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a b s t r a c t

Liu, Tang and Zhang [Liu, H. Tang, Y., Zhang H.H. 2009. A new chi-square approximation
to the distribution of non-negative definite quadratic forms in non-central normal
variables. Computational Statistics & Data Analysis 53, 853–856] proposed a chi-square
approximation to the distribution of non-negative definite quadratic forms in non-
central normal variables. To approximate the distribution of interest, they used a non-
central chi-square distribution, where the degrees of freedom and the non-centrality
parameter were calculated using the first four cumulants of the quadratic form. Numerical
examples were encouraging, suggesting that the approximation was particularly accurate
in the upper tail of the distribution. We present here additional empirical evidence,
comparing Liu–Tang–Zhang’s four-moment non-central chi-square approximation with
exact methods. While the moment-based method is interesting because of its simplicity,
we demonstrate that it should be used with care in practical work, since numerical
examples suggest that significant differences may occur between that method and exact
methods, even in the upper tail of the distribution.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let X = (X1, . . . , Xp)> be a multivariate normal random vector Np(µ,6), with mean µ = (µ1, . . . , µp)
> and positive

definite covariance matrix 6. Consider the quadratic form Q = X>AX, where A represents a p × p symmetric and non-
negative definite matrix. A problem of interest is to evaluate the probability

Pr(Q > q), (1)
where q is a scalar.
In the simplest case 6 = A = Ip, where Ip denotes the p × p identity matrix, Q represents a non-central chi-square

random variable with p degrees of freedom and non-centrality parameter δ = µ>µ. In the general case, let P be such that
PP> = Ip and that diagonalizes CAC>, that is PCAC>P> = D = diag(λ1, . . . , λp). The matrix C corresponds to the Cholesky
decomposition of6 and satisfies the relation C>C = 6. We assume that λ1 ≥ · · · ≥ λr > 0 and λr+1 = · · · = λp = 0; thus
the rank of A is r = rank(A). Let Y = P(C>)−1X and ν = P(C>)−1µ. Thus the distribution of Y is Np(ν, Ip), and it follows
that the quadratic formQ can be expressed as a weighted sum of chi-square random variables:

Q = X>AX = Y>DY =
r∑
i=1

λiχ
2
hi(δi),

where hi = 1, δi = ν2i , with νi the ith component of the vector ν, i = 1, . . . , r .

∗ Corresponding address: Université deMontréal, Département demathématiques et de statistique, C.P. 6128 Succursale Centre-Ville, Montréal, Québec
H3C 3J7, Canada. Tel.: +1 514 343 7267; fax: +1 514 343 5700.
E-mail address: duchesne@dms.umontreal.ca (P. Duchesne).

0167-9473/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2009.11.025

http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:duchesne@dms.umontreal.ca
http://dx.doi.org/10.1016/j.csda.2009.11.025


P. Duchesne, P. Lafaye De Micheaux / Computational Statistics and Data Analysis 54 (2010) 858–862 859

Many test statistics converge in distribution toward a finite weighted sum of chi-square random variables. A famous
example is the Chernoff–Lehmann test statistic for goodness-of-fit to a fixed distribution, which converges to a finite
weighted sum of central (non-central) chi-square random variables under the null (alternative) hypothesis (see, e.g., Moore
and Spruill (1975) and Spruill (1976)). In time series analysis, a popular procedure often encountered in applied work is the
Box–Pierce–Ljung portmanteau test statistic for lack of fit in autoregressive-moving-average (ARMA) time series models.
The approximate critical values of that test procedure are often taken from a chi-square distribution, but in general the valid
asymptotic distribution under the null hypothesis is given by a finite weighted sum of central chi-square random variables;
see Ljung (1986), Francq et al. (2005) and Duchesne and Francq (2008), among others. Under local alternatives (in Pitman’s
sense), it may be seen that the Box–Pierce–Ljung portmanteau test statistic converges in distribution to a finite weighted
sum of non-central chi-square random variables. Another example is the portmanteau test statistic of Peña and Rodriguez
(2002) for model checking in linear and non-linear time series models, which under certain conditions display more power
than the Box–Pierce–Ljung test statistics. See also Lin andMcLeod (2006). Our literature review is far from being exhaustive,
and in fact is very selective. However, it suggests the importance of determining (1) for quadratic forms in central and non-
central normal variables in level and power studies.
The computation of (1) for quadratic forms in non-central normal variables will typically arise in power analysis (note

in passing that level studies are performed under the null hypothesis, and thus (1) should also be computed accurately
for quadratic forms in central normal variables). Many methods have been proposed for that problem, including methods
relying on numerical inversion of the characteristic function (see, e.g., Imhof (1961) andDavies (1973, 1980)). Thesemethods
are not limited to non-negative quadratic forms and they are found to perform better than Pearson’s three-moment central
chi-square approximation in these situations (Imhof (1961)). Farebrother (1984) and Sheil and O’Muircheartaigh (1977),
based on the results of Ruben (1962), exploit the fact that (1) can be written as an infinite series of central chi-square
distributions. Farebrother (1990) proposed a method which expresses a quadratic form in an alternative form, using the
so-called tridiagonal form. Another reference is Kuonen (1999), who uses saddlepoint approximations.
Recently, Liu et al. (2009) proposed a new moment-based approach. Their method relies on a chi-square approximation

to the distribution of non-negative definite quadratic forms in non-central normal variables. When the normal variables
have zero mean, their method reduces to Pearson’s three-moment central chi-square approach. It should be noted that
Pearson’s three-moment central chi-square approximation may be inaccurate to determine probabilities in certain regions
of the domain, but it is generally accurate in the upper tail of the distribution (see, e.g., Imhof (1961) or Kuonen (1999),
among others). Liu et al. (2009) presented interesting and encouraging numerical examples: in the upper tail of the
distribution of the quadratic form in non-central normal variables, their results suggested that their method provided a
better approximation of the distribution than Pearson’s method. From their numerical results, the probabilities obtained
from their approximation were also very close to the exact values (in the upper tail, the absolute errors were no more that
3× 10−6).
The principal objective of this note is to provide additional empirical evidence. The Liu–Tang–Zhang approach is

compared to exact methods in Section 2, notably Imhof’s (1961) method and Farebrother’s (1984) algorithm (note that
these methods are called exact in the sense that it is possible to bound the approximation error, which can be made
arbitrarily small). The comparisons are made at various points of the distribution support in order to appreciate when the
moment-based approximation is satisfactory.While Liu–Tang–Zhang’s four-moment non-central chi-square approximation
is interesting because of its inherent simplicity, our numerical findings suggest that the method should be used with care,
since significant differences may occur between that moment-based approach and exact methods, even in the upper tail of
the distribution. Section 3 offers concluding remarks.

2. Empirical comparisons and discussion

This section compares Liu–Tang–Zhang’s four-moment non-central chi-square approximation with two exact methods.
In order to approximate accurately the true probabilities, we proceeded as in Liu et al. (2009) and we used Farebrother’s
(1984) algorithm, using a theoretical result of Ruben (1962), as reported in Kotz et al. (1967, p. 843). See Liu et al. (2009,
p. 855), and Farebrother (1984, pp. 333–334).We also included Imhof’s (1961)method in the numerical comparisons, which
is popular in several studies. We would like to point out that all the computations were performed using the R package
CompQuadForm that we developed recently. Note that in addition to Imhof’s (1961) method and Farebrother’s (1984)
algorithm, our R package also includes an algorithmprovided by Davies (1980). In order to achieve computational efficiency,
the algorithms included in our package have been implemented in the C language and interfaced with the R software. The
package CompQuadForm is freely available from the authors. All the results using Farebrother’s (1984) algorithm in our
R package have been verifiedwith theNAG routine G01JCF (Mark 18) of the FORTRAN77 language; the resultswere identical
with a precision of 10−6.
We considered eight quadratic forms, which are defined in Table 1. The quadratic formsQ1 andQ2 represent modifica-

tions of the first and second cases of Liu et al. (2009). ForQ1, the weights 0.4 and 0.1 are replaced by the values 4.0 and 1.0,
respectively, and the non-centrality parameters 0.6 and 0.8 are divided by two. For the quadratic formQ2, the weight 0.3 is
multiplied by 10, and the non-centrality parameter 2 is divided by 10. InQ3, we consider a situationwhere theweight of the
first χ21 (δ) random variable is large but its non-centrality parameter is small, while the weight of the second χ

2
1 (δ) random

variable is relatively small, but the associated non-centrality parameter is large. The quadratic forms Q4 is inspired from
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Table 1
Definitions of the quadratic forms.

Q1 = 0.5χ21 (1.0)+ 4.0χ
2
2 (0.3)+ 1.0χ

2
1 (0.4),

Q2 = 0.7χ21 (6.0)+ 3.0χ
2
1 (0.2),

Q3 = 10.0χ21 (0.1)+ 1.0χ
2
1 (10.0),

Q4 = 6.0χ22 (0.2)+ 3.0χ
2
2 (0.8)+ 1.0χ

2
2 (12.0),

Q5 = χ
2
1 (1.0)+ (0.6)

4χ21 (7.0),

Q6 = χ
2
1 (0.1)+ (0.6)

4χ21 (10.0),

Q7 = χ
2
2 (0.2)+ (0.7)

6χ21 (10.0),

Q8 = χ
2
2 + (0.8)

6χ21 (8.0).

Davies (1980, Table 3), who considered a similar quadratic form expressed as a finite sum of centered chi-square random
variables; we simply introduced non-centrality parameters.
The quadratic forms Q5–Q8 are inspired from the asymptotic distribution of the Box–Pierce–Ljung portmanteau test

statistic, which is widely used in time series analysis. If a time series follows a first-order autoregressive or moving-average
model with parameter α and is correctly fitted, then the Box–Pierce–Ljung portmanteau test statistic asymptotically follows
the quadratic form χ2m−1 + α

2mχ21 (Ljung (1986)). For Q5 and Q6, we considered m = 2, α = 0.6, and we introduced non-
centrality parameters 1.0 and 7.0 inQ5, while the non-centrality parameters were 0.1 and 10.0 inQ6. For the quadratic form
Q7, we examinedm = 3, α = 0.7, with non-centrality parameters 0.2 and 10.0. ForQ8, we consideredm = 3, α = 0.8, with
non-centrality parameters 0.0 and 8.0. We do not claim that these choices for the non-centrality parameters have a precise
statistical interpretation: they have been chosen in order to appreciate the quality of the Liu–Tang–Zhang approximation
compared with Imhof’s (1961) method and Farebrother’s (1984) algorithm.
The results are presented in Table 2. Our numerical examples demonstrate that Farebrother’s (1984) algorithm and

Imhof’s (1961) method differ very little, using both the absolute and relative errors. The absolute and relative errors
of Liu–Tang–Zhang’s four-moment non-central chi-square approximation were more important than those presented in
Liu et al. (2009), when the probabilities were compared with the exact values of Farebrother’s (1984) algorithm. More
importantly, the numerical examples in Liu et al. (2009) seem not representative of all situations of interest in practical
applications, since the probabilities obtained from the Liu–Tang–Zhang method may be relatively far from the exact
probabilities.
We now discuss the results presented in Table 2 in more details. We first studyQ1. The difference with the first example

of Liu et al. (2009) is related to more important weights in the quadratic forms for the non-central chi-square variables
with small non-centrality parameters. It may be noted that the absolute errors are larger than those displayed in Liu et al.
(2009). For example, in their numerical example, when the true probability was 3.1% they obtained an absolute error of
3 × 10−5, while in our example the absolute error is larger by a factor 10 when the true probability is around 5%. We did
a similar experiment with Q2, where the non-central chi-square variable with a small weight was associated with a large
non-centrality parameter, and the other non-central chi-square variable offered a larger weight but a smaller non-centrality
parameter. In that case, Liu–Tang–Zhang’s four-moment non-central chi-square approximation gave large relative errors,
as large as 7% when the true probability was about 5%. The quadratic form Q3 is similar to Q2 but it offers more extreme
differences between the weights and the non-centrality parameters; again, the Liu–Tang–Zhang approximation performed
poorly. The quadratic formQ4 also suggests that the moment-based approximation can be relatively unsatisfactory. Under
Q5, the non-centrality parameters were 1.0 and 7.0, and the relative error in the upper tail of the distribution was about
1.2%, when the true probability was approximately 3.6%. The quadratic form Q6 is similar to Q5, with the differences that
the first non-centrality parameter is divided by 10, and the second non-centrality parameter is increased from 7.0 to 10.0.
In that case, the relative error in the upper tail of the distribution was about 8.6% when the true probability was 4.7%, about
2.6% when the true probability was 1.6%, and 6.8% when the true probability was 0.6%. Note that Imhof’s (1961) method
and Farebrother’s (1984) algorithm displayed some differences using the relative error criterion when the true probability
was very small. However, the absolute error was 10−6 and was considerably smaller than the one of the Liu–Tang–Zhang
approximation. The quadratic formsQ7 andQ8 also suggested that themoment-based approximation can be unsatisfactory
in the upper tail of the distribution, while the two exact methods investigated were generally in close agreement.

3. Conclusion

Our numerical results suggest that the moment-based chi-square approximation may provide a poor approximation
to the distribution of a quadratic form in non-central normal variables, comparing the probabilities obtained from the
Liu–Tang–Zhang approximation with the exact values. While those kinds of techniques are nevertheless interesting and
appealing giving their inherent simplicity, it should be noted that modern computer resources allow us to implement exact
methods such as Imhof’s (1961) method very efficiently. In the numerical examples presented in this note, the cost in
computer time was too small to be a determinant factor. The objective here was not to explain under which conditions
the moment-based chi-square approximation is appropriate (however, our numerical examples may suggest when the
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Table 2
Probability that the quadratic form Qi exceeds q, i ∈ {1, . . . , 8}. The column F gives the exact values with accuracy 10−6 using Farebrother’s (1984)
algorithm. The column I provides the values using Imhof’s (1961) method. The column AEI (REI (%)) gives the absolute errors (relative errors in percentage)
of Imhof’s (1961) method compared to Farebrother’s (1984) algorithm. The column LTZ presents the values using Liu et al.’s (2009) method. The column
AELTZ (RELTZ (%)) gives the absolute errors (relative errors in percentage) of the Liu–Tang–Zhang method compared to Farebrother’s (1984) algorithm.

Quadratic form q F I AEI REI (%) LTZ AELTZ RELTZ (%)

Q1 6 0.679440 0.679440 0.000000 0.000003 0.669712 0.009728 1.431733
8 0.556520 0.556520 0.000000 0.000004 0.549650 0.006870 1.234521
20 0.152962 0.152962 0.000000 0.000008 0.154503 0.001541 1.007563
30 0.050874 0.050874 0.000000 0.000059 0.051294 0.000419 0.824287

Q2 6 0.591269 0.591269 0.000000 0.000008 0.567547 0.023722 4.012093
15 0.127068 0.127068 0.000000 0.000012 0.132639 0.005570 4.383763
20 0.052153 0.052153 0.000000 0.000113 0.056008 0.003855 7.391635
25 0.022099 0.022100 0.000001 0.004046 0.023224 0.001126 5.093545

Q3 40 0.114930 0.114930 0.000000 0.000022 0.122072 0.007142 6.214041
50 0.064546 0.064546 0.000000 0.000140 0.069020 0.004474 6.931217
60 0.037203 0.037203 0.000000 0.000392 0.039296 0.002093 5.625822
70 0.021772 0.021772 0.000000 0.001076 0.022482 0.000710 3.260405

Q4 30 0.570073 0.570073 0.000000 0.000000 0.561196 0.008877 1.557103
40 0.330482 0.330482 0.000000 0.000010 0.329954 0.000528 0.159705
60 0.086659 0.086659 0.000000 0.000031 0.089430 0.002771 3.197466
70 0.041871 0.041871 0.000000 0.000314 0.043121 0.001250 2.985924

Q5 4 0.249843 0.249843 0.000000 0.000000 0.254194 0.004351 1.741461
5 0.169313 0.169313 0.000000 0.000003 0.171716 0.002402 1.418880
6 0.115043 0.115043 0.000000 0.000051 0.115845 0.000802 0.696923
9 0.035784 0.035785 0.000001 0.000289 0.035350 0.000434 1.214135

Q6 4 0.151668 0.151668 0.000000 0.000014 0.159370 0.007702 5.078090
6 0.047146 0.047146 0.000000 0.000073 0.051219 0.004073 8.638854
8 0.016046 0.016046 0.000000 0.000471 0.016459 0.000413 2.576934
10 0.005676 0.005675 0.000001 0.010978 0.005289 0.000387 6.818694

Q7 3 0.484953 0.484953 0.000000 0.000018 0.474929 0.010024 2.067013
6 0.125851 0.125851 0.000000 0.000014 0.129265 0.003414 2.712853
7 0.079686 0.079686 0.000000 0.000116 0.081951 0.002264 2.841448
8 0.050413 0.050413 0.000000 0.000084 0.051630 0.001217 2.414282

Q8 6 0.215605 0.215605 0.000000 0.000004 0.217333 0.001728 0.801447
8 0.085359 0.085359 0.000000 0.000028 0.088209 0.002850 3.338825
10 0.032178 0.032178 0.000000 0.000875 0.033241 0.001063 3.303265
14 0.004394 0.004395 0.000001 0.010090 0.004111 0.000284 6.453687

approximation is not satisfactory), but to point out that it should be usedwith care, even in the upper tail of the distribution.
In conclusion, it is possible that Liu–Tang–Zhang’s four-moment non-central chi-square approximation performs better than
Pearson’s method under certain conditions, but the probabilities found using that method may be relatively far from the
exact probabilities.
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