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The problem of testing mutual independence of p random vectors in a general setting
where the dimensions of the vectors can be different and the distributions can be
discrete, continuous or both is of great importance. We propose such a test which
utilizes multivariate characteristic functions and is a generalization of known results.
We characterize the limiting distribution of the test statistic under the null hypothesis.
The limiting null distribution is approximated and the method is validated. Numerical
results based on simulations are investigated and our methodology is implemented in the
R package IndependenceTests. Power comparisons are also presented for some partial
cases of our general test, where some competitive procedures exist.
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1. Introduction

Very often, at certain stage of a statistical inference procedure, the question arises if a certain number p of random
vectors (with any combination of component sub-vectors) can be assumed to be mutually independent. Such tests are of
great importance to functional magnetic resonance imaging (fMRI) for example. In this situation, it is important to find
which areas of the brain are involved in certain activities and if there are any statistical associations between these brain
activities. Recovering the underlying components of these activities from a given set of linearly mixed observations can be
an ill-defined problem. However, the assumption of independence among the sources provides a surprisingly powerful
and effective technique for a wide range of problems in various practical domains. One of the techniques to deal with
this is Independent Component Analysis (ICA). The main goal of ICA is to extract multivariate sources by using an explicit
assumption about the independence of the sources. Therefore, the need for testing for multivariate independence arises
naturally.

In the influential paper [1], the distance correlation is introduced as a new dependence measure between two random
vectors. The empirical version of this measure is easily computable in their R package called Energy. This distance
correlation is based on functionals of the characteristic functions so it can cover a wide variety of situations such as purely
continuous, purely discrete, or mixed components of the random vectors. More details on the properties of this distance
correlation, the issue of testing independence of two random vectors, and uniqueness are discussed in [29–31].

When the number of vectors p is equal to 2, the distance correlation and its latest extensions are indicative about
independence and could be used to construct an independence test, too. In fact, [31, p. 2783] discusses such a test. However,
when the number of vectors p is larger than 2, it is not sufficient to just look at pairs of vectors only when testing for mutual
independence. Hence there is a need to generalize the test of multivariate independence for the case of p > 2.
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Such a test for p > 2, based on a Cramér–vonMises type functional of a process defined from the empirical characteristic
functions, has been proposed earlier in [3]. However, in order to determine the asymptotic distribution of the resulting
test-statistic, the authors resort to a simplifying assumption. Although they do not assume joint multivariate normality,
they still assume that each of the sub-vectors is marginally normally distributed. [23] also deals with the case of arbitrary
p > 2, but only tests for joint independence of all the p univariate components using only Monte Carlo approximations of
the distribution of the test-statistic. The paper [19] also discusses testing independence based on empirical characteristic
functions, but are only concerned with the joint independence of all the p univariate components. They also modify (by
staying within the framework of testing joint independence of all the p components) their original test that uses values of
the empirical characteristic functions on compact supports only. The assumption of compact support is restrictive since
a test of such type would be inconsistent against virtually all possible deviations from the null hypothesis (there are
counterexamples of two different distribution functions with identical characteristic functions on a compact interval (see
[32])). However, considering characteristic functions or their empirical counterparts on the whole space (to avoid test
inconsistency) introduces many technical difficulties (especially because of their periodicity).

The modified test of [32] has an asymptotically distribution free version for testing independence of all p univariate
components only, but this modification can only be applied when all components of the joint distribution are continuous.
In another development, [2] proposes a non-parametric test of independence between random vectors based on
characterization of mutual independence defined from probabilities of half-spaces in a combinatorial formula of Möbius.
Their paper, which generalizes [14], is related to our current project. They use the combinatorial formula expressed by using
the cumulative distribution functions of (sub)vectors. Now our approach, by using the characteristic functions, allows us to
easily accommodate continuous, discrete, and mixed components. In addition, our approach is supported by earlier works
showing that goodness-of-fit and independence tests based on the empirical characteristic functions are very competitive
for testing the real multinormal distribution (see, e.g., [16,22]).

As pointed out in [2], without the assumption that each sub-vector is one-dimensional with a continuous cumulative
distribution function, any test of independence can no longer be distribution free. Hence both tests in [2] and in the current
paper, are naturally not distribution free. The paper [2] deals with this issue by computing bootstrap approximations
whereas we evaluate the asymptotic distribution of our test statistic.

With the recent advances of copulas in statistical applications, another focus of a stream of papers has been in deriving
tests of independence among random vectors based on Cramér–von Mises functionals of the empirical copula process.
The paper [13] studies the limiting distribution of such statistics under contiguous sequences of alternatives and analyzes
asymptotic relative efficiencies in some classes of copula alternatives. A summary of the efforts in this direction, as well as
further references can be seen in [20,25]. The copula approach is tempting to apply in this setting on ideological grounds.
Indeed, the copula function is meant to precisely ‘‘extract’’ the dependence structure by ‘‘leaving aside’’ the marginals thus
making a copula-based approach very suitable to testing multivariate independence. Both papers utilize the same empirical
process based on the characterization of stochastic vectorial independence in terms of copulas to construct the test-statistic.
However, this approach is limited only to continuous random vectors. Besides, their asymptotic distribution arising from the
testing procedure, is even further restricted by the requirement that the copula has continuous partial derivatives. They
also apply bootstrap approximations which may be more computationally intensive than our proposed procedures. For the
above reasons we do not consider further comparison of our methods with copula-based approaches in this paper.

Our paper proposes a test in the most general form. That is, our test statistic is based on a Cramér–von Mises type
functional of a process defined from the empirical characteristic functions, does not need any of the restrictive assumptions
such as in [3] and treats the case when p ≥ 2, where each of the p components can itself be a vector of arbitrary length
qi, i = 1, . . . , p.We offer a theory about the asymptotic distribution of our characteristic functions-based test statistic as
opposed to the use of the bootstrap approach as in [2]. This allows us to determine the p-values for our test and are able
to reduce the computational time in some cases without compromising the ability of the test to keep the correct level of
significance asymptotically (see Section 6). Our paper, by stating the asymptotic distribution of the test statistic, represents a
generalization of [1] and of [28]. We note that in [1], (for the case of p = 2 only), a bound of the control of the first type error
of the test is given. This bound is fast to compute but being a bound only, may not be accurate enough. Further, we solve the
issues with numerical calculation of our test statistic via its decomposition into feasible components and calculate critical
values numerically based on asymptotic approximations. We also have performed extensive investigation of the power of
our test. We have included an example of the case p ≥ 3 where, to the level of generality considered, the only competitor to
our test is the bootstrap-based procedure from the program dependogram in [2], and have demonstrated the favourable
performance of the new test in terms of computational time and ability to keep the size close to the nominal level. For the
case of p = 2 we have compared our test to the tests of [2,15,28] and have demonstrated the favourable performance of our
test in comparison to all competitors. We also offer a variety of weight functions thus further extending the applicability of
our testing procedure.

The paper is organized as follows. In Section 2, we define our test statistic and in Section 3, we study its asymptotic
distribution. We discuss the normalization of our test statistic in Section 4 and in Section 5, we propose and investigate
several choices of weight functions in our construction of the test statistics. In Section 6, we discuss the numerical
implementation. We also demonstrate the favourable performance of our test both under the null hypothesis and under
the alternative, on specific simulated examples, by comparing it to the tests from [15,28]. Section 7 contains the proofs.
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2. Notation and setting

Let X
˜
1, . . . ,X

˜
n be a random sample representing n independent copies of a vector

X
˜

=

X1

...
Xp

 ∈ Rq1 × · · · × Rqp .

Accordingly, t
˜

= (t1⊤, . . . , tp⊤)⊤ ∈ Rq1 × · · · × Rqp is a column vector of length q :=
p

ℓ=1 qℓ, qℓ ≥ 1, where ⊤ denotes
the transposition operator. The purpose is to test the hypothesis of mutual independence of the p sub-components of X

˜
.

Suppose ϕ (t
˜
) is the true (unknown) characteristic function of X

˜
at t

˜
and ϕℓ(tℓ) the true (unknown) characteristic function

of Xℓ at tℓ, ℓ = 1, . . . , p. Then the null hypothesis is

H0 : ϕ (t
˜
) =

p
ℓ=1

ϕℓ(tℓ), ∀t
˜
∈Rq1×···×Rqp . (1)

The empirical estimator of ϕ (t
˜
) is

ϕ̂n (t
˜
) = n−1

n
j=1

eit
˜

⊤X
˜
j = n−1

n
j=1

p
ℓ=1

eitℓ
⊤Xℓj ,

where i is the complex number such that i2 = −1. Similarly, the empirical estimator of ϕℓ(tℓ) is ϕ̂n,ℓ(tℓ) = n−1n
j=1 e

itℓ⊤Xℓj .

We denote

ϕ̃n (t
˜
) =

p
ℓ=1

ϕ̂n,ℓ(tℓ).

Further, for a suitably chosen non-negative weight functionw (t
˜
), we denote the weighted L2 norm of the complex-valued

function f (·) by ∥f ∥2
w =


Rq |f (t

˜
)|2w (t

˜
) dt

˜
. The proposed family of test statistics for testing H0 is in the form

nTn(w) = ∥
√
nDn∥

2
w = n


Rq1×···×Rqp

|Dn (t
˜
) |2w (t

˜
) dt

˜
, (2)

where

Dn (t
˜
) = ϕ̂n (t

˜
)− ϕ̃n (t

˜
)

and the weight functionsw(·) satisfying

w (t
˜
) =

p
ℓ=1

v(tℓ).

Here v(tℓ) = v(−tℓ), ℓ = 1, 2, . . . , p are symmetric, non-negative, and continuous. We consider the cases when
Rqℓ v(tℓ)dtℓ = 1 and cases in which the latter integral is in fact infinity. Certain choices of v(·) lead to simpler expressions

and we discuss them in Section 5.
By introducing the notation fXℓj (tℓ) = 1 − eitℓ

⊤Xℓj and gXℓj (tℓ) = eitℓ
⊤Xℓj , we can rewrite ϕ̂n,ℓ(tℓ) as follows:

ϕ̂n,ℓ(tℓ) = n−1
n

j=1

gXℓj (tℓ) = 1 − n−1
n

j=1

fXℓj (tℓ).

We recall the well-known multinomial formula. Let A = {k1, . . . , k|A|} ≠ ∅ be any finite set with cardinality |A|. If
u, v ∈ R|A|, with the notation u = (u1, . . . , u|A|)

⊤
:= (u(k1), . . . , u(k|A|))⊤, then


B⊂A


i∈B

u(i)


j∈A\B

v(j)


=


i∈A


u(i) + v(i)


. (3)

Using (3), we can write the following

ϕ̂n (t
˜
) = n−1

n
j=1

p
ℓ=1

gXℓj (tℓ) = n−1
n

j=1


B⊂Ip

(−1)|B|

ℓ∈B

fXℓj (tℓ), (4)
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and

ϕ̃n (t
˜
) =

p
ℓ=1


n−1

n
j=1

gXℓj (tℓ)


=


B⊂Ip

(−1)|B|

ℓ∈B


n−1

n
j=1

fXℓj (tℓ)


. (5)

Here Ip = {1, . . . , p} and the summation is calculated over all B ⊂ Ip.
Now, after some algebraic transformations, we obtain an explicit expression to calculate (2). We formulate the outcome

as our first Lemma.

Lemma 1. (a) Without any further restrictions on the weight functions we have

nTn(w) = n


B⊂Ip;B≠∅


B′⊂Ip;B′≠∅

(−1)|B|+|B′
|


n−2

n
j=1

n
j′=1


ℓ∈B∩B′

βj,j′,ℓ


ℓ∈B\B′

γj,ℓ

ℓ∈B′\B

γj′,ℓ

− 2


n−1

n
j=1


ℓ∈B∩B′


n−1

n
j′=1

βj,j′,ℓ

 
ℓ∈B\B′

γj,ℓ

ℓ∈B′\B


n−1

n
j′=1

γj′,ℓ



+


ℓ∈B∩B′


n−2

n
j=1

n
j′=1

βj,j′,ℓ

 
ℓ∈B\B′


n−1

n
j′=1

γj′,ℓ

 
ℓ∈B′\B


n−1

n
j′=1

γj′,ℓ


.

Here

γj,ℓ :=


Rqℓ

fXℓj (tℓ)v(tℓ)dtℓ =


Rqℓ

fXℓj (−tℓ)v(tℓ)dtℓ ∈ R

and

βj,j′,ℓ = βj′,j,ℓ := γj,ℓ + γj′,ℓ − γj,j′,ℓ =


Rqℓ

fXℓj (tℓ)fXℓj′
(−tℓ)v(tℓ)dtℓ ∈ R.

Note that the calculation of the term γj,j′,ℓ :=


Rqℓ
fXℓj −Xℓ

j′
(tℓ)v(tℓ)dtℓ ∈ R involves the same pattern like the calculation of

γj,ℓ. In addition, when j = j′, βj,j′,ℓ = 2γj,ℓ.
(b) When all integrals


Rqℓ v(tℓ)dtℓ = 1, ℓ = 1, . . . , p, we obtain a simplified version of (a):

nTn(w) = n−1
n

j=1

n
j′=1

p
ℓ=1

ξj,j′,ℓ − 2
n

j=1

p
ℓ=1


n−1

n
j′=1

ξj,j′,ℓ


+ n

p
ℓ=1


n−2

n
j=1

n
j′=1

ξj,j′,ℓ


,

where ξj,j′,ℓ =


Rqℓ cos

tℓ⊤


Xℓj − Xℓj′


v(tℓ)dtℓ ∈ R.

Note that the formula in (a) is more general. In particular, it covers the cases of heavy-tailed weight functions whose
integrals are infinite, like the weights considered in [1,31].

3. Asymptotic distribution of the test statistic

In this section, we study the asymptotic distribution of our test-statistic. Before we proceed, we need the following
notation and condition.

Let ψ(t
˜
) = (1 − Re[ϕ(t

˜
)])1/2, ∥t

˜
∥ = max(|t1|, . . . , |tq|) and let µq stands for the q-dimensional Lebesgue measure.

Suppose ϕ̄(h) = sup{z : 0 ≤ z ≤ 1, µq{t
˜

: ∥t
˜
∥ < 1/2, ψ(t

˜
) < z} < h}. Then assume that the condition 1

0

ϕ̄(h)
h(log 1

h )
1/2

dh < ∞ (6)

is satisfied. Note that this condition is necessary and sufficient for
√
n

ϕ̂n − ϕ


to convergeweakly to someGaussian process

on every compact set (see [5, Theorem 3.1]).

Theorem 1. Suppose condition (6) holds. If X1, . . . ,Xp are mutually independent, then the process
√
nDn converges in the space

C(Rq,C) of continuous functions from Rq to C, to a zero mean complex valued Gaussian process D having covariance function
given by

C (s
˜
, t
˜
) := E


D(s

˜
)D (t

˜
)


=

p
ℓ=1

ϕℓ(−tℓ + sℓ)−

p
ℓ=1

{ϕℓ(−tℓ)ϕℓ(sℓ)} −

p
ℓ=1

{ϕℓ(−tℓ + sℓ)− ϕℓ(−tℓ)ϕℓ(sℓ)}
p

j=1;j≠ℓ

ϕj(−tj)ϕj(sj).
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After some calculations, the expression for the covariance function can be simplified to
p
ℓ=1

ϕℓ(−tℓ + sℓ)−

p
ℓ=1

{ϕℓ(−tℓ)ϕℓ(sℓ)}


1 − p +

p
ℓ=1

ϕℓ(−tℓ + sℓ)
ϕℓ(−tℓ)ϕℓ(sℓ)


.

The pseudo-covariance function is given by

P (s
˜
, t
˜
) := E {D(s

˜
)D (t

˜
)}

=

p
ℓ=1

ϕℓ(tℓ + sℓ)−

p
ℓ=1

{ϕℓ(tℓ)ϕℓ(sℓ)} −

p
j=1


ϕj(tj + sj)− ϕj(tj)ϕj(sj)

 p
ℓ=1;ℓ≠j

ϕℓ(tℓ)ϕℓ(sℓ).

Now we are in a position to formulate the asymptotic distribution of the test-statistic under the null hypothesis of
independence.

Theorem 2. Assume that
Rqℓ

|ϕℓ(xℓ + yℓ)| v(xℓ)dxℓ < ∞ (7)

for all ℓ = 1, . . . , p and all yℓ ∈ Rqℓ holds. Further on, assume that
Rq


Rq

|C(s
˜
, t
˜
)|2w(s

˜
)w(t

˜
)ds

˜
dt
˜
< ∞ (8)

holds. Then the statistic nTn(w) = ∥
√
nDn∥

2
w converges in distribution, under H0, to

nTn(w) =


Rq1×···×Rqp

√nDn (t
˜
)
2w (t

˜
) dt

˜

L
−→

∞
k=1

λk

2
{(1 + |pk|)ξk + (1 − |pk|)ηk} . (9)

Here ξk, ηk, k = 1, 2, . . . are independent pairs of independent chi-square random variables, eachwith one degree of freedom and
λk (respectively fk) are the eigenvalues, possibly of multiplicity larger than 1 (respectively eigenfunctions) of the integral operator
K (·)(·) defined by

K (f )(x
˜
) =


Rq

f (y
˜
)C(x

˜
, y
˜
)w(y

˜
)dy

˜
, (10)

i.e., λk and fk are the solutions of the equation

λf (x
˜
) =


Rq

f (y
˜
)C(x

˜
, y
˜
)w(y

˜
)dy

˜
. (11)

The values pk are defined as

pk =


Rq

fk(s
˜
)fk(−s

˜
)w(s

˜
)ds

˜
.

If the multiplicity of λk is equal to one, then |pk| = 1. If the multiplicity of λk is equal to certain m > 1, then one of the
corresponding |pk| values is equal to one, and the remaining (m − 1) values are equal to 0. That is, each summand in the right
hand side of (9) is either in the form λkξk or in the form λk

2 ζk with ξk being chi-square distributed with one degree of freedom and
ζk being chi-square distributed with two degrees of freedom.

Of course, we only require (7) for the case of non-integrable weights since otherwise it is automatically satisfied.
Condition (8), stating that C ∈ L2(Rq

× Rq,B(Rq) × B(Rq), w × w), ensures that K is a compact operator [4, Proposition
4.7, p.43]. For compact normal operators (which is the case forK), algebraic and geometric multiplicities are equal and finite
(see, e.g., [21, p. 129]).

Remark 1. Analysis of the proof of Theorems 1 and 2 in Section 7 gives a clear indication that our proposed test is expected to
be universally consistent for all fixed alternatives. The reason is that the propertyE[Dn (t

˜
)] = 0will always be violatedwhen

the null hypothesis of independence is violated. Hence under the alternative, the statistic nTn(w)will contain a deterministic
component that will tend to infinity as n → ∞.

In practice, we do not know the true function C(s
˜
, t
˜
). However, we show in Theorem 4 that the following

Ĉn(s
˜
, t
˜
) =

p
ℓ=1

ϕ̂ℓ(−tℓ + sℓ)−


p
ℓ=1

ϕ̂ℓ(−tℓ)ϕ̂ℓ(sℓ)


1 − p +

p
ℓ=1

ϕ̂ℓ(−tℓ + sℓ)
ϕ̂ℓ(−tℓ)ϕ̂ℓ(sℓ)


(12)
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is a suitable estimate to use instead. By replacing this estimated covariance function in (11), we can find the approximate
solution of the eigenvalues and eigenfunctions. At this stage, there are at least two options available. One option is Monte
Carlo. Assume that we have N i.i.d. vectors Y

˜
1, . . . , Y

˜
N with density w (these can be simulated given that the density w is

known). The law of large numbers and the extended continuous mapping theorem (see [33, Theorem 1.11.1]) imply that

1
N

N
j=1

f (Y
˜
j)C(x

˜
, Y
˜
j)

P
−→


Rq

f (y
˜
)C(x

˜
, y
˜
)w(y

˜
)dy

˜
. (13)

On the other hand, for a given suitably designed (adapted tow) cubature rule, we can write

N
j=1

ωjf (y
˜
j)C(x

˜
, y
˜
j) −→

N→∞


Rq

f (y
˜
)C(x

˜
, y
˜
)w(y

˜
)dy

˜
= λf (x

˜
), (14)

where theωj’s are the weights of the cubature and the y
˜
j’s are (fixed) nodes of the cubature. We note that if (ωj, y

˜
j) coincide

with (1/N, Y
˜
j), then the Monte-Carlo approximation (13) is a particular cubature rule (14). For the Monte Carlo case, we

have the approximation

N
j=1

√
ωjf (Y

˜
j)
√
ωiC(Y

˜
i, Y

˜
j)
√
ωj = λ

√
ωif (Y

˜
i)+ op(1) i = 1, . . . ,N. (15)

The oP(1) term above indicates quantities converging in probability towards 0 when N goes to infinity. Let gj =
√
ωjf (Y

˜
j) =

√
ωjfj, j = 1, . . . ,N and g = (g1, . . . , gN)⊤. The system (15) can be presented in matrix form as follows:

√
ω1 · · · 0

0
. . . 0

0 · · ·
√
ωN

Γ


√
ω1 · · · 0

0
. . . 0

0 · · ·
√
ωN

 g = λg + oP(1). (16)

Here Γ is the N ×N randommatrix

C(Y

˜
i, Y

˜
j)

1≤i,j≤N . Again, in a practical situation, we do not know C(s

˜
, t
˜
)which we need

to calculate the above values C(Y
˜
i, Y

˜
j), i = 1, . . . ,N, j = 1, . . . ,N . The consistent estimator Ĉn(s

˜
, t
˜
) from (12) will be used

instead. Then we will get an empirical counterpart of (16) in the form
√
ω1 · · · 0

0
. . . 0

0 · · ·
√
ωN

 Γ̂n


√
ω1 · · · 0

0
. . . 0

0 · · ·
√
ωN

 g = λg + oP(1). (17)

The system (17) allows us to get estimated eigenvalues λ̂k,n,N and corresponding discretized eigenvectors ĝk,n,N , k =

1, . . . ,N. From these, the estimated eigenvectors f̂k,n,N , k = 1, . . . ,N , can be obtained. The final eigenfunctions will then
be defined as

f̂k,n,N(s
˜
) =

1

λ̂k,n,N

1
N

N
j=1

Ĉn(s
˜
, Y
˜
j)f̂

j
k,n,N

where f̂ jk,n,N denotes the jth component of f̂k,n,N .
The cubature option would offer significant saving in computations. In this case, a smaller N can be chosen in the

approximation (14) and a suitable possibly not-too-dense mesh of points x
˜
could be chosen when trying to approximately

solve (11) by discretizing it. However, it is difficult to give safe general recommendations for constructing the mesh, as well
as for the choice of the cubature rule with its weights and nodes. The Monte Carlo method, on the other hand, works quite
generally and, for a higher computational cost, delivers reasonable results when N is large enough.

We also notice that when the weights are not integrable, we do not have a density w to simulate from when using
the Monte Carlo approach. However importance sampling-based techniques can be used to implement Monte Carlo in this
situation. With the above constructions for the Monte Carlo approach, we have the following results.

Theorem 3. Let N ∈ N\{0} be a fixed integer. Let An = (aij,n) be a sequence of N×N random complexmatrices defined on some
sample space Ω , with (possibly complex) eigenvalues λ(1),n, . . . , λ(N),n, accounting for multiplicity, ordered by the increasing
value of their modulus. Let A = (aij) be a N × N positive definite random complex matrix defined on Ω with (real positive)
eigenvalues 0 < λ(1) ≤ · · · ≤ λ(N), accounting formultiplicity. Suppose fk,n and fk, k = 1, . . . ,N are the associated eigenvectors.
If An converges almost surely towards A, i.e.

∀i=1,...,N , ∀j=1,...,N, aij,n
a.s.

−→ aij, when n → ∞,
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then

λ(k),n
a.s.

−→ λ(k), ∀k=1,...,N

and, if An is positive definite for large values of n, then

∥(IN − PA,k)fk,n∥2
a.s.

−→ 0, ∀k=1,...,N ,

where PA,k is the orthogonal projector on the space spanned by all the orthonormal eigenvectors associated with λk.

This theorem is a general result which is interesting in its own right. We require it to improve the accuracy when we
approximate the limiting distribution of the statistic nTn(w) by its empirical version. This then allows us to approximate the
critical levels of our proposed multivariate nonparametric test of independence.

Theorem 4. (a) Assume that all eigenvalues of the integral operator

K(f )(x
˜
) =


Rq

f (y
˜
)C(x

˜
, y
˜
)w(y

˜
)dy

˜

are of multiplicity one and that conditions (7) and (8) hold.
For all integer K ≥ 1, we have, when N → ∞:

K
k=1


λk − λ̂k


ξk

P
−→ 0. (18)

Here λ̂k, k = 1, . . . , K are the solutions of a discretized version of

λf (x
˜
) =


Rq

f (y
˜
)C(x

˜
, y
˜
)w(y

˜
)dy

˜
(19)

whereby, in addition to the discretization, C is replaced with Ĉn as given in (12).
The ξk, k = 1, . . . in (18) are independent chi-square random variables with one degree of freedom.

(b) In the case where the eigenvalues λk of the operator K(f )(x
˜
) or the eigenvalues λ̂k obtained from (17) may be of multiplicity

bigger than one, the convergence in (18) needs to be written in a more general form. Denote by ξk and ηk, k = 1, . . . a set
of independent pairs of independent chi-square random variables with one degree of freedom. Then, for all K ∈ N \ {0} and
when N → ∞:

K
k=1

1
2
λk ((1 + |pk|)ξk + (1 − |pk|)ηk)−

K
k=1

1
2
λ̂k

(1 + |p̂k|)ξk + (1 − |p̂k|)ηk

 P
−→ 0. (20)

In (20), the pk are defined as pk =

fk(s

˜
)fk(−s

˜
)w(s

˜
)ds

˜
. The p̂k are defined by cubature approximation of p̂k =


f̂k

(s
˜
)f̂k(−s

˜
)w(s

˜
)ds

˜
. The f̂k(s

˜
) values, on a dense grid, are obtained by solving (17) for large N whereas the f̂k(−s

˜
) values, on a

dense grid, are obtained by solving an equation of the same type as (17), with Γ̂n replaced by its complex conjugate Γ̂n.

We note immediately that in (20), we have |pk| = 1 when a corresponding eigenvalue λk is of multiplicity one. When
the multiplicity of λk is certainm > 1 then one of the corresponding |pk| values is equal to one, and the remaining (m − 1)
values are equal to 0. The same type of statement also holds true for the relation between the values of |p̂k| and λ̂k.

In a practical implementation, all λ̂k will be of multiplicity 1 with a probability one and then the corresponding ηk would
be redundant. In such a case the kth summand in (20) will be reducing to


λk − λ̂k


ξk in accordance with (18).

4. Normalization

When p = 2, letX
˜

= (X⊤, Y⊤)⊤ be the twovector components ofX
˜
,with a corresponding subdivision of t

˜
= (t1⊤, t2⊤)⊤.

In this situation, the normalization of the statistic nTn(w) is very useful as pointed out in [1]. Let

S2 =




1 −
ϕ̂n,1(t1)

2 1 −
ϕ̂n,2(t2)

2
2

w

and set

nTn(w)
S2

= nI2
n =

nV2
n

S2
(21)
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so that our notation agrees with those used in [1,31], i.e., I2
n = Tn(w)/S2 and Tn(w) = V2

n , respectively. Here Vn is the
empirical distance covariance and is discussed in [31].

In [1] it is shown, by an application of Cauchy–Schwartz inequality, that their In ∈ [0, 1] and of course I2
n ∈ [0, 1]. So in

their situation In is an empirical measure for the association between two random vectors of arbitrary dimensions.
Now for p > 2 and arbitrary dimensions q1, . . . , qp,

p
k=1 qk = q we consider the following generalization Hn of the

quantity S2:

Hn =


1 −


1 +

p
ℓ=1

(|ϕ̂n,ℓ|
−2 − 1)


p
ℓ=1

|ϕ̂n,ℓ|
2


2

w

(22)

which we borrow from [1]. Observe that when p = 2,Hn = S2. Thus the statistic nTn(w)/Hn is a generalization of
nI2

n = nV2
n/S2 for the case p > 2. However, the property Tn/Hn ∈ [0, 1] is no longer valid in general for arbitrary n

and arbitrary weight function when p > 2. Although from the proof of Theorem 4, and when n is sufficiently large, the
property Tn/Hn ∈ [0, 1] holds with a very high probability. There is one more benefit of the normalization: under the null
hypothesis of independence the weak limit of nTn(w)/Hn will have expected value equal to 1. For this reason, we give next
more details about the calculation of Hn.More specifically, we can show that the following relation between the empirical
norming Hn and the empirical function C(t

˜
, t
˜
):

Hn =

Ĉn (t
˜
, t
˜
)

2
w

. (23)

The proof of this relation is delegated to the end of the Proofs section. Also there, we demonstrate in detail (compare the
formula (28)) themost general formula to assemble the calculation ofHn from simple-to-calculate ingredients involving the
data.We also show that, like in Lemma 1,we get a simplification of (28)which helps to significantly alleviate the calculations
for the particular case where the weight function is integrable, i.e., when


Rq w (t

˜
) dt

˜
= 1.

5. Suggestions for choices of the v functions

We propose and investigate several choices of weight functions in the construction of the test-statistic. In the paper [31]
(in particular, on p. 2771) a strong preference is expressed towards a choice of non-integrable weights when defining the
distance correlation. Theweights proposed in [31] are listed below as our Choice 3weights. In the paper [29] even statements
about uniqueness of those non-integrable weights have been derived under requirements for ‘‘rigid motion invariance and
scale invariance’’ (see, e.g., [29, p. 2279]). With respect to use of weights in hypothesis testing context, we are of the opinion
that using a variety of different (both integrable and non-integrable) weights can only be beneficial. The behaviour under
the alternative may strongly be influenced by the choice of the weight. Specifically under the alternatives, these effects can
influence the power of the test. Let ∥ · ∥p be the p-norm, namely ∥t

˜
∥p =

q
j=1 |tj|p

1/p for any t
˜

∈ Rq and let |t
˜
|q be the

Euclidean norm (e.g., 2-norm) for a vector t
˜

∈ Rq. Our suggested choices of weights are:

5.1. Choice 1

Let a > 0.

v(tℓ) = (2π)−qℓ/2a−qℓe−
1

2a2
∥tℓ∥22 = (2π)−qℓ/2a−qℓ exp


−

1
2a2

qℓ
k=1

t2ℓ,k


.

We have


Rql v(tℓ)dtℓ = 1 and γj,ℓ = 1 − exp

−

a2
2

Xℓj 22 = 1 − ξj,ℓ.Moreover,

ξj,j′,ℓ = exp


−
a2

2

Xℓj − Xℓj′
2
2


=

qℓ
k=1

exp

−

a2

2


Xℓj,k − Xℓj′,k

2
and ξj,j,ℓ = 1.

5.2. Choice 2

Let a > 0.

v(tℓ) = a−qℓ2−qℓe−
1
a ∥tℓ∥1 = a−qℓ2−qℓ exp


−

1
a

ql
k=1

|tl,k|


.
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We have


Rql v(tℓ)dtℓ = 1 and γj,ℓ = 1 −
qℓ

k=1


1 +


aXℓj,k

2−1
= 1 − ξj,ℓ.Moreover,

ξj,j′,ℓ =

qℓ
k=1


1 + a2


Xℓj,k − Xℓj′,k

2−1

and ξj,j,ℓ = 1.

5.3. Choice 3

For all 0 < a < 2, let v(tℓ) = (C(qℓ, a))−1
|tℓ|

−qℓ−a
qℓ with

C(d, a) =
2πd/2Γ (1 − a/2)
a2aΓ ((d + a)/2)

.

We have


Rqℓ v(tℓ)dtℓ = ∞ and γj,l = ∥Xℓj ∥
a
2.We also have ξj,ℓ = ∞.

5.4. Choice 4

Let a ∈ R and v(tℓ) =
qℓ

j=1
sin2(atj)

π |a|t2j
.We have


Rqℓ v(tℓ)dtℓ = 1 and

γj,ℓ = 1 −
qℓ

k=1
−2|Xℓj,k|+|Xℓj,k−2a|+|Xℓj,k+2a|

4|a| = 1 − ξj,ℓ.We also have

ξj,j′,ℓ =

qℓ
k=1

−2|Xℓj,k − Xℓj′,k| + |Xℓj,k − Xℓj′,k − 2a| + |Xℓj,k − Xℓj′,k + 2a|

4|a|

and ξj,j,ℓ = 1.

5.5. Choice 5

Let a > 0 and v(tℓ) = π−qℓ/22qℓa3qℓ/2
qℓ

j=1 t
2
j e

−at2j .We have


Rqℓ v(tℓ)dtℓ = 1 and

γj,ℓ = 1 −

qℓ
k=1


2a − (Xℓj,k)

2

e−(Xℓj,k)

2/(4a)

2a
= 1 − ξj,ℓ.

We also have ξj,j,ℓ = 1 and

ξj,j′,ℓ =

qℓ
k=1


2a − (Xℓj,k − Xℓj′,k)

2

e−(Xℓj,k−Xℓ

j′,k
)2/(4a)

2a
.

6. Numerical implementation and simulation experiments

6.1. Choice of design parameters

In practice N should be taken large to have a good convergence of the Monte-Carlo approximation (13) and to make
sure that (17) delivers an accurate enough discretized version of (19). The eigenvectors represent approximations to
the eigenfunctions evaluated at N points. In theory, the larger N the better, however in a practical sense increasing N
requires a solution of a large-dimensional eigenvalue–eigenvector problem and numerical inaccuracies due to the curse of
dimension may destroy the theoretical advantages. Hence N should stay within reasonable limits. Our extensive numerical
experimentation shows that N = 1000 is a good default. For the same reason, many of the eigenvalues that are small
in magnitude will be calculated with a non-negligible numerical error so only the first K ≪ N eigenvalues (and associated
eigenvectors) should be taken into account. Some efficient numerical procedures allow us to calculate the first K eigenvalues
only thus saving significant computational time.

Another point is that for the limiting distribution of the statistic nTn(w) as given in (9) in Theorem 2 we need to consider
the case of eigenvalues of multiplicity larger than one. Part (b) of Theorem 4 suggests a general result covering the case of
roots of multiplicity larger than one for the eigenvalue problem in (17). It may indeed be the case that roots of multiplicity
larger than one do exist for (17). However, due to numerical inaccuracies in solving this equation system, the resulting
eigenvalues would never be precisely equal to each other and discovering these cases will be virtually impossible. Hence,
in the numerical work, when calculating the approximation to the limiting distribution of the test-statistic, we always
use the expression

K
k=1 λ̂kξk. For calculating the approximation for the p-values of our test-statistic, we need a reliable
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approximation for the cumulative distribution function of the latter. This is a particular case of a quadratic form in normal
random variables. Several approaches have been proposed in the literature to evaluate numerically the quantiles of such
quadratic forms including methods that rely on numerical inversion of the characteristic function (see, e.g., [7,17]). Some of
these methods are compared in [9] and are implemented in an R package called CompQuadForm. We use the imhof()
function of this package to compute the critical values for our test. All the above taken into account in our numerical
experimentation, leads us to a recommendation of K = 200 as a default.

The above default values of N and K would of course not be universally good. Since we rely on the asymptotic statements
of Theorems 2 and 4 for calculating the critical values, the decision on a certain number K of eigenvalues is also related to
the sample size n that allows for a good approximation in (18). The interplay between N, K and n is complicated in general.
To get a rough idea we consider the case of Choice 1 from Section 5 when all components of the data vector are independent
standard Gaussian. Then a simple calculation leads us to:

C (t
˜
, t
˜
)

p
ℓ=1

v(tℓ)dtℓ = 1 −


1 − p +

p
ℓ=1

(2a2 + 1)qℓ/2

(2a2 + 1)−p/2.

On the other hand,

E (nTn(w)) =


E
√nDn (t

˜
)
2w(t

˜
)dt

˜
−→


E

D (t

˜
)D (t

˜
)

w(t

˜
)dt

˜
:= H∞.

Hence we know

H∞ = 1 −


1 − p +

p
ℓ=1

(2a2 + 1)qℓ/2

(2a2 + 1)−p/2

in this case. We have also that Hn −→ H∞ (where Hn is defined in (22)) and that

E {nTn(w)} −→ E


∞
k=1

λkξk


=

∞
k=1

λk = H∞.

Also in the general situation, when the theoretical H∞ is not available, one can still use a comparison of
K

k=1 λ̂k,N − Hn


to a small threshold value ϵ > 0 as a criterion of a choice of K . Since both

K
k=1 λ̂k,N and Hn would be close to H∞, they are

also expected to be close to each other. Hence for large n and N , a recommendation for the value of K is to choose it in such
a way that

K
k=1 λ̂k,N − Hn

 < ϵ is satisfied. Difficulties in choosing K usually only appear for large dimensions q and p. For
dimensions such as 2, 3, 4 or 5, the eigenvalues usually are nicely behaving, showing a strongly decreasing pattern and in
such cases we choose a small threshold such as 10−8 and only keep the eigenvalues above this threshold.

Finally, the fiveweight choiceswepropose in Section5, involve an additional one-dimensional parameter a. The flexibility
to choose a allows us to increase the power of our test in comparison to the power of the test that is implemented in the
dCov program of Székely and Rizzo (for the same level of significance). The asymptotic properties of the test imply that
the choice of a does not matter, but for fixed sample sizes such as n = 50, 100 or 200 this choice makes some difference.
Depending on the scenarios chosen for model comparison in Section 6.2, the values of a for our weight choice 1 were chosen
in the range from 0.2 to 4. If the data is standardized individually (i.e., each observation vector is transformed by subtracting
its arithmetic mean and dividing by the standard deviation estimator) then a value of a = 1 turned out to be universally
good value to use for scenarios with weight choice 1.

6.2. Comparison with other competing programs

We have implemented our multivariate independence tests in an R package called IndependenceTests. The program
that performs the testing in the package is called mdcov. We present below power comparisons on some unusual bivariate
distributions, to demonstrate the good power of our test by comparing it with the tests from [28] (R program called dCov)
from the energy package and [15] (R program HHG). To the best of our knowledge, the only otherwidely available computer
program that performs amultivariate independence test at the level of generality considered in this paper (that is, for p ≥ 3),
is the function dependogram() implementing the test from the paper [2]. Their program calculates the critical values using
bootstrap. We compare the performance of our test with the above program. The outcomes from this program are labelled
BBL in this section. The reader is referred to [2] for more details on their program. Here we only note that the implemented
bootstrap method there is very specific and the computational effort is controlled by two parameters: N (which, to avoid
conflict of notation with N used in our paper, will be denoted by N∗ here), and B (the number of bootstrap replications). The
role of N∗ (related to number of points chosen on qi-dimensional spheres (i = 1, . . . , p)) is related to the accuracy of the
bootstrap results and so is B, too. It can be seen from Table 1 that for the bootstrap approximation to work reasonably well
with respect to size, we need the replications to be at least B = 200 (which is also the default value in the package). The
number of computations of the test-statistic becomes proportional to B2p(N∗)q−p (compare again [2], specifically p. 1818).
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Table 1
Empirical size computed for n = 100 over M = 1, 000 repetitions for the different methods. Data generated from
independent q dimensional Gaussian. Gaussianweights are used for mdcov, with a = 1, andwithN∗

= 10, B = 200
for BBL.

Method q N K Emp. size

mdcov 2 1000 200 0.047(0.007)
HHG 2 – – 0.047(0.007)
dCov 2 – – 0.05 (0.007)
BBL 2 – – 0.053 (0.007)
mdcov 4(2 + 2) 1000 200 0.056(0.007)
HHG 4(2 + 2) – – 0.054(0.007)
dCov 4(2 + 2) – – 0.051(0.007)
BBL 4(2 + 2) – – 0.046 (0.006)

Table 2
Empirical size for q = 6, p = 3 computed for n = 100 over M = 1, 000 repetitions (N∗

= 10, B = 200
for BBL). The acronym mixture stands for a 3-dimensional correlated standard Gaussian (with a joint correlation
coefficient of 0.5); an independent two-dimensional correlated Poisson Y1, Y2 with Y1 = Z1 + Z2, Y2 = Z2 + Z3
and Z1 ∼ P (1), Z2 ∼ P (3), Z3 ∼ P (1) being independent; and an independent one-dimensional Bernoulli with
probability of success equal to 1/2.

Data Method a N K Emp. size

3 indep. pairs of dependent Gauss. mdcov 0.2 1000 200 0.048(0.007)
3 indep. pairs of dependent uniforms mdcov 2 1000 200 0.049(0.007)
3 indep. pairs of dependent Gauss. mdcov Cuba 0.2 272 272 0.048(0.007)
3 indep. pairs of dependent Gauss. BBL – – – 0.054(0.007)
3 indep. pairs of dependent uniforms BBL – – – 0.049(0.007)
Mixture (3 + 2 + 1) mdcov 0.3 1000 200 0.048(0.007)
Mixture (3 + 2 + 1) BBL – – – 0.061(0.007)

This leads to an exponential increase of the numerical calculations of the test-statistic when q − p is large. The need to
increase B beyond 200when q−p is large can increase significantly the computing time for the bootstrap and it can become
uncompetitive for q > 4.When q = 4 and p = 2, (i.e., q−p = 2), computational times are comparable. However, evenwhen
B does not increasemuch and p is small but q−p is large, the BBLmethod becomesmuch less competitive computationally.
For example, in the case of the model coded Yj = Xjϵj in the Table 3 (where p = 2 only but q− p = 8) it was not possible to
apply the BBL approach for any reasonable amount of hours of time. At the same time, it is not hard to calculate accurately
the p-values based on our asymptotic approximation, as illustrated in Tables 1–3. The size is evaluated by the empirical (out
ofM = 1, 000 repetitions) ratio of rejections of the null hypothesis of independence and is presented in the last columns of
Tables 1 and 2. The empirical values in these columns need to be compared to the ideal value of α = 0.05. Table 2 represents
simulations for models containing p ≥ 3 vectors for which the dCov and HHG are not tailored hence we only discuss mdcov
results. These are all related to designs with a total dimension q = 6. We experimented with a set of 3 two-dimensional
standard Gaussian vectors where within pair there was a correlation of 0.5, and also with a set of 3 independent pairs of
dependent uniform vectors (the dependency being created via Gaussian copula with correlation coefficient of 0.5). Finally
we also chose a 6-dimensional vector consisting of an independent 3-dimensional correlated standard Gaussian (with a
joint correlation coefficient of 0.5), two-dimensional correlated Poisson and an independent one-dimensional Bernoulli
component (i.e., q = 6, q1 = 3, q2 = 2, q3 = 1.). The choice of the variance parameter a of the weight function also has
significant impact for sample sizes such as 100, 200 or 300.

Besides the Monte Carlo-based evaluation of the solution to the eigenvalue–eigenfunction problem (11) we present in
Table 2 a result obtained via application of a Gaussian cubature formula based on the celebrated Stroud’s method. These
cubature formulae require a fixed number of nodes. The number of nodes is 2q+1

+ 4q2 when q > 2 which, for dimension
6 discussed in Table 2, gives N = 272 for the numerical cubature in this case. For q = 2 the number N turns out to be
only equal to 44. In principle, the cubature method is much faster than the Monte Carlo method. However we abstain from
recommending the cubature method for all situations. Indeed, for q = 2,N = 44 in the examples considered in the Table 3,
the quadrature method performed poorly and the empirical size of the resulting tests was closer to 1% rather than to the
nominal α of 5%. Also, for large q, the rate of falling of the eigenvalues slows and for another distribution types and for higher
dimension q the fixed number of nodes of the cubature formulae may not be enough for accurate solution of the integral
equation. However for the multivariate Gaussian example considered in Table 2, the outcome for the empirical level of the
cubature method was only slightly worse than the Monte Carlo result that used N = 1, 000, K = 200.

Table 3 represents size and power comparisons between HHG, dCov, mdcov and BBL. The reason to compare with
these two programs is the following. The recent paper [15] does point out the superiority of dCov over a large variety of
classical tests. However, in the comparison in [15], also some lack of sufficient power of dCov for small sample sizes such
as n = 50 has been demonstrated, whereby HHG has shown much better power at these sample sizes. The demonstration
has been performed on a set of unusual bivariate distributions. The details of these distributions are in the Supplementary
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Table 3
Size and power (with standard error in parentheses) of HHG test, dCov test, our mdcov test and BBL for small sample sizes (n = 50) for some unusual
relations. Results based onM = 1, 000 repetitions. The design parameters for mdcovwere N = 1, 000, K = 200. For BBL: N∗

= 10, B = 200.

Distribution Independence a HHG dCov mdcov BBL

4 indep. clouds Yes 1 0.058(0.007) 0.058(0.007) 0.059(0.007) 0.048(0.007)
W Yes 4 0.038(0.006) 0.046(0.007) 0.043(0.006) 0.032(0.006)
W No 4 0.999(0.001) 0.935(0.007) 1(0) 0.894(0.009)
Diamond Yes 4 0.047(0.007) 0.042(0.006) 0.039(0.006) 0.046(0.007)
Diamond No 4 0.747(0.014) 0.040(0.006) 0.520(0.016) 0.039(0.006)
Parabola Yes 4 0.048(0.007) 0.044(0.006) 0.048(0.007) 0.047(0.007)
Parabola No 4 0.979(0.004) 0.917(0.008) 0.998(0.001) 0.634(0.015)
2 Parabolas Yes 4 0.042(0.006) 0.041(0.006) 0.043(0.006) 0.046(0.006)
2 Parabolas No 4 1(0) 0.331(0.015) 1(0) 0.367(0.015)
Circle Yes 4 0.058(0.007) 0.051(0.007) 0.045(0.006) 0.052(0.007)
Circle No 4 0.978(0.005) 0.096(0.009) 0.990(0.003) 0.107(0.010)
Yj = XjϵJ Yes 0.4 0.051(0.007) 0.046(0.007) 0.057(0.007) –
Yj = XjϵJ No 0.4 0.956(0.006) 0.415(0.016) 0.608(0.015) –
GEVmodel1 Yes 0.9 0.046(0.007) 0.044(0.006) 0.037(0.006) 0.049(0.007)
GEVmodel1 No 0.9 0.881(0.010) 0.362(0.015) 0.941(0.007) 0.828(0.012)
GEVmodel2 Yes 0.2 0.057(0.007) 0.053(0.007) 0.054(0.007) 0.048(0.007)
GEVmodel2 No 0.2 0.377(0.015) 0.675(0.015) 0.662(0.015) 0.387(0.015)

material to [15].1 We demonstrate in Table 3 that mdcov is a worthy contender to both HHG and dCov in terms of power and
size. The bivariate relations are called Four independent clouds, W, Diamond, Parabola, Two parabolas, and Circle. The Four
independent clouds represent data generated under the independence hypothesis so there we were looking at the size. To
make the comparison fair for the other curves, we simulated data first under the same dependence structures like in [15] but
in addition we also simulated independent data while keeping the same marginals like in the dependent case. We believe
that the power comparison is fairer in this way. To complete the comparisonwe also include the results for BBL in this table.
Looking at the lines that represent the power, we see now that especially for the Circle, for the Parabola and for the Two
parabolas case where dCov and BBL were significantly deficient to HHG, our program is now quite competitive to HHG. It
also shows significant improvement for the case of Diamond.

The model coded Yj = Xjϵj is also discussed in [15]. There, two dependent five-dimensional data vectors are generated
(p = 2, q1 = q2 = 5.)Again, the power formdcov represents a significant improvement overdCov (albeit still being slightly
lower than HHG). We should also state that when the sample size is increased to n = 100, all three programs showed much
better power.

We also include simulations coded as theGEVmodel1 andGEVmodel2. They involve data generationwith non-symmetric
extreme value distributions of second type (Fréchet) and third type (Weibull), to which a random normal noise has been
added. The dependence model for GEVmodel1 is as follows: X = W + Z1, Y = X + F + Z2 where W is Weibull
distributed, F is Fréchet distributed and Z1, Z2 are independent N (0, 0.22). The dependence model for GEVmodel2 is as
follows: X = W + Z1, Y = 3W + Z2 where W is Weibull distributed, and Z1, Z2 are independent N (0, 22). (The related
independence models just keep the corresponding marginal distributions the same as in the respective dependent models).
Our choice of these models was motivated by the wish to also include non-symmetric distributions with heavier tails. For
these data, mdcovwas strongly competitive to HHG, dCov and BBL.

The outcomes of our simulations can be summarized as follows:

1. When using Gaussianweights, with a = 1,we get very precise coverage for q = 2, 4, 6 at sample sizes as low as n = 200
or 500.

2. If we stay with dimension q = 6 (at which the computations start getting more challenging and computationally
more intensive), we need the number N to be around N = 1, 000. Smaller values of N may decrease accuracy of the
approximation of the eigenvalues whereas larger values would lead tomuchmore intensive calculations due to the large
dimension of the linear system in (17). Illustrative outcomes for q = 6 are presented in Table 2. We notice that in all
cases where our Monte Carlo method was applied for the sake of approximating the limiting distribution, the resulting
empirical level of the test was well within the expected limits of 0.05± 1.96 ∗

√
0.05 ∗ 0.95/1000 = (0.0365, 0.0635).

3. For N = 1, 000, the sum of all eigenvalues appears stable, i.e., virtually does not vary when N is varied around the 1,000
mark. The pattern in which the sorted out eigenvalues go down to zero is significantly influenced by the distribution

1 These authors have generously made their package publicly available and we could read the codes they have used for their data generation. Some of
the data generation mechanisms could be criticized conceptually since instead of generating n independent uniformly distributed random variables on
the circle or in [−1, 1], a set of equidistantly spaced deterministic values have been generated. This misconception has been propagated from the paper
[24]. In the case of theW example in this paper, this implies as a consequence that the data generation has lead to non-identically distributed independent
random variables U and V instead of the claimed identically distributed dependent variables U and V . Therefore some of the comparisons in the HHG paper
are not completely valid and here we have corrected their data generation procedures to deliver fair rigorous comparisons. The deviations in the power
performance for dCov and HHG are relatively minor but the comparison is more theoretically sound.
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Fig. 1. Patterns of decay of the largest eigenvalues of the matrix Γ̂n for Gaussian, exponential and uniform data (n = 5, 000,N = 2, 000) and for values
a = 1 and a = 0.5.

of the single multivariate random vector. The distribution of the data vector in the sample influences the choice of K .
Theoretical investigation of the choice ofK is difficult and is not discussed in this paper. Fig. 1 shows screeplotswhich offer
two take homemessages. Firstly, the pattern of decrease towards zero of the sequence of eigenvalues varies significantly
depending on the distribution of a single data vector: if the components arise from amultivariate normal or exponential
distribution, the decrease of the sorted out eigenvalues happens much less quickly. Secondly, the variance parameter a
of the weight also influences the pattern of convergence towards zero.

4. For dimensions q of the order considered here, the asymptotic approximations to the critical values turned out to be quite
good and in agreement with the bootstrap-based approximations based on the methodology presented in [2]. Regarding
power, we did apply the BBLmethod on the examples considered in Table 3. However, the behaviour of BBL was quite
comparable to dCov in the cases when it was possible to run it (and hence was deficient in comparison to HHG and to
mdcov in these examples. In a nutshell, one can say that the performance of BBL was either comparable or deficient
to mdcov for the cases when BBL could be run for a reasonable time. In addition, by using quick numerical calculations
such as the ones illustrated in Fig. 1 we are able to determine suitable values of a and K to control the accuracy of the
approximation of the critical values. This option can help us to reduce the computational time. There is no such option in
theBBLmethod. If, to be on the safe side,wedecide to increaseN∗ and B, then the computational time forBBL can blowup
significantly. This difficulty is avoided in our asymptotic approximations since, despite also using simulations, they avoid
the repeated calculation of the statistic on resampled data vectors. The calculation of the statistic is the numerically costly
operation that dramatically increases the time needed by BBL with increasing n. The computational cost also increases
linearly with the number of resamplings B and, more importantly, exponentially in the difference q− p. If q− p is of the
order of 6 or more, the BBLmethod of [2] could virtually not be used.
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7. Proofs

Proof of Lemma 1. We start with the decomposition
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) .

Using (4) and (5), we obtain
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Hence we obtain
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We present below the calculation of all terms involved in this formula. Note that all of them are real valued. First, because
of the antisymmetry of the sine function and of the assumed symmetry of the v(tℓ) function, we realize that for x ∈ Rqℓ :

Rqℓ


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⊤x
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is real-valued. Then, of course
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are also real-valued. Finally,
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is also real-valued. Note that when j = j′, βj,j′,ℓ = 2γj,ℓ holds.
Putting everything together we obtain the formula from part a) of the Theorem.
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Similarly, from (4) and (5) using the functions gXℓj (tℓ) instead of fXℓj (tℓ), we obtain
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whose computation involves terms such as:
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These expressions are all equal to one under the assumption (b) of the Theorem. Hence putting everything together, we

end up with the desired formula
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Proof of Theorem 1. We need to prove that
√
nDn converges in C(Rq,C) to a complex Gaussian process D, where the space

C(Rq,C) is endowed with the topology of uniform convergence on compacts. For this purpose, we define the metric ρ on
C(Rq,C) defined by
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This is an empirical characteristic function process for which tightness on compacts was shown in Csörgő’s Theorem
[6, p. 294]. Our condition (6) quotes Csörgő’s condition. This is a mild condition on the tails of the joint distribution of the
data.

Now, we compute the moments of this complex Gaussian process. Recall that
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Now we get after some elementary transformations:
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p
ℓ=1

ϕℓ(−tℓ + sℓ)
ϕℓ(−tℓ)ϕℓ(sℓ)


.

The derivation of the pseudo-covariance function starts with the decomposition

Dn(s
˜
)Dn(t

˜
) = ϕ̂n(s

˜
)ϕ̂n(t

˜
)− ϕ̂n(s

˜
)ϕ̃n(t

˜
)− ϕ̃n(s

˜
)ϕ̂n(t

˜
)+ ϕ̃n(s

˜
)ϕ̃n(t

˜
)

and follows similar steps like the derivation of the covariance function.

Remark 2. An alternative derivation of the limiting covariance structure has been suggested by an anonymous referee. It is
based on defining the functional

F(g)(t
˜
) = g(t

˜
)−

p
j=1

g(0, tj, 0)

and applying the functional delta method to
√
n{F(ϕ̂n)−F(ϕ)}. Hadamard differentiability of this functional under the null

hypothesis can be shown and its formal Hadamard derivative can be derived easily. By substituting in this formal expression
the ϕj, j = 1, . . . , p functions, we can get after some algebraic transformations the covariance function and the pseudo-
covariance functions as stated in Theorem 1.

Proof of Theorem 2. A complex Gaussian process indexed by t
˜

∈ Rq is characterized by a triplet. This includes the mean
vectorµ(t

˜
) (which is 0 in our case), the covariance function C(s

˜
, t
˜
), and the pseudo-covariance function P(s

˜
, t
˜
) = C(s

˜
,−t

˜
).

These satisfy the following properties:

1. C(s
˜
, t
˜
) = C(−s

˜
,−t

˜
)

2. C(s
˜
, t
˜
) is hermitian: C(s

˜
, t
˜
) = C(t

˜
, s
˜
).

3. P(s
˜
, t
˜
) is symmetric: P(s

˜
, t
˜
) = P(t

˜
, s
˜
).

4. P(s
˜
, t
˜
) is centro-hermitian: P(s

˜
, t
˜
) = P(−t

˜
,−s

˜
).

5. It holds: C(−s
˜
, t
˜
) = P(s

˜
, t
˜
) = C(s

˜
,−t

˜
).

6. C(s
˜
, t
˜
) is positive definite: ∀u∈L1(Rq) it holds

C(s
˜
, t
˜
)u(s

˜
)u(t

˜
)w(s

˜
)w(t

˜
)ds

˜
dt
˜

= E


D(s
˜
)u(s

˜
)w(s

˜
)ds

˜

2

≥ 0.

7. C (·, ·) is continuous because ϕ (t
˜
) is continuous.

In particular, the finitem-dimensional joint distributions at a set of points t
˜
1, t

˜
2, . . . , t

˜
m represent a complexm-dimensional

Gaussian vector Z with distribution denoted Z ∼ CNm(µ, Cm, Pm) and characterized by a mean vector µ, a covariance
matrix Cm and a pseudo-covariance matrix Pm. This means that Z = W1 + iW2 where W = (W1

⊤,W2
⊤)⊤ has a 2m-

dimensional (real) multivariate normal distribution with EW1 = µ1, EW2 = µ2,Cov(W1,W1) = Σ11,Cov(W2,W2) =

Σ22,Cov(W1,W2) = Σ12. The relationships

Σ11 =
1
2
ℜ(Cm + Pm),Σ12 =

1
2
ℑ(−Cm + Pm),Σ21 =

1
2
ℑ(Cm + Pm),Σ22 =

1
2
ℜ(Cm − Pm)

hold. We also have

Cm = E

(Z − µ)(Z − µ)′


= Σ11 +Σ22 + i(Σ21 −Σ12),

Pm = E

(Z − µ)(Z − µ)′


= Σ11 −Σ22 + i(Σ21 +Σ12)

(see, e.g., [8], which generalizes the particular case ofΣ12 = Σ21 = 0,Σ11 = Σ22 considered originally by Wooding [35]).
Observe that λf (−x) =


Rq f (−y)C(x, y)w(y)dy holds, i.e., f (−x) is an eigenfunction of C(·, ·) associated with λ.

Moreover, λf (−x) =


Rq f (−y)C(x, y)w(y)dy, i.e., f (−x) is an eigenfunction of C(·, ·) associated with λ. If λ is of
multiplicity 1, then f (−x) = eiθ f (x) for some θ in [0, 2π). Proving the Theorem boils down to checking that the
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conditions of Mercer’s theorem in [11] are satisfied. Then we would have C (s
˜
, t
˜
) =


∞

k=1 λkfk(s
˜
)fk (t

˜
), where ⟨f , g⟩w =

f (t
˜
) g (t

˜
)w (t

˜
) dt

˜
. It is not hard to show that these quantities satisfy

C (s
˜
, t
˜
) fj (t

˜
) w (t

˜
) dt

˜
=

∞
k=1

λkfk(s
˜
)


fj (t

˜
) fk (t

˜
)w (t

˜
) dt

˜
= λjfj(s

˜
).

Similarly:
P (s

˜
, t
˜
) fk (t

˜
)w (t

˜
) dt

˜
= λkfk(−s

˜
) and


P (s

˜
, t
˜
) fk (−s

˜
) w (s

˜
) ds

˜
= λkfk (t

˜
) .

Recall the limiting complex valued Gaussian stochastic process D discussed in Theorem 1. A stochastic expansion of D on
the {fk} orthonormal basis gives:

D (t
˜
) =

∞
k=1

⟨D, fk⟩wfk(t
˜
).

Hence
|D (t

˜
) |2w (t

˜
) dt

˜
=


k

|⟨D, fk⟩|2w .

Now

⟨D, fk⟩w =


D (t

˜
) fk (t

˜
)w (t

˜
) dt

˜
∼ CN1(0, λk, λkpk).

Indeed, D (t
˜
) is a zero mean complex Gaussian process and by approximating the integral by weighted Riemann sums, each

ofwhich is Gaussian, shows us to the statement that the limiting randomvariable is Gaussian.We also get easily the variance
and the pseudo-variance as follows:

E

⟨D, fk⟩w⟨D, fk⟩w


=


C(s

˜
, t
˜
)fk(s

˜
)fk(t

˜
)w(t

˜
)w(s

˜
)dt

˜
ds
˜

=


λkfk(s

˜
)fk(s

˜
)w(s

˜
)ds

˜
= λk

and

E [⟨D, fk⟩w⟨D, fk⟩w] =


P(s

˜
, t
˜
)fk(t

˜
)fk(s

˜
)w(t

˜
)w(s

˜
)dt

˜
ds
˜

= λk


fk(s

˜
)fk(−s

˜
)w(s

˜
)ds

˜
= λkpk.

Note that if λk is of multiplicity 1 then we have

pk =


fk(s

˜
)fk(−s

˜
)w(s

˜
)ds

˜
=


fk(s

˜
)eiθ fk(s

˜
)w(s

˜
)ds

˜
= e−iθ .

In particular, |pk| = 1 in this case. In the case of multiple roots and |pk| ≠ 1 we then must have pk = 0 because of the
orthogonality of the eigenfunctions in the scalar product representation pk =


fk(s)fk(−s)w(s)ds. We use [8] with R as in

their Eq. (13), with G = 1/2 and K = 0 such that Z
˜

HRZ
˜

= |Z
˜
|
2

∼ α1χ
2
1 + α2χ

2
1 , where α1 and α2 are the eigenvalues of the

matrix

ΓPR =


λk λkpk
λkpk λk


1/2 0
0 1/2


=
λk

2


1 pk
pk 1


.

That is, we need to multiply by λk/2 the eigenvalues of the identity matrix. We thus obtain (for |pk| ≠ 1)

|⟨D, fk⟩|2 ∼
λk

2
(ξk + ηk) (24)

where the two χ2
1 random variables ξk and ηk are independent.

When |pk| = 1, we obtain

|⟨D, fk⟩|2 ∼ λkχ
2
1

because the first eigenvalue of the rank-1 matrix

1 1
1 1


is 2.
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We note about the complications in applying Mercer’s theorem in our case. They are due to the fact that the functional
nTn(w) = ∥

√
nDn∥

2
w defined on the left hand side in (9) as our test statistic is not continuous; it is even not defined on

C(Rq,C) but only on the subset of squared-integrable functions with respect to the measure w(t
˜
)dt

˜
. Thus the standard

continuous mapping theorem cannot be invoked to claim directly the convergence in (9). We need a generalization on a
uniform integrability as presented in [3, Theorem 2.3]. We need to show that

A := lim
j→∞

lim sup
n→∞


Rq\B

q
j

E|
√
nDn (t

˜
) |2w (t

˜
) dt

˜
= 0.

We already showed that

E

nDn (t

˜
)Dn (t

˜
)


= C(t
˜
, t
˜
)+

1
n
O(1)(t

˜
).

Moreover,
C(t

˜
, t
˜
)w(t

˜
)dt

˜
≤


|C(t

˜
, t
˜
)|w(t

˜
)dt

˜
< ∞ (25)

holds. From the form of the remainder we see that

lim
j→∞

lim sup
n→∞


Rq\B

q
j

O(1)(t
˜
)w(t

˜
)dt

˜
→ 0.

Also, since (7) holds then not only (25) but also
|C(s

˜
, t
˜
)|w(t

˜
)dt

˜
< ∞

holds for all s
˜
holds. Hence by [4, Theorem 1.6, p. 28] we have that the operator K(f )(x

˜
) =


Rq f (y

˜
)C(x

˜
, y
˜
)w(y

˜
)dy

˜
is a

bounded linear operator. Further by the assumption
|C(s

˜
, t
˜
)|2w(s

˜
)w(t

˜
)ds

˜
ds
˜
< ∞

and by [4, Proposition 4.7, p. 43],K(f )(x
˜
) is also a compact operator. Then by [11, p. 69], Mercer’s theorem applies and hence

we establish the convergence of (9) as required.

Proof of Theorem 3. Let N =


ω ∈ Ω; An(ω)−→

n→∞
A(ω)


. Obviously, Pr(Ω \ N ) = 0. Let ω ∈ N be fixed. Let σ(An)

be the spectrum of An which is the set of eigenvalues for An and similarly, σ(A) be the spectrum of A. We write PA(z) =

α0 + α1z + · · · + αNzN as the characteristic polynomial of A(ω). Recall that PA is a polynomial of exact degree N and the
eigenvalues are the roots of the polynomial (i.e., PA(z) = det(A − zI).) Similarly, let Pn(z) = α0,n + α1,nz + · · · + αN,nzN
be the characteristic polynomial of An(ω). We have, for all k = 1, . . . ,N , that αk is a (finite) linear combination of the N2

values aij (because PA(z) = det(A(ω) − zI)) and that αk,n is a linear combination of the N2 values aij,n. Now, since for all
i, j = 1, . . . ,N, aij,n −→

n→∞
aij, we have that for all k = 1, . . . ,N, αk,n −→

n→∞
αk, where αk,n = αk + ϵk,n, and maxk |ϵk,n| −→

n→∞
0

whenω ∈ N . Supposeµ ∈ σ(A) be one of the eigenvalues of A(ω)withmultiplicitym. Then for all η > 0 sufficiently small,
no other distinct root of PA(z) different from µwill be in the disc {|z − µ| ≤ η} with a centre µ. Let us fix such a η > 0 and
let

M = min
|z−µ|=η

|PA(z)|.

Note thatM > 0 since there are no roots of PA(z) on the boundary |z −µ| = η. Moreover, since all the N coefficients of the
polynomial Pn(z)− PA(z) converge to 0 as n → ∞, then there exists a L ∈ N such that for all n > L,

|Pn(z)− PA(z)| < M ≤ |PA(z)|, for |z − µ| = η.

By Rouché’s Theorem (see, e.g., [27, p. 229]), Pn(z) has exactly m roots in |z − µ| < η. Since η can be taken arbitrarily
small, thesem roots of Pn (which are m eigenvalues of An(ω)) must converge to µ.

Now suppose λn ∈ σ(An) is one of these m roots and its associated eigenvector fn ∈ Kn := {fn ∈ CN
: (An − λnI)fn = 0},

i.e.

An(ω)fn = λnfn.

Then Kn −→
n→∞

K̄ ⊆ K := {f ∈ CN
: (A−µI)f = 0} since An(ω)−→

n→∞
A(ω) and λn −→

n→∞
µ. That is, the accumulation point of Kn

must converge to an element of ker{A − µI} (see [34, Section 25 p.83]). Hence the result follows.



208 Y. Fan et al. / Journal of Multivariate Analysis 153 (2017) 189–210

Proof of Theorem 4. We start with part (a).
It is well known that ϕ̂n(t

˜
)

a.s.
−→n→∞ϕ(t

˜
) for all t

˜
(see, e.g., [12]). Then we have

Ĉn(t
˜
, s
˜
)

a.s.
−→n→∞C(t

˜
, s
˜
) for all t

˜
, s
˜
∈ Rq. (26)

Let us fix N first. Applying (26) we then have, conditionally on the generated Y
˜
1, Y

˜
2, . . . , Y

˜
N values:

Ĉn(Y
˜
i, Y

˜
j)

i,j

a.s.
−→n→∞


C(Y

˜
i, Y

˜
j)

i,j .

The almost sure convergenceholds for any of the (i, j)th entry on the left to itsmatching entry on the right. Thus by Theorem3
we have

λ(k),n,N
a.s.

−→n→∞λ(k),N , k = 1, 2, . . . ,N,

and thus λ(k),n,N
P

−→n→∞λ(k),N , k = 1, 2, . . . ,N. Note that C(·, ·) is continuous. Moreover, clearly the uniform bound from
above

|C(t
˜
, t
˜
)| ≤ 2(p + 1) := κ

holds. Proposition 10 in [26] is precisely tailored for such continuous and uniformly bounded kernels and their empirical
counterparts. According to this Proposition, for any τ > 0 the bound

Pr


k≥1


λ(k),N − λ(k)

2
≤

8κ2τ

N


≥ 1 − 2e−τ (27)

holds. Hence, for arbitrary ϵ > 0, by setting τ = Nϵ/8κ2 and substituting in (27) we get

Pr


k≥1

(λ(k),N − λ(k))
2

≤ ϵ


≥ 1 − 2e−τ .

Hence

Pr


k≥1

(λ(k),N − λ(k))
2

≥ ϵ


−→N→∞ 0.

Therefore for all k ≥ 1, we also have 0 ≤ Pr

(λ(k),N − λ(k))

2
≥ ϵ


−→N→∞ 0 and it immediately follows that λ(k),N

P
−→N→∞λ(k). Now,

0 ≤ Pr

|λ(k),n,N − λ(k)| > ϵ


≤ Pr


|λ(k),n,N − λ(k),N | >

ϵ

2


+ Pr


|λ(k),N − λ(k)| >

ϵ

2


→n,N→∞ 0.

Denoting λ̂k = λ(k),n,N and λk = λ(k) we have λk − λ̂k
P

−→n→∞0. Hence by of [10, Theorem 6’ (a), p. 42], the statement
follows.

The part (b) of the Theorem follows the same steps as part (a). The convergence of the estimated eigenfunctions f̂k,n,N(·)
to the (spaces of the) true ones fk(·) is also obtained in two steps, first letting n → ∞ while (our) N is fixed via Theorem 3,
and then using [26, Theorem 12] when (our) N goes to infinity.

We note that [26, Proposition 10] concerns the extended enumeration of the eigenvalues of the true and of the empirical
kernel functions. The extended enumeration is a sequence of real numbers where every non-zero eigenvalue appears as
many times as its multiplicity. Hence the multiple eigenvalues case of part (b) is also included and the only modification
from part (a) follows the same argument that was brought forward in the justification of (24) in the proof of Theorem 2.

Proof of formula (23). We introduce ϑ = 1 − ϕ. Then we can write:

C(t
˜
, t
˜
) = 1 −

p
ℓ=1

{ϕℓ(−tℓ)ϕℓ(tℓ)} −

p
ℓ=1

{1 − ϕℓ(−tℓ)ϕℓ(tℓ)}
p

j=1;j≠ℓ

ϕj(−tj)ϕj(tj)

= 1 − (1 − p)

B⊂Ip


B′⊂Ip

(−1)|B|+|B′
|

ℓ∈B∩B′

ϑℓ(−tℓ)ϑℓ(tℓ)

ℓ∈B\B′

ϑℓ(−tℓ)

ℓ∈B′\B

ϑℓ(tℓ)

−

p
ℓ=1


B⊂Ip\ℓ


B′⊂Ip\ℓ

(−1)|B|+|B′
|


j∈B∩B′

ϑj(−tj)ϑj(tj)

j∈B\B′

ϑj(−tj)

j∈B′\B

ϑj(tj).
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Using the notation bℓ = n−2n
j=1
n

j′=1 βj,j′,ℓ and gℓ = n−1n
j=1 γj,ℓ we get:Ĉn (t

˜
, t
˜
)

2
w

= 1 − (1 − p)

B⊂Ip


B′⊂Ip

(−1)|B|+|B′
|

ℓ∈B∩B′

bℓ

ℓ∈B\B′

gℓ

ℓ∈B′\B

gℓ

−

p
ℓ=1


B⊂Ip\ℓ


B′⊂Ip\ℓ

(−1)|B|+|B′
|


j∈B∩B′

bj

j∈B\B′

gj

j∈B′\B

gj

= 1 − (1 − p)

B⊂Ip


B′⊂Ip


ℓ∈B∩B′

bℓ


ℓ∈(B∪B′)\(B∩B′)

(−gℓ)

−

p
ℓ=1


B⊂Ip\ℓ


B′⊂Ip\ℓ


j∈B∩B′

bj


j∈(B∪B′)\(B∩B′)

(−gj)

= 1 − (2 − p)

B⊂Ip


B′⊂Ip


ℓ∈B∩B′

bℓ


ℓ∈(B∪B′)\(B∩B′)

(−gℓ)

+


B⊂Ip


B′⊂Ip

(|B ∪ B′
| − p + 1)


ℓ∈B∩B′

bℓ


ℓ∈(B∪B′)\(B∩B′)

(−gℓ)

= 1 +


B⊂Ip


B′⊂Ip

(|B ∪ B′
| − 1)


ℓ∈B∩B′

bℓ


ℓ∈(B∪B′)\(B∩B′)

(−gℓ)

=


B,B′⊂Ip;|B∪B′|>1

|B ∪ B′
|


ℓ∈B∩B′

bℓ


ℓ∈(B∪B′)\(B∩B′)

(−gℓ)+ 2


B⊂Ip;|B|>1

|B|

ℓ∈B

(−gℓ). (28)

It is easy to see that

1 −


1 +

p
l=1

(|ϕ̂n,ℓ(tℓ)|−2
− 1)


p

l=1

|ϕ̂n,ℓ(tℓ)|2 =Cn(t
˜
, t
˜
) (29)

hence Hn =

Ĉn (t
˜
, t
˜
)

2
w

holds. Indeed, since C(t
˜
, t
˜
) = E


D(t

˜
)D(t

˜
)

and

C (s
˜
, t
˜
) =

p
ℓ=1

ϕℓ(−tℓ + sℓ)−

p
ℓ=1

{ϕℓ(−tℓ)ϕℓ(sℓ)}

−

p
ℓ=1

{ϕℓ(−tℓ + sℓ)− ϕℓ(−tℓ)ϕℓ(sℓ)}
p

j=1;j≠ℓ

ϕj(−tj)ϕj(sj)

we see that

C (t
˜
, t
˜
) = 1 −

p
ℓ=1

|ϕℓ(tℓ)|2 −

p
ℓ=1


1 − |ϕℓ(tℓ)|2

 p
j=1;j≠ℓ

ϕj(tj)
2 . (30)

Substituting the empirical characteristic functions in (30) we get (29).
Note that, again like in Lemma 1, a simplification occurs in (28) for the particular case where the weight function is

integrable, i.e., when


Rq w (t
˜
) dt

˜
= 1. In this case, the denominatorHn =

1 −

1 +

p
ℓ=1(|ϕ̂n,ℓ|

−2 − 1)
p

ℓ=1 |ϕ̂n,ℓ|
2
2
w

is equal to
Rq


1 −


1 +

p
ℓ=1

(|ϕ̂n,ℓ(tℓ)|−2
− 1)


p
ℓ=1

|ϕ̂n,ℓ(tℓ)|2

w(t

˜
)dt

˜

= 1 − (1 − p)
p
ℓ=1


Rqℓ

|ϕ̂n,ℓ(tℓ)|2v(t
˜
ℓ)dt

˜
ℓ −

p
ℓ=1

p
ℓ′=1;ℓ′≠ℓ


Rq
ℓ′

|ϕ̂n,ℓ′(tℓ′)|2v(t
˜
ℓ′)dt

˜
ℓ′

= 1 − (1 − p)
p
ℓ=1

xℓ −

p
ℓ′=1

p
ℓ=1

xℓ

xℓ′
= 1 −


1 +

p
ℓ=1

(x−1
ℓ − 1)


p
ℓ=1

xℓ
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where

xℓ :=


Rqℓ

|ϕ̂n,ℓ(tℓ)|2v(t
˜
ℓ)dt

˜
ℓ =

1
n2

n
j=1

n
j′=1


Rqℓ

eitℓ
⊤(Xℓj −Xℓ

j′
)
v(t

˜
ℓ)dt

˜
ℓ =

1
n2

n
j=1

n
j′=1

ξj,j′,ℓ.
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