −�XC
) (
XC

i −�XC
)T + (XT

i −�XT
) (
XT

i −�XT
)T]

�

Finally, the statistic T 2
n can be written as

T 2
n = n

2
��XC −�XT �T�̂−1��XC −�XT ��

This statistic is also known as Hotelling’s two-sample T-squared statistic T 2

when the two groups have the same sample size �nT = nC� and follows Hotelling’s
T-squared distribution:

T 2 = nTnC

nT + nC

(�XC −�XT
)T

�̂−1
(�XC −�XT

) ∼ T 2�m� nT + nC − 2��

Note that Williams et al. (2004) showed that

T 2 L−→ �2m�

Thus, using a quantile based on the chi-squared distribution or based on Hotelling’s
T-squared distribution will logically give the same results.


