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The asymptotic distribution of the residual autocovariance matrices in the class of periodic vector
autoregressive time series models with structured parameterization is derived. Diagnostic checking with
portmanteau test statistics represents a useful application of the result. Under the assumption that the periodic
white noise process of the periodic vector autoregressive time series model is composed of independent
random variables, we demonstrate that the finite sample distributions of the Hosking-Li-McLeod portmanteau
test statistics can be approximated by those of weighted sums of independent chi-square random variables.
The quantiles of the asymptotic distribution can be computed using the Imhof algorithm or other exact
methods. Thus, using the (single) chi-square distribution for these test statistics appears inadequate in general,
although it is often recommended in practice for diagnostic methods of that kind. A simulation study provides
empirical evidence.
Keywords: Asymptotic distributions; Residual autocovariances; Parsimonious models; Periodic time series models;
Portmanteau test statistics; Time series.
1. INTRODUCTION

The class of periodic time series models is useful to analyze time series data with periodic structure; see Holan et al. (2010) for a recent
survey. However, a serious limitation of these models lies in the large number of parameters that need to be estimated. For example, a
univariate model with daily data coming from climate applications may involve 365 free parameters. This is discussed in Lund et al.
(2006). The problem is even more severe in the multivariate case, even for the very useful class of periodic vector autoregressive

(PVAR) models. In a PVAR model, the maximal number of free parameters is given by d2
Xs

n¼1
p nð Þ , where d is the dimension of

the process, s is the number of seasons and p(n) are the autoregressive orders for each season. In the bivariate case, a first-order model
(that is, p(n)� 1) for quarterly, monthly and daily data would have 16, 48 and 1460 free parameters respectively. In fact, applications in
the latter context have been limited to quarterly data, because for a larger number of seasons the number of parameters is too large.
See the discussions in Franses and Paap (2004) and Lütkepohl (2005). To achieve parsimony, PVAR models with structured
parameterization may be considered. By structured parameterization, we mean that the d� d autoregressive matrices are a function

of a certain vector b, whose dimension is often much smaller than d2
Xs

n¼1
p nð Þ . Thus, a structured parameterization can be

interpreted as a transformation reducing the dimension of the parameter space. For example, by using Fourier representations for
the coefficients, it is possible to model slow seasonal changes in the parameters. One argument in favour of such an approach is that
in many circumstances, similar seasons should have relatively similar parameters. In modelling a univariate time series on monthly
ozone data, Bloomfield et al. (1994) conclude that the twelve parameters in a periodic first-order autoregressive model can be reduced
to three parameters, and the parameters between the seasons were allowed to change smoothly. See also Lund et al. (2006) for other
examples of parameterization in univariate periodic models. In vector autoregressive models (VAR) with structured parameterization;
see Ahn (1988) for general properties.
Diagnostic checking appears to be an important step in any statistical modelling application. In time series analysis, much effort has

been devoted to obtain the asymptotic distribution of residual autocovariances under various conditions. See Li (2004) for a review,
among others. In vector autoregressive-moving average models, the Hosking-Li-McLeod portmanteau test statistics are known to
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have approximate chi-square distributions. They have been introduced and studied in Hosking (1980) and Li and McLeod (1981). See
also the monograph of Li (2004). When vector autoregressive-moving average time series models with structured parameterization
are fitted, assuming that the white noise term is composed of independent random variables, the approximate chi-square
distributions hold under the null hypothesis of correct specification, and the degrees of freedom simply need to be adjusted. See
Ahn (1988) and Reinsel (1997). Under VAR and structured parameterized VAR models with uncorrelated white noise, the asymptotic
distributions of the portmanteau test statistics are better approximated by those of weighted sums of chi-square variables. See Francq
and Raïssi (2007) and Boubacar Mainassara (2011).
Ursu and Duchesne (2009) obtained the asymptotic distribution of the residual autocovariances in PVAR models with linear

constraints on the model parameters. In their asymptotic result, the autoregressive parameters inside the seasons were allowed to
satisfy constraints. For example, in a first-order PVAR model, for a known d2� K(n) matrix R(n) of rank K(n), and a known d2� 1 vector
b(n), the autoregressive parametersΦ(n) were supposed to satisfy the relations f(n) =R(n)b(n) +b(n), where f(n) = vec{Φ(n)}, with vec{�}
representing the operator that stacks the columns of a matrix into a vector. See Harville (1997) for the properties of the vec operator.
Thus, the autoregressive parameters were not allowed to satisfy constraints between the seasons. In that framework, they justified the
approximate chi-square distributions of the Hosking-Li-McLeod portmanteau test statistics when the periodic white noise is
composed of independent random variables.
In this article, the asymptotic distributions of the residual autocovariances matrices in the class of PVAR models with structured

parameterization are derived. Applications of the result include diagnostic checking with portmanteau test statistics. Quite
surprisingly, the chi-square approximations appear inadequate in general, even under the assumption of an independent (periodic)
white noise process. In fact, the exact distributions of the Hosking-Li-McLeod portmanteau test statistics are better approximated
by those of weighted sums of chi-square random variables. In diagnostic checking VAR models, the asymptotic distribution of the
(normalized) residual autocovariances under the null hypothesis is approximately idempotent, meaning that the weights in the
asymptotic distributions of the classical portmanteau test statistics are approximately composed of ones and zeros. Our results show
that in the general PVAR case, the weights in the asymptotic distributions of the Hosking-Li-McLeod procedures may be relatively far
from zero, and thus, adjusting the degrees of freedom does not represent a solution in the present framework. In practical
applications, it is thus preferable to compute the quantiles of the asymptotic distribution using Imhof’s (1961) algorithm or other exact
methods. See Duchesne and Lafaye de Micheaux (2010) for a recent account.
Our results are particularly useful in applications, given that the applicability of periodic models is limited due to the large number of

parameters in these models. Here, the structured parameterization in PVAR models allows us to fit these models with a large number
of seasons relatively easily, and diagnostic checking can be considered with the popular Hosking-Li-McLeod portmanteau test
statistics under general assumptions on the model parameters.
The article is organized as follows. In Section 2, some notations and preliminaries are provided. Section 3 presents our main results.

In Section 4, applications for diagnostic checking are given and in particular the asymptotic distributions of the portmanteau test
statistics are derived. A simulation study is conducted in Section 5.
2. PRELIMINARIES

The PVAR model for a d-dimensional time series Yt= (Yt(1), . . ., Yt(d))
> can be written as:

Ynsþn ¼
Xp nð Þ

k¼1

Φk n; b0ð ÞYnsþn�k þ ensþn; (1)

for season n2 {1, . . .,s}, s being a predetermined value, at year n (say). The autoregressive model order at season n is noted p(n), and
Φk(n;b) = (Φk,ij(n;b))i,j=1,. . .,d, k=1, . . .,p(n), are the matricial autoregressive model coefficients during season n. The components Φk,ij(n;b)
are assumed to be twice continuously differentiable functions in an open neighbourhood of the b� 1 vector of parameters b0, where
b≤d2

Xs

n¼1
p nð Þ. The error process et; t 2 Zf g corresponds to a zero mean Gaussian periodic white noise, that is the d� 1 random vectors

et= (et(1), . . ., et(d))
> are independent and satisfy E(et) = 0 and E ensþne>nsþn

� � ¼ Σe nð Þ, where the error covariance matrix Σe(n) is defined
periodically, that is Σe(n) =Σe(ns+ n); thus, Σe(n) depends on n but not on n and s. The error covariance matrices are assumed to be
non-singular for all n2 {1, . . .,s}. Model (1) is presumed to be stationary in the periodic sense. Periodic stationarity is discussed in
Glady�shev (1961). The seasonal autocovariance function of Yt; t 2 Zf g is ΓY(h;n) = cov(Yns+ n,Yns+ n� h), which may depend on both lag
h and season n but not on n. Periodic stationarity conditions are discussed in Lütkepohl (2005). For example, the condition for periodic
stationarity in the special case p(n)� 1 is that all eigenvalues of

Ys�1

j¼0
Φ1 s� j; b0ð Þ are strictly smaller than one in modulus. Periodic

stationarity implies that the process Yt; t 2 Zf g has the following moving-average representation:

Ynsþn ¼
X1
k¼0

Ψk nð Þensþn�k ; (2)

where Ψ0(n) = Id. The seasonal matricial weights Ψk(n) are supposed to satisfy the summability condition
X1

k¼0
Ψk nð Þk k < 1, where

‖ � ‖ denotes the Euclidian norm of a matrix. Using the expression (2), the autocovariance structure of the process satisfies:
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ΓY h; nð Þ ¼
X1
k¼0

Ψkþh nð ÞΣe n� k � hð ÞΨ>
k n� hð Þ; (3)

where the covariance matrix Σe(n) is interpreted periodically in n with period s. See also Lütkepohl (2005) and Ursu and Duchesne
(2009). The variance of the process is obtained by setting h=0 in expression (3). These expressions show that the autocovariances
depend not only on h but also on n.
To fix ideas, consider the case where p� p(n). We denote this situation a PVAR (p) model. As for VAR stochastic processes, the

autocovariance function of a PVAR (p) process can be calculated recursively:

ΓY h; nð Þ ¼ Φ1 nð ÞΓY h� 1; n� 1ð Þ þΦ2 nð ÞΓY h� 2; n� 2ð Þ þ . . .þΦp nð ÞΓY h� p; n� pð Þ: (4)

Once the theoretical autocovariances ΓY(h;n) are determined for 0 ≤ h ≤ p and seasons n= 1, 2, . . ., s, the autocovariances for lags h> p
can be uniquely solved using the recursive relation (4). The expressions (4) correspond to periodic versions of the Yule–Walker equations.
For any b, we introduce the quantities:

rnsþn bð Þ ¼ Ynsþn �
Xp nð Þ

k¼1
Φk n; bð ÞYnsþn�k ; nsþ n > p nð Þ;

0; nsþ n ≤ p nð Þ;

(
(5)

which are well-defined for n= 0, 1, . . .,N� 1, N being the number of observed years (for simplicity, it is assumed that N complete years
are observed; a similar assumption is made in Lund et al. (2006)). Applying the vec operator on both sides of (1), and using the rule
vec(ABC) = (C>�A)vec(B), model (1) can be written alternatively as:

ensþn ¼ Ynsþn �
Xp nð Þ

k¼1

Y>
nsþn�k�Id

� �
fk n; bð Þ;

where ‘�’ denotes the Kronecker product and fk(n;b) = vec{Φk(n;b)} corresponds to a d2� 1 vector of parameters. See Harville (1997)
for properties of the Kronecker product and of the vec operator. Let M be a maximal lag order, satisfying 1 ≤M<N, which is fixed with
respect to the sample size Ns. We introduce the sample autocovariance matrices Cr(h;n) = (Cr,ij(h;n))i,j= 1,. . .,d:

Cr h; nð Þ ¼ N�1
XN�1

n¼h
rnsþn bð Þr>nsþn�h bð Þ; h≥0;

C>
r �h; n� hð Þ; h < 0:

(

Similarly, the sample autocovariances are collected in a (d2M)� 1 vector:

cr nð Þ ¼ c>r 1; nð Þ; . . . ; c>r M; nð Þ� �>
; (6)

where cr(h;n) = vec{Cr(h;n)}. We also define similarly the sample autocovariances Ce(h;n) and ce(n) on the basis of the unobservable error
process et; t 2 Zf g. Note that unless b= b0, rt bð Þ; t 2 Zf g needs not be a white noise process.
We consider conditional maximum likelihood estimators for estimating b0. That estimation method has a long history in time series

analysis. See Tunnicliffe Wilson (1973), Anderson (1980), Hannan and Kavalieris (1984), Poskitt and Salau (1995), Reinsel (1997) and
Lütkepohl (2005), among others. That approach allows us to derive explicit evaluation for the gradient and an asymptotic expression
of the Hessian of the conditional log-likelihood function. Under certain general assumptions, conditional and exact maximum
likelihood estimators are asymptotically equivalent. The conditional maximum likelihood criterion is often used because it is more
easily tractable that the exact likelihood. When the results rely on an asymptotic theory, such as those presented in Sections 3 and
4, using conditional or exact likelihood estimators delivers the same conclusions under general assumptions, at least asymptotically.

See Reinsel (1997, Chapter 5). Let b̂N be the conditional Gaussian estimator of b0 on the basis of the observed time series data Yns+ n,

n= 0, . . .,N� 1 and n= 1, . . ., s. Ignoring the normalizing factor involving (2p)� (dNs)/2, b̂N and Σ̂e nð Þ, n=1, . . ., smaximize the conditional
Gaussian log-likelihood function:

L b;Σe 1ð Þ; . . . ;Σe sð Þf g ¼ �N

2

Xs
n¼1

log det Σe nð Þf g � 1
2

Xs
n¼1

XN�1

n¼0

r>nsþn bð ÞΣ�1
e nð Þrnsþn bð Þ:

When no confusion is possible, we let L b;Σe 1ð Þ; . . . ;Σe sð Þf g � L bð Þ . To establish an asymptotic theory for b̂N , we adapt the
arguments of Ahn and Reinsel (1988, p. 853). Initially, we study the consistency of the estimator in the framework of periodic models.
In the univariate case, Lund et al.(2006, Theorem 1) state the asymptotic normal distribution of the maximum likelihood estimator and
outline the proof of the result. In the multivariate case, first note that any periodic model can be expressed as a vector autoregressive
model (see Franses and Paap (2004, Section 3.1)). A methodology using that companion representation is developed in Pagano (1978).
It is often advisable to work directly with the periodic linear difference equations, see Basawa and Lund (2001, p. 654). Nevertheless,
model (1) allows a multivariate autoregressive representation with autoregressive parameters twice continuously differentiable
functions of b. Because the resulting model is a multivariate autoregressive model with structured parameterization, the results of
wileyonlinelibrary.com/journal/jtsa © 2013 Wiley Publishing Ltd. J. Time Ser. Anal. 2013, 34 496–507
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Hannan and Deistler (1988) and Boubacar Mainassara and Francq (2011) can be used, and asymptotically efficient estimators of b0 can
thus be found. In particular b̂N � b0 ¼ OP N�1=2

� �
.

Using the differentiation rule @ {a>(b)Ωa(b)}/@ b>=2a>(b)Ω{@ a(b)/@ b>}, where Ω is a symmetric matrix [see, e.g. Lutkepohl (2005,
p. 667)], the derivative of the log-likelihood with respect to b is given by:

@L bð Þ
@b

¼ �
Xs
n¼1

XN�1

n¼0

@r>nsþn bð Þ
@b

Σ�1
e nð Þrnsþn bð Þ: (7)

When ns+ n> p(n), it is not difficult to show the following formula:

@rnsþn b0ð Þ
@b>

¼ �
Xp nð Þ

k¼1

Y>
nsþn�k�Id

� � @fk n; b0ð Þ
@b>

: (8)

Note that we used the slight abuse of notation @rnsþn b0ð Þ=@b> ¼ @rnsþn bð Þ=@b>� �
b¼b0

�� and similarly for @ fk(n;b0)/@ b
>. Using a

martingale central limit theorem, it is possible to show that:

N�1=2 @L b0ð Þ
@b

¼ �N�1=2
XN�1

n¼0

Xs
n¼1

@r>nsþn b0ð Þ
@b

Σ�1
e nð Þrnsþn b0ð Þ!L N b 0; I b0ð Þð Þ;

where @L b0ð Þ=@b ¼ @L bð Þ=@bf g b¼b0

�� and I b0ð Þ denotes the information matrix of b0. See Reinsel (1997, Section 5.1.4), Basawa and
Lund (2001) and Lund et al. (2006) for similar arguments. Adopting arguments similar to Ahn (1988) and Ahn and Reinsel (1988), it is
possible to show that the information matrix satisfies:

I b0ð Þ ¼ lim
N!1

� 1
N
E

@2L b0ð Þ
@b@b>

� �
;

¼ lim
N!1

N�1
Xs
n¼1

XN�1

n¼0

E
@r>nsþn b0ð Þ

@b
Σ�1

e nð Þ @rnsþn b0ð Þ
@b>

	 

;

¼
Xs
n¼1

Xp nð Þ

i¼1

Xp nð Þ

j¼1

@f>
i n;b0ð Þ
@b

ΓY j � i; n� ið Þ�Σ�1
e nð Þ

n o @fj n;b0ð Þ
@b>

:

(9)

Note that the previous result generalizes the univariate result of Lund et al.(2006, p. 39) to the vector case. To show expression (9)
we applied the rule stating that for any m� n matrix A, p� q matrix B, n� u matrix C and q� v matrix D, (A�B)(C�D) = (AC)� (BD)
(see, e.g. Harville (1997, p. 337)). The second line of the previous calculation also used (7) and (8). Given that for any consistent

sequence such that b̂�
N !p b0,

� N�1 @
2L bð Þ
@b@b>

jb¼b�Ng ¼ �N�1
@2L b̂�

N

� �
@b@b>

¼ I b0ð Þ þ oP 1ð Þ;

8>><>>:
a first-order Taylor expansion of the conditional maximum likelihood estimator is:

N1=2 b̂N � b0
� �

¼ � N�1
@L b̂�

N

� �
@b@b>

8<:
9=;

�1

N�1=2 @L b0ð Þ
@b

	 

;

¼ I�1 b0ð Þ N�1=2 @L b0ð Þ
@b

	 

þ oP 1ð Þ:

Using Slutsky’s Lemma, it follows that:

N1=2 b̂N � b0
� �

!L N b 0; I�1 b0ð Þ� �
:

See also Ahn and Reinsel (1988, p. 853).

From a practical point of view, it may be worth studying the asymptotic distribution of the coefficients Φ̂k nð Þ � Φk n; b̂N

� �
and

k= 1, . . ., p(n). It is more convenient to state the result in terms of the vectors fk n; b̂N

� �
¼ vec Φk n; b̂N

� �n o
. The following results

use the d-method (see, e.g. Serfling (1980)). More precisely,

fk n; b̂N

� �
� fk n; b0ð Þ ¼ @fk n;b0ð Þ

@b>
b̂N � b0
� �

þOP N�1� �
:
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Hence:

N1=2 fk n; b̂N

� �
� fk n; b0ð Þ

n o
!L N d2 0;

@fk n; b0ð Þ
@b>

I�1 b0ð Þ @f
>
k n; b0ð Þ
@b

� �
:

Having estimated b0 by conditional maximum likelihood estimators, the model residuals ênsþn ¼ rnsþn b̂N

� �
, n=0, . . .,N� 1 and

n= 1, . . ., s, can be calculated. Thus, we can also compute the residual autocovariances Cê h; nð Þ, and we define naturally the vector
of residual autocovariances cê nð Þ for each season n.
The following example presents the key results of this section in the case of a PVAR (1) model.

Example 1 Consider the following model:

Ynsþn ¼ Φ n; b0ð ÞYnsþn�1 þ ensþn; (10)

n= 1, . . ., s. Multiplying each side of (10) by Y>
nsþn�h and taking the mathematical expectation gives:

ΓY h; nð Þ ¼ Φ n;b0ð ÞΓY h� 1; n� 1ð Þ þ E ensþnY>
nsþn�h

� �
: (11)

For h> 0, we obtain

ΓY h; nð Þ ¼ Φ n; b0ð ÞΓY h� 1; n� 1ð Þ:

Setting h= 0 in (11) gives

ΓY 0; nð Þ ¼ Φ n; b0ð ÞΓY �1; n� 1ð Þ þ Σe nð Þ;
¼ Φ n; b0ð ÞΓ>

Y 1; nð Þ þΣe nð Þ;
¼ Φ n;b0ð ÞΓY 0; n� 1ð ÞΦ> n;b0ð Þ þ Σe nð Þ;

which defines a linear system that can be solved for ΓY(0;n) and n2 {1, . . .,s}. To obtain the second equality in the last derivation, we
used: ΓY �h; nð Þ ¼ Γ>

Y h; nþ hð Þ and h> 0. Alternatively, the moving average representation (2) and the expression (3) can be used to
obtain explicit expressions. For example, the variance of the process at season n is given by:

ΓY 0; nð Þ ¼
X1
k¼0

Ψk nð ÞΣe n� kð ÞΨ>
k nð Þ:

The weights in (3) (defined in the periodic sense) need to be calculated. In the PVAR (1) model, these weights satisfy:

Ψk nð Þ ¼ Id; if k ¼ 0;Yk

i¼1
Φ n� i þ 1;b0ð Þ; if k≥1:

(
(12)

In our applications, see Section 5, the information matrix needs to be estimated. In the case of a PVAR (1) model, formula (9)
simplifies to:

I b0ð Þ ¼
Xs
n¼1

@f> n;b0ð Þ
@b

ΓY 0; n� 1ð Þ�Σ�1
e nð Þ

n o @f n;b0ð Þ
@b>

: (13)

Note that the information matrix relies on ΓY(0; n� 1).
We study the asymptotic distributions of the residual autocovariances in Section 3.
3. ASYMPTOTIC DISTRIBUTION OF RESIDUAL AUTOCOVARIANCES

Let ce nð Þ ¼ c>e 1; nð Þ; . . . ; c>e M; nð Þ� �>
, where ce(h;n) = vec{Ce(h;n)}, be the vector of sample autocovariances of the white noise process

et; t 2 Zf g . In practical applications, our test procedures will rely on the residual autocovariances, but it is useful to present the
asymptotic distribution of the random vector ce(n). Under the assumptions that the white noise is periodic and Gaussian, N1/2ce(n)
follows asymptotically a d2M-variate normal distribution:

N1=2ce nð Þ!L N d2M 0;V n;Mð Þ�Σe nð Þð Þ; (14)

where V(n;M) corresponds to the (dM)� (dM) block diagonal matrix:
wileyonlinelibrary.com/journal/jtsa © 2013 Wiley Publishing Ltd. J. Time Ser. Anal. 2013, 34 496–507
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V n;Mð Þ ¼
Σe n� 1ð Þ 0 0 . . . 0

0 Σe n� 2ð Þ 0 . . . 0
⋮ ⋱ ⋮
0 0 0 . . . Σe n�Mð Þ

0BB@
1CCA: (15)

This result can be obtained by considering that, using the property vec(ab>) =b� a for any vectors a and b (see Harville (1997,
p. 340)), we have the useful relations:

ce j; nð Þ ¼ N�1
XN�1

n¼j

vec ensþne>nsþn�j

� �
¼ N�1

XN�1

n¼j

ensþn�j�ensþn
� �

;

j2 {1, . . .,M}. See also Ursu and Duchesne (2009) for additional details. By using (7) and (8), straightforward calculations give:

E
@L b0ð Þ
@b

c>e j; nð Þ
	 


¼ N�1
XN�1

n¼j

Xp nð Þ

i¼1

@f>
i n; b0ð Þ
@b

E Ynsþn�ie>nsþn�j

� �
�Σ�1

e nð Þrnsþn b0ð Þe>nsþn

n o
:

Noting that E Ynsþn�ie>nsþn�j

� �
¼ Ψj�i n� i; b0ð ÞΣe n� jð Þ and 8 n, it follows that, as N!1,

E
@L b0ð Þ
@b

c>e j; nð Þ
	 


!
Xp nð Þ

i¼1

@f>
i n; b0ð Þ
@b

Ψj�i n� i;b0ð ÞΣe n� jð Þ�Id
� � � A j; nð Þ;

where the dimensions of the matrices A( j;n) are b� d2. The seasonal weights are defined in the periodic sense, and they satisfy the
relations Ψ0(n;b0) = Id and Ψk(n;b0) = 0, k< 0, n= 1, . . ., s. Using the differentiation rule

@vec ABð Þ
@b>

¼ Iq�A
� � @vec Bð Þ

@b>
þ B>�In
� � @vec Að Þ

@b>
;

where A and B are n� p and p� q matrices respectively (see, e.g. Lütkepohl (2005, Appendix A.13)), it follows that:

@ce j; nð Þ
@b>

¼ N�1
XN�1

n¼j

Id�ensþnð Þ @ensþn�j

@b>
þ ensþn�j�Id
� � @ensþn

@b>

	 

:

Thus,

E
@ce j; nð Þ
@b>

	 

¼ N�1

XN�1

n¼j

E ensþn�j�Id
� � @ensþn

@b>

	 

:

Using (8), it follows that, as N!1,

E
@ce j; nð Þ
@b>

	 

! �

Xp nð Þ

i¼1

Σe n� jð ÞΨ>
j�i n� i; b0ð Þ�Id

n o @fi n;b0ð Þ
@b>

¼ �A> j; nð Þ:

A standard Taylor expansion gives:

cê nð Þ ¼ ce nð Þ þ @ce nð Þ
@b>

b̂N � b0
� �

þ op N�1=2
� �

:

For a similar development in VAR models with structured parameterization, see Ahn (1988, p. 591). Let

A nð Þ ¼ A 1; nð Þ;⋯;A M; nð Þð Þ (16)

be the b� (d2M) matrix corresponding to the asymptotic cross-covariance matrix between N�1=2@L b0ð Þ=@b and N1/2ce(n). It follows
that:

E
@ce nð Þ
@b>

	 

! �A> nð Þ; as N ! 1: (17)

Note that (17) is expressed in function of the derivatives of the autoregressive parameters associated with season n. Consequently,

N1=2cê nð Þ and N1=2 ce nð Þ �A> nð Þ b̂N � b0
� �n o

share the same asymptotic distribution. A direct calculation gives:
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Nvar ce nð Þ �A> nð Þ b̂N � b0
� �n o

! V n;Mð Þ�Σe nð Þ �A> nð ÞI�1 b0ð ÞA nð Þ; (18)

as N!1. Next, we state the joint asymptotic distribution of N1=2 b̂N � b0
� �

and N1/2ce(n).

PROPOSITION 1 Suppose that Yt; t 2 Zf g denotes a PVAR process satisfying (1), with periodic Gaussian white noise et; t 2 Zf g. Let b̂N be the
conditional maximum likelihood estimator of b0. Consider a vector of M sample autocovariances collected in the vector ce(n). Then:

N1=2 b̂N � b0
� �
N1=2ce nð Þ

 !
!L N bþd2M 0; I�1 b0ð Þ I�1 b0ð ÞA nð Þ

A> nð ÞI�1 b0ð Þ V n;Mð Þ�Σe nð Þ
� �� �

;

where V(n;M) corresponds to the expression (15), I b0ð Þ is the information matrix (9) and A(n) is defined by (16).

The proof of Proposition 1 follows arguments similar to those in Ahn (1988), using periodic versions of limit theorems. See also
Basawa and Lund (2001), Lund et al. (2006) and Ursu and Duchesne (2009). This leads us to the asymptotic distribution of the residual
autocovariances.

PROPOSITION 2 Suppose that Yt; t 2 Zf g denotes a PVAR process satisfying (1), with a periodic Gaussian white noise et; t 2 Zf g. Let b̂N be the
conditional Gaussian maximum likelihood estimator of b0. Consider a vector of M residual autocovariances collected in the vector cê nð Þ
given by (6). Then:

N1=2cê nð Þ!L N d2M 0;Ωnnð Þ;

withΩnn ¼ V n;Mð Þ�Σe nð Þ �A> nð ÞI�1 b0ð ÞA nð Þ, where V(n;M) corresponds to the expression (15), I b0ð Þ is the information matrix (9)
and A(n) is defined by (16). Let cê ¼ cê> 1ð Þ; . . . ; cê> sð Þ� �>

. Then

N1=2cê !L N d2Ms 0;Ωð Þ;

where the asymptotic covariance matrix Ω is a block matrix, with the asymptotic variances given by Ωnn, n= 1, . . ., s, and the
asymptotic covariances given by:

cov N1=2cê nð Þ;N1=2cê n
0

� �� �
! �A> nð ÞI�1 b0ð ÞA n

0
� �

¼ Ωnn0 ;

as N!1.

A particular case is when the parameters are indexed by the season n such that b0 ¼ b>0 1ð Þ; . . . ; b>0 sð Þ� �>
. Suppose that the

autoregressive parameters Φk(b0;n), k=1, . . ., p(n), are only functions of b0(n), and that the autoregressive parameters of season n
are allowed to satisfy linear constraints inside that season. Under these conditions, it is possible to show that the conditional Gaussian
maximum likelihood estimators of b0(n) and b0(n0), n 6¼ n0 are asymptotically independent. See also Basawa and Lund (2001). Under

these conditions, N1=2cê nð Þ and N1=2cê n
0� �
are thus asymptotically uncorrelated, n 6¼ n0, and we retrieve the results given in Ursu and

Duchesne (2009) for PVAR models.
The results presented in Proposition 2 are valid in the more general case of parsimonious PVAR models. Examples include Fourier

representations of the autoregressive coefficients:

Φk n; b0ð Þ ¼ A0;k þ
Xr
l¼1

Bl;ksin 2pln=sð Þ þAl;kcos 2pln=sð Þ� �
; (19)

where k= 1, . . ., p(n), n=1, . . ., s. See also Lund et al. (2006) in the univariate case. Thus, in general, the parameters between the seasons
may be functionally related. For parsimonious PVAR models, the autoregressive estimatorsΦk b̂N; n

� �
andΦl b̂N; n

0
� �

, n 6¼ n0, will not be

asymptotically independent. From Proposition 2, the asymptotic covariances betweenN1=2cê nð Þ andN1=2cê n
0� �
, n 6¼ n0 are given byΩnn0 ,

which do not vanish in general. Thus, the residual autocovariances are generally not independent. Compared with the results of
McLeod (1994) and Ursu and Duchesne (2009), that result represents a substantial difference that complicates the asymptotic
distributions of the Hosking-Li-McLeod test statistics, as discussed in Section 4.
4. APPLICATIONS TO DIAGNOSTIC CHECKING

Diagnostic checking of parsimonious PVAR models represents a useful application of Proposition 2. In the previous sections, it was
assumed that et; t 2 Zf g was white noise. Here we want to test that hypothesis of model adequacy by looking at the remaining
wileyonlinelibrary.com/journal/jtsa © 2013 Wiley Publishing Ltd. J. Time Ser. Anal. 2013, 34 496–507
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dependence in the residuals. Let Γe(h;n) = cov(ens+ n,ens+ n� h) be the lag h theoretical autocovariance matrices at season n of et; t 2 Zf g.
These quantities are collected in the (d2M)� 1 vector:

ge nð Þ ¼ g>e 1; nð Þ; g>e 2; nð Þ; . . . ; g>e M; nð Þ� �>
; (20)

where ge(h;n) = vec{Γe(h;n)}. More formally, the null hypothesis of model adequacy is given by:

H0 : ge nð Þ ¼ 0; n ¼ 1; . . . ; s;

where ge(n) is defined by (20) and 0 corresponds to the (d2M)� 1 null vector. McLeod (1994) and Hipel and McLeod (1994) suggested
that test statistics be used for each season n, n= 1, . . ., s. They also considered global test statistics that take all the seasons into
account. That strategy has been generalized to the PVAR models in Ursu and Duchesne (2009) and will be now developed for the
PVAR models with structured parameterization.

Consider thematrices Pi(n), i=1, . . .,M, such thatΣ�1
e n� ið Þ�Σ�1

e nð Þ ¼ P>
i nð ÞPi nð Þ, i=1, . . .,M andPi nð Þ Σe n� ið Þ�Σe nð Þf gP>

i nð Þ ¼ Id2.
Let the block-diagonal matrix QM(n) be defined by:

QM nð Þ ¼
P1 nð Þ 0 0 . . . 0
0 P2 nð Þ 0 . . . 0
⋮ ⋱ ⋮
0 0 0 . . . PM nð Þ

0BB@
1CCA: (21)

The relation Q>
M nð ÞQM nð Þ ¼ V�1 n;Mð Þ�Σ�1

e nð Þ follows. Let ecê nð Þ ¼ QM nð Þcê nð Þ . Thus the asymptotic covariance matrix of ecê nð Þ
is given by:

lim
N!1

Nvar ecê nð Þf g � eΩnn ¼ Id2M �QM nð Þ A> nð ÞI�1 b0ð ÞA nð Þ� �
Q>

M nð Þ; (22)

and the asymptotic covariance between ecê nð Þ and ecê n
0� �
is given by

lim
N!1

Ncov ecê nð Þ;ecê n
0

� �n o
� eΩnn0 ¼ �QM nð Þ A> nð ÞI�1 b0ð ÞA n

0
� �n o

Q>
M n

0
� �

: (23)

Let Q^ M nð Þ be a consistent estimator of QM(n), obtained by estimating consistently V(n;M) and Σe(n� l), l= 1, . . .,M by V^ n;Mð Þ and
Σ̂e n� lð Þ, l= 1, . . .,M.
The Hosking-Li-McLeod test statistic for a given season n is essentially based on the quadratic formNecê> nð Þecê nð Þ. More precisely, it is

defined by:

QM nð Þ ¼ N
XM
l¼1

o l; n;N; sð Þtr Cê
> l; nð ÞΣ̂�1

e nð ÞCê l; nð ÞΣ̂�1
e n� lð Þ

n o
: (24)

The factor o(l;n,N,s) needs to be specified. A possible natural choice is o(l;n,N,s)� 1, but the Ljung–Box correction factor developed
by McLeod (1994) defined by:

o l; n;N; sð Þ ¼ N þ 2ð Þ= N � l=sð Þ; if l � 0 mod s ;
N= N � l � nþ sð Þ=sb cð Þ; otherwise;

	
(25)

where bac denotes the integer part of the number a, is expected to improve the finite sample properties. See also Ursu and Duchesne
(2009). We call (25) the Ljung-Box-McLeod correction factor. When the parameters are indexed by the season and estimated by conditional
Gaussian maximum likelihood or least-squares estimators, the asymptotic covariance matrix (22) is approximatively idempotent. As a
corollary, the asymptotic distribution of the test statistic QM nð Þ is well approximated under these conditions by a chi-square distribution
with degrees of freedom depending on the rank of (22). The test statistic (24) is valid under more general assumptions. In the general case,
classical results on quadratic forms enable one to demonstrate that the asymptotic distribution of QM nð Þ is given by:

QM nð Þ!L
Xd2M
i¼1

li nð ÞZ2
i ; (26)

whereZ1; . . . ; Zd2M are independentN 0; 1ð Þ random variables, and li(n), i= 1, . . ., d2M, correspond to the eigenvalues of the asymptotic
covariance matrix (22).

A global portmanteau test statistic that takes into account all the seasons can be based on N1=2ecê ¼ N1=2 ecê> 1ð Þ; . . . ;ecê> sð Þ
� �>

,

which has a block asymptotic covariance matrix eΩ, with diagonal blocks given by (22) and covariances satisfying (23). The global
Hosking-Li-McLeod test statistic is:
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QM ¼
Xs
n¼1

QM nð Þ: (27)

The asymptotic distribution of QM is also a weighted sum of chi-square random variables:

QM !L
Xd2Ms

i¼1

liZ2
i ; (28)

where the lis denote the eigenvalues of the covariance matrix eΩ.
The covariance matrix (22) may be arbitrarily far from an idempotent matrix, even when the periodic white noise is composed of

independent random variables, and consequently the distribution of the portmanteau test statistic is not well approximated by a
chi-square distribution. That result may be surprising, given the literature on portmanteau test statistics for diagnostic checking of
time series models with independent white noise. Under certain conditions, it is well-known that the finite sample distribution of
the Box-Pierce-Ljung test statistics is better approximated by the distribution of a weighted sum of chi-squares random variables.
See Ljung (1986), among others. However, the chi-square approximation is generally satisfying, and it is of common use in practical
applications. This is discussed in Li (2004). When the noise is composed of uncorrelated random variables, it is better to use the
distribution of a weighted sum of chi-squares variables to approximate the finite sample distributions of Box-Pierce-Ljung test
statistics (see Francq et al. (2005) and Francq and Raïssi (2007)). In the periodic case, the information matrix I bð Þ involves the
derivatives of the autoregressive parameters across all seasons, whereas the matrices A(n) are always calculated for a given season
(see Li and McLeod (1981, Theorem 3) and Ahn (1988, p. 592)).
It is possible to evaluate the distribution of the Gaussian quadratic form in (26) by means of Imhof’s (1961) algorithm or other exact

methods. More precisely, the Hosking-Li-McLeod test procedure QM nð Þ at season n relies on the following steps: (1) compute the

eigenvalues l̂1 nð Þ; . . . ; l̂d2M nð Þof eΩN;nn, which provides a consistent estimator of eΩnn. The asymptotic covariance matrix eΩnn is estimated
by replacing unknown quantities in (22) by consistent estimators, following the traditional literature, (2) evaluate the (1� a)-quantile

ca l̂1 nð Þ; . . . ; l̂d2M nð Þ
� �

of
Xd2M

i¼1
l̂ iN2

i using Imhof’s algorithm and (3) the null hypothesis is rejected when

QM nð Þ≥ca l̂1 nð Þ; . . . ; l̂d2M nð Þ
� �

:

The test procedure for QM is similar, but it is based on the d2Ms empirical eigenvalues of a consistent estimator of the matrix eΩ.

Interesting advantages of the proposed procedures are that the ranks of eΩnn or eΩ do not need to be known. Interestingly, the
procedure is identical whether the asymptotic variance matrices are (approximately) singular (and idempotent) or non-singular. Thus,
the test procedures are more general than the ones described in Ursu and Duchesne (2009): if the autoregressive parameters are
indexed by the seasons and if they satisfy linear constraints inside the seasons, zero eigenvalues will be observed in the asymptotic
limit. However, the general testing procedures remain unchanged.
5. SIMULATION EXPERIMENTS

In Section 4, we presented portmanteau test statistics. From a practical point of view, it seems natural to inquire about their finite
sample properties. Here, we report the simulation results of a Monte Carlo experiment conducted to study the exact level of the test
statistics calculated at each seasonQM nð Þ, n= 1, . . ., s, and that of the global test statisticQM. To compare the exact distribution of the
test statistics with their corresponding distribution, the following bivariate data-generating process was used:

Ynsþn ¼ Φ n; b0ð ÞYnsþn�1 þ ensþn: (29)

We considered the case of twelve seasons, that is s=12. Thus, we consider a bivariate PVAR (1). In general, that model relies on a
maximum of d2s= 48 free parameters. We used the simple Fourier representation of the PVAR parameters:

Φ n;b0ð Þ ¼ A0 þ sin 2pn=12ð ÞB1 þ cos 2pn=12ð ÞA1; n ¼ 1; . . . ; 12;

with the model parameters b0 = (vec>(A0), vec
>(B1), vec

>(A1))
>, defined as:

A0 ¼ 0:4 0:2
0:2 0:3

� �
;B1 ¼ 0:1 0:4

0:4 0:2

� �
;A1 ¼ 0:2 0:1

0:1 0:2

� �
:

The information matrix (9) reduces to the formula (13) with s= 12, where the 4� 12 matrix of derivatives @ f(n;b0)/@ b
> satisfies:

@f n;b0ð Þ
@b>

¼ I4⋮sin 2pn=12ð ÞI4⋮cos 2pn=12ð ÞI4ð Þ;
wileyonlinelibrary.com/journal/jtsa © 2013 Wiley Publishing Ltd. J. Time Ser. Anal. 2013, 34 496–507



Ta
b
le

1
.
Em

p
ir
ic
al
le
ve
ls
(n
um

b
er

o
f
re
je
ct
io
n
o
f
th
e
n
ul
lh

yp
o
th
es
is
o
ve
r
10

,0
00

re
p
lic
at
io
n
s)
at

th
e
5%

an
d
10

%
si
g
n
ifi
ca
n
ce

le
ve
ls
fo
r
th
e
p
o
rt
m
an

te
au

te
st
st
at
is
ti
cs

Q M
nðÞ

d
efi

n
ed

b
y
(2
4)

fo
r
n
=
1,
..
.,
12

an
d
M
=
1,
2,
3,
6,
8,
10

.T
h
e
m
od

el
is
g
iv
en

b
y
(2
9)
.T
h
e
n
u
m
b
er

o
f
ye
ar
s
ar
e
eq

u
al

to
N
=
20

0
an

d
40

0

M
nn

N
=
20

0

1
2

3
4

5
6

7
8

9
10

11
12

5%
10

%
5%

10
%

5%
10

%
5%

10
%

5%
10

%
5%

10
%

5%
10

%
5%

10
%

5%
10

%
5%

10
%

5%
10

%
5%

10
%

1
45

7
96

7
49

7
10

07
49

2
97

7
48

3
98

0
47

9
98

6
46

9
95

6
47

1
95

7
49

7
99

4
47

5
97

2
47

7
97

0
48

0
10

15
50

2
98

4
2

45
9

93
8

45
6

10
07

46
0

93
1

47
1

96
1

48
6

10
06

47
3

89
9

44
8

96
6

45
5

96
2

46
3

96
0

53
4

10
54

48
0

94
5

51
7

10
21

3
44

4
91

0
45

9
94

2
49

0
97

6
46

8
96

2
44

90
0

48
5

95
1

46
8

94
6

46
0

93
7

46
3

96
2

46
9

99
5

46
6

93
3

46
6

94
5

6
44

1
88

9
44

0
91

9
47

3
94

4
42

8
87

1
41

3
85

9
41

7
84

6
42

1
86

0
44

6
90

6
43

5
85

5
44

5
95

9
42

0
88

9
43

7
90

1
8

40
4

88
1

40
6

86
6

39
6

87
1

38
4

83
4

38
4

83
6

40
9

85
8

38
9

81
8

41
8

85
2

40
4

80
4

40
3

85
6

39
1

79
7

36
1

82
0

10
38

2
83

0
36

2
84

3
36

8
80

9
36

7
80

6
37

9
80

2
35

8
73

7
34

7
75

9
36

7
78

3
39

1
76

5
39

6
79

7
34

5
77

1
35

0
75

7
M
nn

N
=
40

0
1

2
3

4
5

6
7

8
9

10
11

12
5%

10
%

5%
10

%
5%

10
%

5%
10

%
5%

10
%

5%
10

%
5%

10
%

5%
10

%
5%

10
%

5%
10

%
5%

10
%

5%
10

%
1

52
6

10
34

47
0

98
1

50
6

10
12

46
5

96
4

47
9

10
16

47
9

10
03

45
0

98
4

46
1

97
6

50
2

99
9

46
5

94
9

47
2

93
4

54
3

10
44

2
51

2
10

00
50

3
10

24
50

2
95

6
44

9
94

8
50

3
97

3
49

5
10

41
49

7
98

2
48

6
98

4
51

4
10

49
48

5
10

08
48

3
97

9
53

2
10

66
3

52
2

10
50

51
7

10
55

49
4

95
6

46
2

94
1

50
0

97
4

46
8

95
9

47
8

93
3

48
3

95
5

52
3

96
9

51
0

96
7

49
9

10
21

45
4

96
4

6
48

3
99

7
44

9
94

2
47

7
92

8
42

8
90

7
45

0
93

7
48

4
96

3
43

9
89

4
47

0
92

2
45

9
94

0
48

9
10

02
46

4
93

3
46

6
95

4
8

45
2

98
2

42
8

88
9

46
3

95
9

44
5

91
9

46
4

93
9

45
5

90
3

43
1

88
3

44
9

89
2

45
0

88
2

46
2

93
8

44
9

91
1

42
5

89
1

10
43

8
95

2
43

2
90

0
43

4
89

2
40

8
88

5
44

2
89

4
46

2
94

4
40

7
87

0
44

6
89

4
42

7
87

1
47

2
88

9
42

0
90

5
43

3
85

4

DISTRIBUTIONS FOR RESIDUAL AUTOCOVARIANCES IN PARSIMONIOUS PVAR MODELS

wileyonlinelibrary.com/journal/jtsa© 2013 Wiley Publishing Ltd.J. Time Ser. Anal. 2013, 34 496–507

5
0
5



Table 2. Empirical levels (number of rejections of the null hypothesis over 10,000 replications) at the 5% and 10% significance levels for the
portmanteau test statistics QM defined by (27) with M=1,2,3,6,8,10. The model is given by (29). The numbers of years are equal to N=200 and 400

M N=200 N=400

5% 10% 5% 10%
1 487 969 477 980
2 440 948 488 1005
3 413 865 510 1001
6 357 726 410 867
8 275 623 370 748
10 205 498 320 691
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The process e ¼ et; t 2 Zf g was assumed to be Gaussian white noise, composed of independent Gaussian random vectors with
expectation 0 and common covariance matrix Σ(n) = I2, s= 1, . . ., 12. To estimate A(n) defined by (16), explicit expressions of the
seasonal weights Ψk(n;b0) are needed. These weights are given in Example 1.
We studied the empirical frequencies of rejection of the null hypothesis of adequacy at the 5% and 10% nominal levels, for each of

two series length (N= 200 and 400). For each experiment, 10,000 independent realizations were generated. Let b̂ 0ð Þ
N ¼ b0 be a vector

of initial values. For each realization of the PVAR (1) model defined by (29), the true model was estimated using the recursions:

b̂ iþ1ð Þ
N ¼ b̂ ið Þ

N þ Î�1 b̂ ið Þ
� � N�1 ^

@L ið Þ

@b>

( )
;

where the information matrix and the derivatives were naturally estimated. A tolerance of order 10�6 has been adopted on the sum of

absolute differences
X12

j¼1
b̂ iþ1ð Þ
N jð Þ � b̂ ið Þ

N jð Þ
��� ���, where b̂ ið Þ

N ¼ b̂ ið Þ
N 1ð Þ; . . . ; b̂ ið Þ

N 12ð Þ
� �>

, to ensure the convergence of the algorithm. For

each residual time series, the portmanteau test statistics QM nð Þ , n= 1, . . ., s and QM were calculated using the Ljung-Box-McLeod
correction factor (25), forM2 {1,2,3,6,8,10}. Imhof’s (1961) algorithm has been used to obtain the critical values; we used the R package
CompQuadForm available from CRAN. All the simulation codes have been implemented in R. To attain computational efficiency, some
parts have also been written using the C language and interfaced with the R software.
The number of rejections of the null hypothesis of adequacy are reported in Tables 1 and 2. The results presented in Table 1 indicate

that some under-rejection has been observed for large values of M at both significance levels when N= 200. Generally the results
improved with N; when N= 400, the empirical levels were close to the nominal levels at both significance levels. In unreported
simulation experiments, we computed the P-values of the test statistics using the quantiles from the w2d2M and w2d2 M�1ð Þ distributions.

The w2d2M distribution would be appropriate if the test statistics could be calculated using the (unknown) innovations, whereas Ursu

and Duchesne (2009) argue that the w2d2 M�1ð Þ distribution is appropriate if an unrestricted PVAR (1) model is estimated. However, severe

under-rejections occurred using the w2d2M distribution: at the 5% level, the empirical levels were systematically inferior to the results
presented in Table 1. For example, whenM=6 and n= 2, we obtained 2.93% and 2.79% for N=200, 400 respectively, using the quantile
of order 95th w20:95;24 ¼ 36:41. However, we obtained over-rejection using the quantile w20:95;20 ¼ 31:41 with d2(M� 1) = 20 degrees of

freedom. In that case, the empirical levels were equal to 9.66% and 10.12% under the sample sizes N= 200, 400 respectively. In both
situations, the results were significantly far from the 5% nominal level. Using Imhof’s algorithm and the correct asymptotic distribution,
we obtained from Table 1 empirical levels equal to 4.40% and 4.49%, which shows that the test statistic is slightly conservative.
The empirical levels of the global portmanteau test statistics are given in Table 2. Some under-rejections occurred for large values of

M. When N=400, the results were generally reasonable at the 5% nominal level when M2 {1,2,3,6}. Considering the high dimension of

the covariance estimator of the (d2sM)� (d2sM) matrix eΩ, it is not surprising that large sample sizes are needed for the global test
statistics. However, in practical applications, performing diagnostic checks season by season seems highly desirable, and the
portmanteau test statistics QM nð Þ, n= 1, . . ., s are thus recommended for use.
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