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ABSTRACT
We introduce the 2nd-power skewness and kurtosis, which are inter-
esting alternatives to the classical Pearson’s skewness and kurtosis,
called 3rd-power skewness and 4th-power kurtosis in our termi-
nology. We use the sample 2nd-power skewness and kurtosis to
build a powerful test of normality. This test can also be derived as
Rao’s score test on the asymmetric power distribution, which com-
bines the large range of exponential tail behavior provided by the
exponential power distribution family with various levels of asym-
metry. We find that our test statistic is asymptotically chi-squared
distributed. We also propose a modified test statistic, for which we
show numerically that the distribution can be approximated for
finite sample sizes with very high precision by a chi-square. Sim-
ilarly, we propose a directional test based on sample 2nd-power
kurtosis only, for the situations where the true distribution is known
to be symmetric. Our tests are very similar in spirit to the famous
Jarque–Bera test, and as such are also locally optimal. They offer
the same nice interpretation, with in addition the gold standard
power of the regression and correlation tests. An extensive empir-
ical power analysis is performed, which shows that our tests are
among themost powerful normality tests. Our test is implemented in
an R package called PoweR.
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1. Introduction

An important issue in statistics is the validity of the normality assumptions that are often
required for the use of many popular methods of statistical analysis. Consequently, the
problem of testing that a sample has been drawn from some normal distribution with
unknownmean and variance is one of themost common problems of goodness of fit in sta-
tistical practice. For this reason, many test procedures have been proposed in the literature.
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A comprehensive power comparison study of 33 existing tests for normality can be found
in [19], with a brief review of each test (see also [23]).

It is generally accepted that the regression and correlation tests are the most powerful,
in particular the test of Shapiro andWilk [21] (or its extensions, see for instance [20]) that
is widely used in practice, or the tests of Chen and Shapiro [4] and Del Barrio et al. [7].
For the situations where it is known that the true distribution is symmetric, the directional
test of Coin [5] emerges as the most powerful, according to the empirical study of Romão
et al. [19]. Some tests based on the empirical distribution function are also powerful, in
particular, the ZA and ZC tests of Zhang andWu [24] and the test of Anderson and Darling
[1]. However, apart from the Shapiro–Wilk and Anderson–Darling tests, these tests rely
on simulated quantiles, which may limit their implementation.

Despite the remarkable qualities of the Shapiro–Wilk test, another test is widely used,
especially in the econometric fields. This is the well-known Jarque–Bera (JB) test [12], first
proposed by Bowman and Shenton [3] and based on sample Pearson’s skewness and kur-
tosis, respectively, estimates of third and fourth standardizedmoments. Practitioners often
see statistical procedures as decision aid tools and therefore require transparent methods
that are easily interpretable. When normality is rejected using the JB test, one also obtains
information on the process: the distribution may be skewed to the right (or to the left)
and/or exhibit long (or short) tails. This knowledge is often valuable to users, and this
feature may explain the popularity of the JB test, even if it has some power issues. The
tests of D’Agostino and Pearson [6] and Doornik and Hansen [8], which combine different
normalizing transformations of skewness and kurtosis, generally seem to be slightly more
powerful than the JB test.

In this paper, we first propose a quasi omnibus test that presents the advantages of
the JB test, with in addition the gold standard power of the regression and correlation
tests. We also derive a directional test with the same benefits, for the situations where
the true distribution is known to be symmetric. Our starting point was based on the
idea that kurtosis can be measured in more than one way. Geary [9] proposed to use the
first standardized sample moment n−1 ∑n

i=1 |Zi| as an alternative to the classical sample
Pearson’s kurtosis (defined as the fourth standardized sample moment n−1 ∑n

i=1 |Zi|4),
where Zi represents the standardized observations. Note that Bonett and Seier [2] revisited
the measure of Geary [9] with the G-kurtosis and their powerful associated directional
normality test. They also discuss the benefits of both types of kurtosis to detect the non-
normality of a sample. Our intuition was that the sweet spot lies in-between, and the
second standardized sample moment emerged as the natural choice given the quadratic
term in the normal density. However, by construction, n−1 ∑n

i=1 |Zi|2 = 1. Therefore, we
considered instead the limit n−1 ∑n

i=1(|Zi|2+ε − 1)/ε when ε → 0 and obtained K2 :=
n−1 ∑n

i=1 Z
2
i log |Zi|, which we will define formally later as the sample 2nd-power kur-

tosis. We also extended this idea to skewness. While Pearson’s skewness is defined as
the third standardized sample moment n−1 ∑n

i=1 Z
3
i = n−1 ∑n

i=1 |Zi|3 sign(Zi), we con-
sider instead B2 := n−1 ∑n

i=1 |Zi|2 sign(Zi), which we will define formally later as sample
2nd-power skewness. In our terminology, the JB test uses the 3rd-power skewness and 4th-
power kurtosis, while we propose instead to base our test of normality on a combination
of the sample 2nd-power skewness and kurtosis. It happens that this approach permits to
preserve the structure and benefits of the JB test, namely simple measures that are easily
interpretable, with the promise of maximum performance.
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However, for our test to be a serious alternative to the JB test, we believe that a formal
justification is needed, alongwith a theoretical framework that will let us obtain the asymp-
totic distribution of our test statistic. To achieve this, we follow the same strategy adopted
by JB, who used Rao’s score test (also known as the Lagrange multiplier test, see [18]) on
the Pearson family of distributions. It turns out that if one takes instead the family of the
asymmetric power distribution (APD), introduced by Komunjer [14], the resulting test
statistic is a combination of our new measures of 2nd-power skewness and kurtosis. The
APD, described in Section 2, combines the vast range of exponential tail behavior provided
by the exponential power distribution (EPD) family with various levels of asymmetry. The
large size of this family makes us classify our test as quasi omnibus.

In Section 3, we develop Rao’s score test on the APD family and easily find, in a first step,
the test statistic and its asymptotic distribution, given fixed location and scale parameters.
In a second step, we substitute these unknown parameters for their maximum-likelihood
estimators under the null hypothesis of normality to test the composite hypotheses. The
section is then devoted to finding the asymptotic distribution of the modified statistic. The
result is very similar to that of JB: same local optimality; under the null, B2 and K2 are
asymptotically independent and normally distributed; and the test statistic, given by the
sum of the squares of the standardized 2nd-power skewness and kurtosis, is asymptotically
χ2
2 distributed. (Proving this last result was quite challenging, in particular, the proof of

Lemma 2 which is provided in Appendix A.)
As is often the case with asymptotic results, the approximation for small sample sizes is

not good enough; for instance, Mantalos [17] shows that the JB test has rather poor small
sample properties. In our situation, this is explained in part by the well-known fact that
skewed distributions are often associated with heavy tails for small samples. In Section 4,
we address this issue by considering K2 − B22 instead of K2, which we will define formally
later as the sample 2nd-power net kurtosis. It turns out that the dependency of thismeasure
with B2 is negligible even for small samples. We therefore create a modified statistic, based
on standardized 2nd-power skewness and net kurtosis, for whichwe shownumerically that
the distribution can be approximated, with very high precision, by a χ2

2 for all sample sizes
as small as 10. We believe that accurate p-values and thus reliable conclusions, without the
need to rely on simulated quantiles or tables, is a desirable characteristic that can ease the
acceptance and implementation of a test. This is rarely found in the (recent) literature for
small sample sizes.

In Section 5, we derive a directional test of normality based on the sample 2nd-power
kurtosis and apply the same strategy as above using Rao’s score on the symmetric EPD
family. We also provide a transformed version for which we show numerically that the dis-
tribution can be approximated with very high precision by a standard normal for sample
sizes as small as 10. We obtain a test as powerful as the Coin test [5], a regression and
correlation test considered the best. Furthermore, rejection of normality comes with a
justification: the tails are too heavy if the statistic is positive, and the tails are too short
otherwise.

Finally, an example is given in Section 6, using the computer code for the R soft-
ware available in the supplementary material at the publisher’s website (Appendix D). An
extensive empirical power analysis is done in Section 7 (tables with numerical results are
postponed to Appendix C). The conclusion follows in Section 8. Note that all proofs are
provided in Appendix A.
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2. Asymmetric power distribution

TheAPD, proposed byKomunjer [14], can be viewed as a generalization of the symmetrical
EPD – also known as the generalized power distribution or the generalized error distri-
bution – to a broader family that includes asymmetric densities. Thus, the APD family
combines the large range of exponential tail behaviors provided by the EPD family with
various levels of asymmetry. In particular, the normal distribution is included in this fam-
ily, and therefore, in Section 3, we use the APD as an embedding family of alternatives to
develop a new test of normality.

The probability density function f (u) of the standard APD is defined in Section 2 of
[14]. In order to obtain the standard normal density as a special case, we modify its scale
with the change of variable u = 2−1/λx and obtain

f (x | α, λ) = δ
1/λ
α,λ

21/λ�(1 + 1/λ)
exp

[
−1
2

δα,λ

Aα,λ(x)
|x|λ

]
, for all x ∈ R, (1)

where 0 < α < 1, λ > 0 and 0 < δα,λ < 1 with

δα,λ := 2αλ(1 − α)λ

αλ + (1 − α)λ
and Aα,λ(x) :=

[
1/2 + sign(x)(1/2 − α)

]λ .
We observe thatAα,λ(x) = αλ if x<0 andAα,λ(x) = (1 − α)λ if x>0, which generates the
asymmetry of the density with respect to the mode, given by the origin. Therefore, for a
given value of λ, the degree of asymmetry is controlled by the parameter α. Indeed, one can
verify that α = Pr[X < 0], which means that the density is skewed to the right if 0 < α <

1/2, symmetric if α = 1/2 and skewed to the left if 1/2 < α < 1. The tails’ behavior of the
density is controlled by the parameter λ; heavier tails are associated with smaller values of
λ and shorter tails with larger values of λ. Note that location and scale parameters μ ∈ R

and σ > 0 will be added in Section 3 to test for the composite hypothesis.
The APD family includes some known distributions. Naturally, if we let α = 1/2 (it

follows that Aα,λ(x) = δα,λ = 2−λ), we obtain the symmetric EPD distribution, which
includes the Laplace distribution (also known as the double exponential) if λ = 1 and the
standard normal distribution if λ = 2. For other values of α, if we let λ = 1, we obtain
the asymmetric Laplace distribution, also known as the two-piece double exponential (see
[15]), while if we let λ = 2, we obtain the two-piece normal distribution, also known as the
split normal (see [13]).

3. The score test on the APD family

Let X1, . . . ,Xn be independent and identically distributed random variables with density

g(x | θ1, θ2,μ, σ) := σ−1f
(
σ−1(x − μ) | θ1, θ2

)
, for all x ∈ R,

where μ ∈ R and σ > 0 are the unknown location and scale parameters and f (x | θ1, θ2)
is defined in Equation (1). Note that, for convenience, we changed the parameters α and
λ to θ1 and θ2. We will write X ∼ APD(θ1, θ2,μ, σ) when the density of X is given by
g(x | θ1, θ2,μ, σ).
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We wish to test the goodness-of-fit hypotheses

H0 : X ∼ N(μ, σ) vs. H1 : X �∼ N(μ, σ).

But given that we assume that X1, . . . ,Xn are i.i.d. APD(θ1, θ2,μ, σ), the non-parametric
formulation in the above hypotheses can be transformed into the testing of the null hypoth-
esis that the measurements of X come from some N(μ, σ 2) (with μ and σ unspecified)
against the family of alternatives APD(θ1, θ2,μ, σ) (with θ1 ∈ (0, 1), θ2 > 0,μ ∈ R, σ >
0). In other words, we wish to test

H0 : X ∼ APD(1/2, 2,μ, σ),

against H1 : X ∼ APD(θ1, θ2,μ, σ); (θ1, θ2) �= (1/2, 2),

which can be achieved using the parametric Rao’s score test (also known as the Lagrange
multiplier test) of

H0 : (θ1, θ2) = (1/2, 2) vs. H1 : (θ1, θ2) �= (1/2, 2).

We consider, in a first step, thatμ and σ are some known nuisance parameters. Thus, if we
define

θ := (θ1, θ2)T,

the statistic to test the simple null hypothesisH0 : (θ1, θ2) = (1/2, 2) is based on the vector
n−1 ∑n

i=1(∂/∂θ) log g(Xi | θT,μ, σ)|θ=(1/2,2)T . In the second step, we substitute μ and σ
for their maximum-likelihood estimators under the null, denoted by μ̂n and σ̂n, in order
to test the composite hypotheses, and we study the asymptotic distribution of the modified
statistic. This is the general idea; let us now take a closer look at the situation.

We first define three primary functions. Let dθ (y), dμ(y) and dσ (y) be defined as

dθ (y) := ∂

∂θ
log g(x | θT,μ, σ)

∣∣∣∣
θ=(1/2,2)T, x=μ+σy

= ∂

∂θ
log f (y | θT)

∣∣∣∣
θ=(1/2,2)T

,

dμ(y) := σ
∂

∂μ
log g(x | 1/2, 2,μ, σ)

∣∣∣∣
x=μ+σy

= − ∂

∂y
log f (y | 1/2, 2), (2)

dσ (y) := σ
∂

∂σ
log g(x | 1/2, 2,μ, σ)

∣∣∣∣
x=μ+σy

= −1 − y
∂

∂y
log f (y | 1/2, 2) = ydμ(y)− 1. (3)

We can verify that

dθ (y) =
( −2y2 sign(y)

−2−1[y2 log |y| − (2 − log 2 − γ )/2]

)
,

dμ(y) = y and dσ (y) = y2 − 1,
(4)

where

γ := −ψ(1) = 0.577215665 . . . (5)
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is the Euler–Mascheroni constant,ψ(x) := (d/dx) log�(x) = �′(x)/�(x) is the digamma
function and �(x) is the gamma function. Note that the result ψ(3/2) = 2 − 2 log 2 − γ

has been used in the derivations.
We observe that the term y2 sign(y) can also be written as y|y|. Furthermore, the func-

tion y2 log |y| is not defined at y=0. Hence, we define (y2 log |y|)|y=0 := 0, and as a result,
this function is now continuous everywhere.

Using Rao’s score test as described above, we consider in the first step that μ and σ
are known. Hence, the statistic to test the simple null hypothesis H0 : (θ1, θ2) = (1/2, 2)
against H1 : (θ1, θ2) �= (1/2, 2) is denoted by rn(μ, σ) and given by

rn(μ, σ) := 1
n

n∑
i=1

dθ (Yi) =

⎛
⎜⎜⎜⎜⎝

−2

[
n−1

n∑
i=1

Y2
i sign(Yi)

]

−2−1

[
n−1

n∑
i=1

Y2
i log |Yi| − (2 − log 2 − γ )/2

]
⎞
⎟⎟⎟⎟⎠ ,

where

Yi = σ−1(Xi − μ).

However, this statistic cannot be used directly to test composite hypotheses when μ
and σ are considered unknown. Therefore, the second step consists in substituting μ
and σ for their maximum-likelihood estimators μ̂n and σ̂n, under the null hypothe-
sis given by Xi ∼ N(μ, σ 2). Thus, we search for the values μ and σ that jointly satisfy
the equations

∑n
i=1 dμ(Yi) = 0 and

∑n
i=1 dσ (Yi) = 0, and we obtain the well-known

estimators

μ̂n = X̄n := 1
n

n∑
i=1

Xi and σ̂n = Sn :=
[
1
n

n∑
i=1
(Xi − X̄n)

2

]1/2

. (6)

Hence, we propose to base the composite test of normality on the statistic rn(μ̂n, σ̂n).
The remainder of this section is devoted to establishing the asymptotic distribution of
n1/2rn(μ̂n, σ̂n) under the null hypothesis.

The strategy consists first in determining, using the central limit theorem, the asymp-
totic distribution of the vector n1/2 · n−1 ∑n

i=1(dθ (Yi)
T, dμ(Yi), dσ (Yi))

T under the null
hypothesis of normality. The second step consists in writing n1/2rn(μ̂n, σ̂n) as a linear
combination of this vector plus a negligible term oP(1)12, in order to obtain the asymptotic
distribution ofn1/2rn(μ̂n, σ̂n)under the null hypothesis. Thus, for the rest of the section,we
assume thatXi, and in generalX, are normally distributed. Or equivalently, for i = 1, . . . , n,
we assume that

Yi = σ−1(Xi − μ) ∼ N(0, 1) and Y = σ−1(X − μ) ∼ N(0, 1).

Proposition 3.1:

n1/2 · 1
n

n∑
i=1

⎛
⎝dθ (Yi)

dμ(Yi)

dσ (Yi)

⎞
⎠ D−→ N4

⎛
⎜⎝0,

⎛
⎜⎝

Jθ Jθμ Jθσ
JTθμ Jμ Jμσ
JTθσ Jμσ Jσ

⎞
⎟⎠

⎞
⎟⎠ ,
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where dθ (·), dμ(·), dσ (·) are defined in Equation (4), and

Jθ := E

[
dθ (Y)dθ (Y)T

]
=

(
12 0
0 32−1 [

4(3 − log 2 − γ )2 + 3π2 − 28
]) ,

Jθμ := E
[
dθ (Y)dμ(Y)

] = (−8(2π)−1/2; 0
)T ,

Jθσ := E [dθ (Y)dσ (Y)] = (
0; −(3 − log 2 − γ )/2

)T ,
Jμ := E

[
d2μ(Y)

] = 1, Jσ := E
[
d2σ (Y)

] = 2, Jμσ := E
[
dμ(Y)dσ (Y)

] = 0.

Proof: The proposition is a direct application of the central limit theorem. See Appendix A
for the details of the calculations. �

In the next four propositions, we study n1/2rn(μ̂n, σ̂n)with the aim of writing this statis-
tic as a linear combination of the vector given in Proposition 3.1, plus an asymptotically
negligible term.

Proposition 3.2:

n1/2rn(μ̂n, σ̂n) = n1/2rn(μ, σ)+ n1/2(μ̂n − μ)
∂

∂μ
rn(μ, σ)

+ n1/2(σ̂n − σ)
∂

∂σ
rn(μ, σ)+ n1/2R,

where n1/2R = oP(1)12 is a negligible term and 12 := (1, 1)T.

Proof: We use the Taylor expansion of rn(μ̂n, σ̂n) around (μ, σ), where R is the
remainder term. Furthermore, we know from Proposition 3.1 that n1/2rn(μ, σ) = n1/2 ·
n−1 ∑n

i=1 dθ (Yi) is OP(1)12, and it is shown in Appendix A that n1/2R = oP(1)12, thus a
negligible term. �

We now study the terms n1/2(μ̂n − μ), n1/2(σ̂n − σ) in Proposition 3.3 and the deriva-
tives (∂/∂μ)rn(μ, σ), (∂/∂σ )rn(μ, σ) in Proposition 3.4.

Proposition 3.3:

n1/2(μ̂n − μ) = n1/2σ J−1
μ · 1

n

n∑
i=1

dμ(Yi)+ oP(1)

and

n1/2(σ̂n − σ) = n1/2σ J−1
σ · 1

n

n∑
i=1

dσ (Yi)+ oP(1),

where Jμ and Jσ are defined in Proposition 3.1.

Proof: See Appendix A. �
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Proposition 3.4:

∂

∂μ
rn(μ, σ) = −σ−1Jθμ + oP(1)12 and

∂

∂σ
rn(μ, σ) = −σ−1Jθσ + oP(1)12.

Proof: See Appendix A. �

The next proposition is directly obtained by combining Proposition 3.2 with Proposi-
tions 3.3 and 3.4.

Proposition 3.5:

n1/2rn(μ̂n, σ̂n) = n1/2 · 1
n

n∑
i=1

dθ (Yi)

− n1/2J−1
μ Jθμ · 1

n

n∑
i=1

dμ(Yi)− n1/2J−1
σ Jθσ · 1

n

n∑
i=1

dσ (Yi)+ oP(1)12.

Equivalently, in matrix form, we have

n1/2rn(μ̂n, σ̂n) = n1/2
(
I2;−J−1

μ Jθμ; −J−1
σ Jθσ

) · 1
n

n∑
i=1

⎛
⎝dθ (Yi)

dμ(Yi)

dσ (Yi)

⎞
⎠ + oP(1)12,

where I2 is the identity matrix of size 2.

We observe, using the central limit theorem, that each term of the linear combination is
OP(1)12, except obviously the term oP(1)12. Finally, combining Propositions 3.1 and 3.5,
we obtain the asymptotic distribution of rn(μ̂n, σ̂n) under the null hypothesis of normality.

Proposition 3.6:

n1/2rn(μ̂n, σ̂n)
D−→ N2

(
0, Jθ − J−1

μ JθμJTθμ − J−1
σ Jθσ JTθσ

)
,

with

Jθ − J−1
μ JθμJTθμ − J−1

σ Jθσ JTθσ =
(
4(3 − 8/π) 0

0 (3π2 − 28)/32

)
.

Proof: See Appendix A. �

Before we introduce the statistic for the asymptotic test of normality, the following
definition is given.
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Definition 3.7: For a sample X1, . . . ,Xn, ‘2nd-power skewness’ and ‘2nd-power kurtosis’
are, respectively, denoted by B2 and K2, and defined as

B2 := 1
n

n∑
i=1

Z2
i sign(Zi) and K2 := 1

n

n∑
i=1

Z2
i log |Zi|,

where Zi = S−1
n (Xi − X̄n) and X̄n, Sn are defined in Equation (6).

Analogously, 2nd-power skewness and kurtosis for a random variable X are defined,
respectively, as E(Z2 sign(Z)) and E(Z2 log(Z)), where Z = σ−1(X − μ). Note that B2 can
also be written as B2 := n−1 ∑n

i=1 Zi|Zi|. As mentioned in Section 1, B2 is an alterna-
tive to Pearson’s sample skewness given by n−1 ∑n

i=1 Z
3
i , which can also be written as

n−1 ∑n
i=1 |Zi|3 sign(Zi). In our proposed terminology, this would be 3rd-power skewness,

while B2 is 2nd-power skewness. Similarly,K2 is an alternative to Pearson’s sample kurtosis
given by n−1 ∑n

i=1 |Zi|4, which can be called 4th-power kurtosis in our terminology, or to
Geary’smeasure of kurtosis given byn−1 ∑n

i=1 |Zi|, which can be called 1st-power kurtosis.
However, for 2nd-power kurtosis, we must take the limiting case because, by construction,
n−1 ∑n

i=1 |Zi|2 = 1 for any sample. Therefore, we consider limε→0 n−1 ∑n
i=1(|Zi|2+ε −

1)/ε, which happens to be equal to K2.
A significative positive (negative) value of B2 suggests that the distribution is right-

skewed (left-skewed), while a small value of |B2| suggests that the distribution is symmetric.
Furthermore, we can show that K2 is a positive random variable (for any sample size), with
large (small) values of K2 corresponding to long-tailed (short-tailed) distribution.

Using B2 and K2, Proposition 3.6 can be rewritten explicitly as follows:

n1/2
( −2B2

−2−1[K2 − (2 − log 2 − γ )/2]

)

D−→ N2

(
0,

(
4(3 − 8/π) 0

0 (3π2 − 28)/32

))
. (7)

We can now present our main theoretical result in Theorem 3.8, which follows directly
from Equation (7).

Theorem 3.8: The statistic for the asymptotic test of normality, for the composite hypothesis
and based on Rao’s score test with the APD family of alternatives, is denoted by Xa

APD and
given by

Xa
APD := nB22

3 − 8/π
+ n

(
K2 − (2 − log 2 − γ )/2

)2
(3π2 − 28)/8

,

where B2,K2 are given in Definition 3.7 and γ is defined in Equation (5). Furthermore, under
the null hypothesis,

Xa
APD

D−→ χ2
2 , as n → ∞.

The null hypothesis is rejected if Xa
APD is larger than the chi-squared quantile χ2

2,α , at a sig-
nificance level of α. P-value can be computed as Pr(X > Xa

APD), where X is a χ2
2 -distributed

random variable.



2316 A. DESGAGNÉ AND P. LAFAYE DE MICHEAUX

The statistic Xa
APD is remarkably simple, as a result of the asymptotic null covariance

(and independence) between B2 and K2, as shown by Proposition 3.6. The form of Xa
APD is

very similar to the JB statistic, which involves Pearson’s skewness and kurtosis, or using our
terminology, 3rd-power skewness and 4th-power kurtosis. Note that the superscript a in
the notationXa

APD stands for ‘asymptotic’, tomark that the chi-squared distribution is valid
for n → ∞ or in practice for large n. Indeed, as is often the case with Rao’s score tests, the
chi-squared approximation for small sample sizes is not good enough. In the next section,
we go one step further by proposing a modified version of the statistic Xa

APD, denoted
by XAPD, for which we show numerically that the distribution can be approximated very
precisely, under the null, by a chi-squared for sample sizes as small as 10.

4. The XAPD test for finite sample sizes

The first issue to address in themodification ofXa
APD is the dependency between B2 andK2

in small samples, because theχ2
2 distribution results from a sumof squares of two indepen-

dent standard normals. Note that we assume in this section that n ≥ 10. Indeed, small and
large values of B2 are associated with large values of K2. The same issue can be observed
with Pearson’s skewness and kurtosis. A skewed distribution, to the left or to the right, often
exhibits heavy tails when the sample size is small. To resolve this problem, we consider,
instead of K2, the following quantity.

Definition 4.1: The sample ‘2nd-power net kurtosis’ is defined as K2 − B22, where B2 and
K2 are given in Definition 3.7.

We can show that K2 − B22 ≥ 0 for all samples of any size. The key part of the proof
is the analysis of the case of an odd sample of size 2n+1 that contains only two dis-
tinct values with n replications of the largest. In this case, one can verify that B2 =
(2n + 1)−1 and K2 = 2−1B2 log((n + 1)/n). Finally, it suffices to observe that K2 − B22 =
B22(K2/B22 − 1) and thatK2/B22 = 2−1(2n + 1) log((n + 1)/n) is decreasing and converges
to 1 as n → ∞.

The strategy consists in basing the modified statistic XAPD on transformed measures
of B2 and K2 − B22 that are approximately distributed as N(0, 1). We find numerically that
the dependency between K2 − B22 and B2 is negligible. Furthermore, we find numerically
that (K2 − B22)

1/3 and B2 are closely distributed as a normal for all samples of n ≥ 10,
under the null hypothesis. Note that the power of 1/3 comes from a Wilson–Hilferty
cubed root transformation that leads to normality because K2 − B22 can be approached
by a gamma.

The next steps consist in the standardization of B2 and (K2 − B22)
1/3, always under

the null hypothesis, for all n ≥ 10. We have E(B2) = 0 for all sample sizes because Z2
i is

independent of sign(Zi) and E( sign(Zi)) = 0. Furthermore, we know from Theorem 3.8
that the asymptotic variance of n1/2B2 is given by 3 − 8/π . The variance for finite sam-
ples is then estimated using a linear regression through the origin, where the variable
Var (n1/2B2)/(3 − 8/π)− 1 (simulated for various n ≥ 10) is explained by 1/nα , with
α chosen to maximize the R2 of the regression. We find that α = 1, with a regression
coefficient equal to −1.9. It leads us to the next definition.
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Definition 4.2: The ‘transformed 2nd-power skewness’, denoted by Z(B2), is defined as

Z(B2) := n1/2B2
[(3 − 8/π)(1 − 1.9/n)]1/2

,

where B2 is given in Definition 3.7.

Now, using Theorem 3.8, the delta method and n1/2B22 = oP(1), we find that the
asymptotic expectation of (K2 − B22)

1/3 is given by Ea := ((2 − log 2 − γ )/2)1/3 and
that the asymptotic variance of n1/2(K2 − B22)

1/3 is given by Va := 9−1((2 − log 2 −
γ )/2)−4/3(3π2 − 28)/8. The expectation and variance for finite samples are then
estimated using linear regressions through the origin, where the variables E[(K2 −
B22)

1/3]/Ea − 1 and Var [n1/2(K2 − B22)
1/3]/Va − 1 (simulated for various n ≥ 10) are

explained by 1/nα , with α chosen to maximize the R2 of each regression. It leads us to
the next definition.

Definition 4.3: The ‘transformed 2nd-power net kurtosis’, denoted by Z(K2 − B22), is
defined as

Z(K2 − B22) :=
n1/2

[
(K2 − B22)

1/3 − ((2 − log 2 − γ )/2)1/3(1 − 1.026/n)
]

[
72−1((2 − log 2 − γ )/2)−4/3(3π2 − 28)(1 − 2.25/n0.8)

]1/2 ,
where B2 and K2 are given in Definition 3.7.

Considering that we have found numerically that Z(B2) and Z(K2 − B22) are approx-
imately distributed, under the null, as standard normal for all n ≥ 10, with a negligible
dependence between them, we present our statistic for finite sample sizes in the next
proposition.

Proposition 4.4: The proposed statistic to test the composite hypothesis of normality, for
finite sample sizes n ≥ 10, is denoted by XAPD and given by

XAPD := Z2(B2)+ Z2(K2 − B22),

where the transformed 2nd-power skewness Z(B2) and the transformed 2nd-power net
kurtosis Z(K2 − B22) are, respectively, given in Definitions 4.2 and 4.3. Or written explicitly,

XAPD := nB22
(3 − 8/π)(1 − 1.9/n)

+ n
[
(K2 − B22)

1/3 − ((2 − log 2 − γ )/2)1/3(1 − 1.026/n)
]2

72−1((2 − log 2 − γ )/2)−4/3(3π2 − 28)(1 − 2.25/n0.8)
,

where B2, K2 are given in Definition 3.7 and γ is defined in Equation (5). Furthermore,
under the null hypothesis (‘

app∼ ’ denotes ‘approximately distributed as’ with high numerical
precision),

XAPD
app∼ χ2

2 , for all n ≥ 10.
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Figure 1. Transformed 2nd-power skewness Z(B2) and transformed 2nd-power net kurtosis Z(K2 −
B22), for 5,000 normal samples of size 20.

The null hypothesis is rejected if XAPD is larger than the chi-squared quantile χ2
2,α , at a sig-

nificance level of α. P-value can be computed as Pr(X > XAPD), where X is a χ2
2 -distributed

random variable.

Note that XAPD/Xa
APD → 1 as n → ∞, as a result of the delta method and therefore

XAPD
D−→ χ2

2 as n → ∞. We observe that the modified statistic XAPD remains relatively
simple, although it is now adjusted for the sample size.

The question is now how good is the approximation of the distribution ofXAPD by a chi-
squared distribution with two degrees of freedom. A preliminary answer is given visually
in Figure 1, where Z(B2) and Z(K2 − B22) are plotted for 5000 normal samples of size 20.
It looks exactly as a plot of two independent N(0, 1) variables. We also assessed the qual-
ity of the fit by performing a study of the empirical level (empirical power under the null
hypothesis) of the statistic XAPD based on 1,000,000 simulations and on χ2

2 quantiles, for
different sample sizes. The results, given in Table 1, show that the significance level of the
test is very accurate. To better appreciate the level of precision, we present in Appendix B
(available in the supplementary material at the publisher’s website) the same table for dif-
ferent competitor tests for which a formula for the computation of p-values is available.
None of them reaches the accuracy provided by our test XAPD.
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Table 1. Empirical power (in%) of the testsXAPD andZEPD, under thenull hypothesis, basedon1,000,000
simulations and on χ2

2 and N(0, 1) quantiles, for different sample sizes.

Empirical power, under the null, of XAPD Empirical power, under the null, of ZEPD

α\n 10 12 14 16 18 20 50 100 200 10 12 14 16 18 20 50 100 200

1 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0
2 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.0
3 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.0
4 4.2 4.1 4.0 4.0 4.0 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.0 4.0
5 5.3 5.1 5.0 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.0 5.0
6 6.3 6.1 6.0 6.0 6.0 6.0 6.0 6.1 6.1 6.2 6.1 6.1 6.1 6.1 6.1 6.0 6.0 6.0
7 7.4 7.1 7.1 7.0 6.9 6.9 7.0 7.0 7.0 7.2 7.1 7.1 7.1 7.1 7.0 7.0 7.0 7.0
8 8.5 8.2 8.1 8.0 7.9 7.9 7.9 8.0 8.0 8.2 8.0 8.0 8.1 8.0 8.0 8.0 8.0 8.0
9 9.5 9.2 9.1 9.0 8.9 8.9 8.9 9.0 9.1 9.2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
10 10.6 10.3 10.1 10.0 9.9 9.9 9.9 10.0 10.0 10.2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
12 12.7 12.3 12.1 12.0 11.8 11.9 11.8 12.0 12.0 12.1 11.9 12.0 12.0 11.9 11.9 11.9 12.0 12.0
14 14.8 14.3 14.1 14.0 13.8 13.8 13.8 14.0 14.0 14.1 13.9 13.9 13.9 13.8 13.9 13.9 13.9 14.0
16 16.9 16.4 16.1 16.0 15.8 15.8 15.8 15.9 16.0 16.0 15.9 15.9 15.9 15.8 15.8 15.9 15.9 16.0
18 18.9 18.4 18.1 18.0 17.8 17.8 17.7 18.0 18.0 18.0 17.8 17.8 17.9 17.8 17.8 17.8 17.9 18.0
20 21.0 20.4 20.2 19.9 19.8 19.7 19.7 19.9 20.0 19.9 19.8 19.8 19.8 19.7 19.8 19.8 19.9 19.9

5. The directional test for finite sample sizes

When it is known that the distribution of the random variable is symmetric, we can take
advantage of this information by using a directional test and thus increasing the power.
In this section, we consider a directional test based on sample 2nd-power kurtosis. As
mentioned in Section 2, the symmetrical EPD is a particular case of the APD when the
parameter of asymmetry is set to θ1 = 1/2; therefore, we will write

EPD(θ2,μ, σ) := APD(1/2, θ2,μ, σ)

and use the EPD as a family of alternatives.
We wish to test the null hypothesis that the measurements of X come from some

N(μ, σ 2) (with μ and σ unspecified) against the family of EPD(θ2,μ, σ). In other words,
considering that θ2 > 0,μ ∈ R, σ > 0, we wish to test

H0 : X ∼ EPD(2,μ, σ) against H1 : X ∼ EPD(θ2,μ, σ); θ2 �= 2.

To achieve this, we perform Rao’s score test following the same strategy adopted in
Section 3, and it is easy to verify that the resulting test statistic is based onK2. Furthermore,
we obtain the following result directly from Theorem 3.8:

Corollary 5.1: Under the null hypothesis, we have

Za
EPD := n1/2

(
K2 − (2 − log 2 − γ )/2

)
[(3π2 − 28)/8]1/2

D−→ N(0, 1), as n → ∞.

As was the case for the XAPD test statistic, the normal approximation for small sam-
ple sizes is not good enough. Therefore, we go one step further by proposing a simple
transformation of K2, for which we show numerically that the distribution can be closely
approximated, under the null, by a normal for sample sizes as small as 10.

We first find, for each n ≥ 10, the value αn that maximizes the normality of the Box-
Cox transformation Tn := ((2K2)

αn − 1)/αn, using 10,000 values of K2 simulated under
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the null. A simple linear regression is then used to explain αn by 1/nb, where b is chosen
to maximize the R2, and we obtain the following equation:

αn = −0.06 + 2.1/n0.67. (8)

Now, using the delta method with the results of Theorem 3.8, we find that the asymp-
totic expectation of Tn is given by Ea := −((2 − log 2 − γ )−0.06 − 1)/0.06 and that the
asymptotic variance of n1/2Tn is given byVa := 22(2 − log 2 − γ )2(−0.06−1)(3π2 − 28)/8.
The expectation and variance for finite samples are then estimated using linear regressions
through the origin where the variables E(Tn)− Ea and Var (n1/2Tn)− Va (simulated for
variousn ≥ 10) are explained by 1/nb, with b chosen tomaximize theR2 of each regression.
It leads us to the next definition.

Definition 5.2: The ‘transformed 2nd-power kurtosis’, denoted by Z(K2), is defined as

Z(K2) :=
n1/2

[
((2K2)

αn − 1)/αn + ((2 − log 2 − γ )−0.06 − 1)/0.06 + 1.32/n0.95
]

[
(2 − log 2 − γ )−2.12(3π2 − 28)/2 − 3.78/n0.733

]1/2 ,

where K2 is given in Definition 3.7, αn is given in Equation (8) and γ is defined in
Equation (5).

The directional test follows directly in the next proposition.

Proposition 5.3: The proposed directional statistic to test the composite hypothesis of
normality, for finite sample sizes n ≥ 10, is denoted by ZEPD and given by

ZEPD := Z(K2),

where the transformed 2nd-power kurtosis Z(K2) is given in Definition 5.2. Furthermore,
under the null hypothesis,

ZEPD
app∼ N(0, 1), for all n ≥ 10.

The null hypothesis is rejected if |ZEPD| is larger than the normal quantile zα/2, at a
significance level of α. P-value can be computed as 2 Pr(Z > |ZEPD|), where Z is a N(0, 1)-
distributed random variable.

Note that ZEPD/Za
APD → 1 as n → ∞, as a result of the delta method and therefore

ZEPD
D−→ N(0, 1) as n → ∞. We also assessed the quality of the fit by performing a study

of the empirical power of the statistic ZEPD, under the null hypothesis, based on 1,000,000
simulations and on the normal quantiles, for different sample sizes. The results, given in
Table 1, show that the significance level of the test is again very accurate.

6. Example

In this section, we present an example using both tests XAPD and ZEPD and interpret
the results. To ease the calculations, we provide the computer code for the R software in
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Figure 2. Histogram for the sample of the example, n= 20.

Appendix D (available in the supplementary material at the publisher’s website). The tests
can also be computed using the PoweR package (version 1.06) [16].

Consider the following sample X1, . . . ,X20, coded in R as

x <- c (0.2 , 0.5 , 1.1 , 1.4 , 1.6 , 1.6 , 1.7 , 1.7 ,
1.7 , 1.8 , 1.9 , 2.0 , 2.0 , 2.1 , 2.1 , 2.1 ,
2.7 , 3.2 , 4.0 , 4.6)

The histogram, given in Figure 2, shows a distribution that is skewed to the right. However,
it is more difficult to visually evaluate the tails’ thickness. We first find that 2nd-power
skewness is B2 = 0.27073 and 2nd-power kurtosis is K2 = 0.55356. Second, we compute
transformed 2nd-power skewness, transformed 2nd-power net kurtosis and transformed
2nd-power kurtosis. We find that Z(B2) = 1.88985, Z(K2 − B22) = 1.80266 and Z(K2) =
2.07717. Note that these transformed values can be interpreted as Z-scores, which means
for instance that values smaller than −1.96 or larger than 1.96 can be considered as the
most extreme 5%.

The statistics of the XAPD test and of the ZEPD directional test are then given, respec-
tively, by

XAPD = Z2(B2)+ Z2(K2 − B22) = 6.82111 and ZEPD = Z(K2) = 2.07717.
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P-values for theXAPD and ZEPD tests are, respectively, 0.0330 and 0.0378. The null hypoth-
esis of normality is thus rejected if the significance level is 5%. Note that the Shapiro–Wilk
test, using the instruction shapiro.test(x) in R, gives a p-value of .0405, which is
consistent with our tests. However, the JB test gives a p-value of .1885, which does not
allow us to reject the normality.

An interesting feature of our tests is the possibility of interpreting the results, beyond
the rejection of the null. If it is known that the true distribution is symmetric, then the
directional test is appropriate. Under the null hypothesis of normality, there is a 5% chance
that the test statistic (in absolute value) |ZEPD|will be larger than the quantile z0.025 = 1.96,
or equivalently that 2nd-power kurtosis K2 will be smaller than 0.19143 or larger than
0.53852, given that the sample size is 20. For our sample, we observed K2 = 0.55356 and
ZEPD = 2.07717, which means that the normality is rejected at a significance level of 5%
because the tails of the observed distribution are heavier than what we could expect under
the null for a sample size of 20.

If the symmetry is not assumed, as is generally the case, then the XAPD test is
more appropriate. Under the null hypothesis of normality, there is a 5% chance that
the test statistic XAPD = Z2(B2)+ Z2(K2 − B22) will be larger than the quantile χ2

2;0.5 =
5.99146, or equivalently that the point (Z(B2),Z(K2 − B22)) will lie outside a circle of
radius (χ2

2;0.5)
1/2 = 2.44775 and centered at the origin (see Figure 1). For example,

any point such that |Z(B2)| > 1.73082 and |Z(K2 − B22)| > 1.73082 or |Z(K2 − B22)| >
2.44775 or |Z(B2)| > 2.44775 is among themost extreme 5%. For our sample, we observed
(Z(B2),Z(K2 − B22)) = (1.88985, 1.80266) and XAPD = 6.82111, which means that the
normality is rejected at a significance level of 5%. The positive and relatively large values of
both Z-scores indicate that this is partly because the observed right-skewness is important
and partly because the tails of the distribution are long, given this level of asymmetry and
the sample size of 20, considering what we could expect under the null. Note that in this
case, each indication is not strong enough to singly lead to the rejection; instead, it is the
combination of both of them that allows us to conclude with confidence that the sample is
not normally distributed.

7. Empirical power analysis

In this section, we compare the empirical power of our tests, the quasi omnibus XAPD
and the directional ZEPD, with the most powerful normality tests available in the liter-
ature. A preliminary analysis of the 33 tests analyzed (and described in detail) in [19]
has been done to make an informed choice, and we have selected the three best omnibus
tests in each of the three following categories: regression and correlation tests, tests based
on the empirical distribution function and tests based on measures of skewness and
kurtosis. We also selected the two best directional tests against symmetric alternatives.
The present empirical power analysis is thus performed for the 13 normality tests given
in Table 2.

For our study, we chose a total of 85 alternatives: 33 symmetric long-tailed, 26 symmetric
short-tailed and 26 asymmetric. Naturally, we considered the APD and EPD alternatives,
as well as usual distributions such as the Student’s t, logistic, beta, χ2, gamma, Gumbel,
log-normal and Weibull.
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Table 2. Selected tests for the empirical power analysis.

Abbreviations Regression and correlation tests

W Shapiro–Wilk test
CS Chen–Shapiro test
BCMR del Barrio–Cuesta–Albertos–Matrán–Rodríguez-Rodríguez test
β23 (Directional) Coin test

Abbreviations Tests based on the empirical distribution function

AD∗ Anderson–Darling test
ZA Zhang–Wu ZA test
ZC Zhang–Wu ZC test

Abbreviations Tests based on measures of skewness and kurtosis

K2 D’Agostino–Pearson test
DH Doornik–Hansen test
JB Jarque–Bera test
XAPD 2nd-power skewness and kurtosis-based test
Tω (Directional) Bonett–Seier test
ZEPD (Directional) 2nd-power kurtosis-based test

The empirical power is computed for sample sizes of n=10,20,50,100 and 200, at a sig-
nificance level of 5%. We use simulated critical values (based on 1,000,000 simulations)
for each test to ensure that the true level is 5%. Note that for our tests XAPD and ZEPD,
using either the simulated values or the chi-squared (or normal) quantiles has no impact
given the high accuracy of the latter. For a given sample size, the empirical power of a test
is measured by the proportion of samples (simulated from the alternative distribution) for
which the composite hypothesis of normality is rejected. Each calculation of the power
is based on 100,000 simulations using the R software with the PoweR package (version
1.06) [16].

The results of the study are presented in Appendix C (available in the supplementary
material at the publisher’s website). The detailed results are given in Tables C1–C3 and
the results aggregated by groups of alternatives are given in Tables C4–C8 as follows: 33
symmetric long-tailed (C4), 26 symmetric short-tailed (C5), 26 asymmetric (C6), 59 sym-
metric (C7) and all 85 alternatives (C8).We focus our analysis on the aggregate results. For
each of these tables, the average empirical power is given for each test and for each sample
size. The best power among all tests is also given for each sample size in the column labeled
‘Best’; this measure is used as a benchmark for the calculation of a total score that we define
as follows. For each test and for each of the five sample sizes, we compute the deviation to
the best, defined as the difference between the best power (the benchmark) and the power
of the test. The total score, for each test, is the average deviation to the best (ADB). This
score is reported in the second-to-last line of each table. The smaller theADB, the better the
performance of a test. The tests are ranked in the last line of the tables, based on this score.

Let us take a closer look at Table C7, which gives the average empirical power for the
59 symmetric alternatives, to determine the most powerful tests when it is known that the
true distribution is symmetric. The best are the directional testsβ23 andZEPD, withADBs of
0.2 and 0.6. They are followed by the directional test Tω and the quasi omnibus tests XAPD,
with ADBs of 3.1 and 3.2. If we take the analysis a step further, we see in Table C4 that a few
tests performwell against symmetric long-tailed alternatives. These tests areDH,XAPD, JB,
β23 and ZEPD, with ADBs of 0.4, 0.5, 0.6, 0.8 and 1.6. However, if we look at Table C5, the
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tests ZEPD and β23 clearly emerge as the best against symmetric short-tailed alternatives,
with ADBs of 0.7 each, followed by far by Tω with an ADB of 5.1.

Consider now Table C8, which gives the average empirical power for all 85 alternatives,
to determine the most powerful omnibus tests. The best tests are CS, XAPD and W with
ADBs of 0.4, 0.6 and 0.7. They are followed by the tests ZC, BCMR and ZA, with ADBs of
1.0, 1.1 and 1.3, which is also excellent performance. If we take the analysis a step further,
we see in Table C6 that the tests ZA,CS,W, BCMR and ZC clearly appear as the best against
asymmetric alternatives, with ADBs of 0.1, 0.7, 0.9, 1.3 and 1.3, while as mentioned above,
XAPD is the best omnibus test against symmetric alternatives (after the three directional
tests).

It is interesting to compare our results with those given in Table 11 of [19]. We observe
that the test β23 dominates against symmetric alternatives for each of their considered sam-
ple sizes (n=25,50,100), which is consistent with our conclusion that β23 and our test ZEPD
are the most powerful when it is known that the true distribution is symmetric. Further-
more, if we compute the ADB for the powers given in their Table 11, we obtain that CS,
W, ZA, ZC and BCMR are the best omnibus tests, in this order. Again, this is consistent
with our conclusion that CS, our test XAPD, W, ZC, BCMR and ZA are the most powerful
omnibus tests.

8. Conclusion

This paper introduced a new test of normality based on sample 2nd-power skewness B2
and kurtosis K2 (see Definition 3.7), which are alternative measures to the classical sample
Pearson’s skewness (corresponding to 3rd-power skewness) and kurtosis (corresponding
to 4th-power kurtosis). More precisely, the test statistic XAPD is the sum of the squares of
what we defined as transformed 2nd-power skewness Z(B2) and transformed 2nd-power
net kurtosis Z(K2 − B22), two quantities that are virtually independent and closely dis-
tributed as a standard normal. Consequently, the distribution of the test statistic XAPD can
be approximated, with a very high numerical accuracy, by a χ2

2 for any sample sizes of
n ≥ 10 (see Proposition 4.4). The test has been derived from Rao’s score on the APD fam-
ily, a generalization of the symmetric EPD to take into account the asymmetry. We thus
obtain that the exact asymptotical distribution of XAPD is χ2

2 .
Similarly, we introduced a directional test of normality based on sample 2nd-power kur-

tosis K2, when the true distribution is known to be symmetric. More precisely, the test
statistic ZEPD is the transformed 2nd-power kurtosis Z(K2). Consequently, the distribu-
tion of the test statistic ZEPD can thus be approximated very accurately by aN(0, 1) for any
sample sizes of n ≥ 10 (see Proposition 5.3). The test has been derived from Rao’s score
on the symmetric EPD family. We thus obtain that the exact asymptotical distribution of
ZEPD is N(0, 1).

We compared our tests, in terms of power, with those generally recognized as the best,
in an extensive empirical power analysis against 85 alternatives, divided into symmet-
ric long-tailed, symmetric short-tailed and asymmetric distributions. First, we found that
the most powerful tests, when it is known that the true distribution is symmetric, are
unequivocally the directional Coin test β23 and our directional test ZEPD. While a few tests
perform well against symmetric long-tailed alternatives, these two tests clearly emerge as
the best against symmetric short-tailed alternatives. Note that the Bonett–Seier directional
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test Tω and our quasi omnibus test XAPD follow as the next best tests against symmetric
alternatives.

Second, our analysis showed that themost powerful omnibus tests are theChen–Shapiro
testCS, our testXAPD and the Shapiro–Wilk testW. They are followed closely by theBCMR
test [7] and the Zhang–Wu tests ZC and ZA [24]. Furthermore, our results are consistent
with those found in the extensive power analysis of [19].

Finally, we would like to comment on the ‘omnibus’ property of our test by making a
link with its ‘robustness’. Note that robustness can be apprehended from three different
perspectives. First, a common definition of robustness for a statistical method is its ability
to perform correctly outside of its assumed range of validity. In our case, theXAPD andZEPD
tests can be derived from the Lagrange multiplier method and as such, they are known to
have optimal large sample power properties for, respectively, APD and EPD distributions.
Note that the large range of tail behavior and asymmetry of the APD makes the XAPD
test quasi omnibus. However, in practice, the XAPD and ZEPD tests are used, respectively,
as omnibus test and directional test against all symmetric alternatives. Therefore, the tests
need to be robust in the sense that theymust exhibit very good power even for distributions
not belonging to the APD and EPD families. This issue is addressed in our empirical power
study where we showed that theXAPD and ZEPD tests possess excellent power against alter-
natives such as the Student’s t, logistic, beta, χ2, gamma, Gumbel, log-normal andWeibull
distributions.

Second, certain authors (see for instance [10,11]) propose robust normality tests where
they replace the non-robust sample mean and sample standard deviation in existing tests
by robust (to outliers) estimators of location and scale, such as the median, the median
absolute deviation from the median (MAD) or the average absolute deviation from the
median (MAAD). In particular, Gel and Gastwirth [10] propose a robust modification of
the JB test of normality where they replace the sample standard deviation by the MAAD
in the calculation of (non-robust) sample skewness and kurtosis. Note that robustness to
outliers here concerns only location and scale estimators, in the sense that the influence of
outliers on these estimators is limited. However, the resulting normality test is not robust
to outliers. On the contrary, this eventually leads to more powerful directed test against
distributions with heavy-tailed alternatives and/or outliers. Further research to study this
kind of robustification on the XAPD and ZEPD tests can be of interest.

Third, we can consider robustness to outliers, in the sense that their influence on a test
decision is limited. Suppose that a data set shows strong evidence of normality, except for
one or a few extreme observations. A test of normality that is robust to outliers will not
reject normality in this situation. As Stehlík et al. [22] explain, virtually all common tests
for normality lack this kind of robustness. The reason lies simply in the question being
asked. Usually, the null hypothesis to be rejected is the normality of data, and it is therefore
desirable that the presence of outliers leads to its rejection. If the question is rather about
the approximative normality of data, where the null hypothesis to be rejected is the nor-
mality of data with possibly a small percentage of contamination by outliers, robust tests
are thus desirable. It is important to ask first the good question and then use the appropriate
class of tests. In this paper, the XAPD and ZEPD tests do not search this kind of robustness
and are therefore suited if one wants to reject normality for distributions with outliers.
However, our tests provide insights on the cause of rejection, e.g. asymmetry, short tails or
heavy tails, and thus further analysis on outliers is possible to make an informed decision.
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Alternatively, an easy way to modify the XAPD and ZEPD tests to make them robust to out-
liers is to follow the adaptive procedures described in Section 3.4 of [22]. It consists simply
in manually removing outliers using our preferred method and then using the standard
test for normality. For instance, we can remove the smallest 5% of the observations along
with the largest 5% (called trimmed method by the authors). Note that the level of the
test will be affected and therefore new critical values should be numerically computed by
simulations.

In summary, we propose a quasi omnibus test XAPD that offers at least the same benefits
as the JB test: a simple test statistic based on measures of skewness and kurtosis that give
information on the shape of the distribution.When normality is rejected, practitioners also
obtain information on the process, namely if the distribution is asymmetric and/or long-
tailed (or short-tailed). This knowledge is often valuable to users and is not available with
the W, β23 , CS, BCMR, ZC or ZA tests. In addition to those features, the power of our test
XAPD is clearly higher than that offered by the tests based on skewness and kurtosis, such
as the Jarque–Bera JB, D’Agostino–Pearson K2 or Doornik–Hansen DH tests. In fact, in
terms of power, it is comparable to the tests of Shapiro–Wilk and Chen–Shapiro, generally
accepted as the most powerful. Finally, a key factor for the implementation in software is
that the distribution of the test statisticXAPD is approximated, with an unequalled accuracy,
by aχ2

2 for any sample sizes ofn ≥ 10.No tables or simulated quantiles are needed; p-values
are computed with high precision using the χ2

2 distribution. We also propose the direc-
tional test ZEPD, when it is known that the true distribution is symmetric, which presents
essentially the same benefits as its omnibus counterpart.

For all those reasons, we believe that the XAPD test, based on 2nd-power skewness
and kurtosis, should be considered as a serious alternative to the JB test, especially in the
econometric fields, where the latter is widely used. An implementation of the XAPD test in
software, jointly with the directional test ZEPD, is easy and represents a valuable decision
aid for practitioners.
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