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21. INTRODUCTIONLet X = (X1; : : : ;Xp)> be a multivariate normal random ve
tor Np(�;�), with mean � =(�1; : : : ; �p)> and positive de�nite 
ovarian
e matrix �. Consider the quadrati
 form Q =X>AX, where A represents a p� p symmetri
 and non-negative de�nite matrix. A problemof interest is to evaluate the probability Pr(Q > q); (1)where q is a s
alar.In the simplest 
ase � = A = Ip, where Ip denotes the p�p identity matrix, Q represents anon-
entral 
hi-square random variable with p degrees of freedom and non-
entrality parame-ter Æ = �>�. In the general 
ase, let P be su
h that PP> = Ip and that diagonalizes CAC>,that is PCAC>P> = D = diag(�1; : : : ; �p). The matrix C 
orresponds to the Choleskyde
omposition of � and satis�es the relation C>C = �. We assume that �1 � : : : � �r > 0and �r+1 = : : : �p = 0; thus the rank of A is r = rank(A). Let Y = P(C>)�1X and� = P(C>)�1�. Thus the distribution of Y is Np(�; Ip), and it follows that the quadrati
form Q 
an be expressed as a weighted sum of 
hi-square random variables:Q = X>AX = Y>DY = rXi=1 �i�2hi(Æi);where hi = 1, Æi = �2i , with �2i the ith 
omponent of the ve
tor �, i = 1; : : : ; r.Many test statisti
s 
onverge in distribution toward �nite weighted sum of 
hi-square ran-dom variables. A famous example is the Cherno�-Lehmann test statisti
 for goodness-of-�tto a �xed distribution, whi
h 
onverges to a �nite weighted sum of 
entral (non-
entral) 
hi-square under the null (alternative) hypothesis (see, e.g., Moore and Spruill (1975), Spruill(1976)). In time series analysis, a popular pro
edure often en
ountered in applied work is theBox-Pier
e-Ljung portmanteau test statisti
 for la
k of �t in autoregressive-moving-average(ARMA) time series models. The approximate 
riti
al values of that test pro
edure are of-ten taken from a 
hi-square distribution, but in general the valid asymptoti
 distributionunder the null hypothesis is given by a �nite weighted sum of 
entral 
hi-square random vari-ables, see Ljung (1986), Fran
q, Roy and Zakoïan (2005) and Du
hesne and Fran
q (2008),among others. Under lo
al alternatives (in the Pitman's sense), it may be seen that the Box-Pier
e-Ljung portmanteau test statisti
 
onverges in distribution to a �nite weighted sum ofnon-
entral 
hi-square random variables. Another example is the portmanteau test statisti
of Peña and Rodriguez (2002) for model 
he
king in linear and non-linear time series models,whi
h under 
ertain 
onditions display more power than the Box-Pier
e-Ljung test statisti
s.See also Lin and M
leod (2006). Our literature review is far from being exhaustive, and infa
t is very sele
tive. However, it suggests the importan
e of determining (1) for quadrati
forms in 
entral and non-
entral normal variables in level and power studies.



3The 
omputation of (1) for quadrati
 forms in non-
entral normal variables will typi
allyarise in power analysis (note in passing that level studies are typi
ally performed under thenull hypothesis, and thus (1) should also be 
omputed a

urately for quadrati
 forms in
entral normal variables). Many methods have been proposed for that problem, in
ludingmethods relying on numeri
al inversion of the 
hara
teristi
 fun
tion (see, e.g., Imhof (1961),Davies (1973, 1980)). These methods are not limited to non-negative quadrati
 forms andthey are found to perform better than Pearson's three-moment 
hi-square approximation inthese situations (Imhof (1961)). Farebrother (1984) and Sheil and O'Muir
heartaigh (1977),based on results of Ruben (1962), exploit the fa
t that (1) 
an be written as an in�nite seriesof 
entral 
hi-square distributions. Farebrother (1990) proposed a method whi
h expresses aquadrati
 form in an alternative form, using the so-
alled tridiagonal form. Another referen
eis Kuonen (1999), who uses saddlepoint approximations.Re
ently, Liu, Tang and Zhang (2009) proposed a new moment-based approa
h. Theirmethod relies on a 
hi-square approximation to the distribution of non-negative de�nite qua-drati
 forms in non-
entral normal variables. When the normal variables have zero mean,their method redu
es to the Pearson's three-moment 
hi-square approa
h. It should be notedthat Pearson's three-moment 
hi-square approximation may be ina

urate to determine prob-abilities in 
ertain regions of the domain, but it is generally a

urate in the upper tail ofthe distribution (see, e.g., Imhof (1961) or Kuonen (1999), among others). Liu, Tang andZhang (2009) presented interesting and en
ouraging numeri
al examples: in the upper tailof the distribution of the quadrati
 form in non-
entral normal variables, their results sug-gested that their method provided a better approximation of the distribution than Pearson'smethod. From their numeri
al results, the probabilities obtained from their approximationwere also very 
lose to the exa
t values (in the upper tail, the absolute errors were no morethat 3� 10�6).The prin
ipal obje
tive of this note is to provide additional empiri
al eviden
e. The Liu-Tang-Zhang approa
h is 
ompared to exa
t methods in Se
tion 2, notably Imhof's (1961)method and Farebrother's (1984) algorithm (note that these methods are 
alled exa
t inthe sense that it is possible to bound the approximation error, whi
h 
an be made arbitrarilysmall). The 
omparisons are made at various points of the distribution support in order to ap-pre
iate when the moment-based approximation is satisfa
tory. While the Liu-Tang-Zhang'sfour-moment 
hi-square approximation is interesting be
ause of its inherent simpli
ity, ournumeri
al �ndings suggest that the method should be used with 
are, sin
e signi�
ant di�er-en
es may o

ur between that moment-based approa
h and exa
t methods, even in the uppertail of the distribution. Se
tion 3 o�ers 
on
luding remarks.



42. EMPIRICAL COMPARISONS AND DISCUSSIONThis se
tion 
ompares the Liu-Tang-Zhang's four-moment 
hi-square approximation with twoexa
t methods. In order to approximate a

urately the true probabilities, we pro
eed as inLiu, Tang and Zhang (2009) and we use Farebrother's (1984) algorithm, using a theoreti
alresult of Ruben (1962), as reported in Kotz, Johnson and Boyd (1967, p. 843). See Liu, Tangand Zhang (2009, p. 855) and Farebrother (1984, pp. 333-334). We also in
lude Imhof's(1961) method in the numeri
al 
omparisons, whi
h is popular in several studies. We wouldlike to point out that all the 
omputations were performed using the R pa
kage CompQuadFormthat we developed re
ently. Note that in addition to Imhof's (1961) method and Farebrother's(1984) algorithm, our R pa
kage also in
ludes an algorithm provided by Davies (1980). Inorder to a
hieve 
omputational e�
ien
y, the algorithms in
luded in our pa
kage have beenimplemented in the C language and interfa
ed with the R software. The pa
kage CompQuadFormis freely available from the authors. All the results using Farebrother's (1984) algorithm inour R pa
kage have been veri�ed with the NAG routine G01JCF (Mark 18) of the FORTRAN77 language; the results were identi
al with a pre
ision of 10�6.We 
onsidered eight quadrati
 forms, whi
h are de�ned in Table 1. The quadrati
 forms Q1and Q2 represent modi�
ations of the �rst and se
ond 
ases of Liu, Tang and Zhang (2009).For Q1, the weights 0.4 and 0.1 are repla
ed by the values 4:0 and 1:0, respe
tively, and thenon-
entrality parameters 0.6 and 0.8 are divided by two. For the quadrati
 form Q2, theweight 0.3 is multiplied by 10, and the non-
entrality parameter 2 is divided by 10. In Q3, we
onsider a situation where the weight of the �rst �21(Æ) random variable is large but its non-
entrality parameter is small, while the weight of the se
ond �21(Æ) random variable is small,but the asso
iated non-
entrality parameter is large. The quadrati
 forms Q4 is inspired fromDavies (1980, Table 3), who 
onsidered a similar quadrati
 form expressed as a �nite sum of
entered 
hi-square random variables; we simply introdu
ed non-
entrality parameters.The quadrati
 forms Q5-Q8 are inspired from the asymptoti
 distribution of the Box-Pier
e-Ljung portmanteau test statisti
, whi
h is widely used in time series analysis. If a timeseries follows a �rst-order autoregressive or moving-average model with parameter � and is
orre
tly �tted, then the Box-Pier
e-Ljung portmanteau test statisti
 follows asymptoti
allythe quadrati
 form �2m�1 + �2m�21. For Q5 and Q6, we 
onsidered m = 2, � = 0:6, and weintrodu
ed non-
entrality parameters 1.0 and 7.0 in Q5, while the non-
entrality parameterswere 0.1 and 10.0 in Q6. For the quadrati
 form Q7, we examined m = 3, � = 0:7, with non-
entrality parameters 0.2 and 10.0. For Q8, we 
onsidered m = 3, � = 0:8, with non-
entralityparameters 0.0 and 8.0. We do not 
laim that these 
hoi
es for the non-
entrality parametershave a pre
ise statisti
al interpretation: they have been 
hosen in order to appre
iate thequality of the Liu-Tang-Zhang approximation 
ompared with Imhof's (1961) method andFarebrother's (1984) algorithm.



5Table 1. De�nitions of the quadrati
 formsQ1 = 0:5�21(1:0) + 4:0�22(0:3) + 1:0�21(0:4),Q2 = 0:7�21(6:0) + 3:0�21(0:2),Q3 = 10:0�21(0:1) + �21(10:0),Q4 = 6:0�22(0:2) + 3:0�22(0:8) + 1:0�22(12:0),Q5 = �21(1:0) + (0:6)4�21(7:0),Q6 = �21(0:1) + (0:6)4�21(10:0),Q7 = �22(0:2) + (0:7)6�21(10:0),Q8 = �22 + (0:8)6�21(8:0).The results are presented in Table 2. Our numeri
al examples demonstrate that Fare-brother's (1984) and Imhof's (1961) methods di�er very little, using both the absolute orrelative errors. When the probabilities are 
ompared with the exa
t values, the relative errorsof the Liu-Tang-Zhang four-order moment 
hi-square approximation are more important thanthose presented in Liu, Tang and Zhang (2009). More importantly, the numeri
al examplesin Liu, Tang and Zhang (2009) seem not representative of all situations of interest in pra
-ti
al appli
ations, sin
e the probabilities obtained from the Liu-Tang-Zhang method may berelatively far from the exa
t probabilities.We now dis
uss the results presented in Table 2 in more details. We �rst study Q1.The di�eren
e with the �rst example of Liu, Tang and Zhang (2009) is related to more im-portant weights in the quadrati
 forms for the non-
entral 
hi-square variables with smallnon-
entrality parameters. It may be noted that the absolute errors are larger than thosedisplayed in Liu, Tang and Zhang (2009). For example, in their numeri
al example, whenthe true probability was 3.1% they obtained an absolute error of 3 � 10�5, while in our ex-ample the absolute error is larger by a fa
tor 10 when the true probability is around 5%.We did a similar experiment with Q2, where the non-
entral 
hi-square variable with a smallweight was asso
iated with a large non-
entrality parameter, and the other non-
entral 
hi-square variable o�ered a larger weight but a smaller non-
entrality parameter. In that 
ase,the Liu-Tang-Zhang four-order moment 
hi-square approximation gave large errors, as largeas 7% when the true probability was about 5%. The quadrati
 form Q3 is similar to Q2but it o�ers more extreme di�eren
es between the weights are the non-
entrality parameters;again, the Liu-Tang-Zhang approximation performed poorly. The quadrati
 form Q4 alsosuggests that the moment-based approximation 
an be relatively unsatisfa
tory. Under Q5,the non-
entrality parameters were 1.0 and 7.0, and the relative error in the upper tail of thedistribution is about 1.2%, when the true probability is approximately 3.6%. The quadrati
form Q6 is similar to Q5, with the di�eren
es that the �rst non-
entrality parameter is divided



6by 10, and the se
ond non-
entrality parameter is in
reased from 7.0 to 10.0. In that 
ase,the relative error in the upper tail of the distribution was about 8.6% when the true prob-ability was 4.7%, about 2.6% when the true probability was 1.6%, and 6.8% when the trueprobability was 0.6%. Note that Imhof's (1961) method and Farebrother's (1984) algorithmdisplayed some di�eren
es using the relative error 
riterion when the true probability wasvery small. However, the absolute error was 10�6 and was 
onsiderably smaller than the oneof the Liu-Tang-Zhang approximation. The quadrati
 forms Q7 and Q8 also suggested thatthe moment-based approximation 
an be unsatisfa
tory in the upper tail of the distribution,while the exa
t methods were generally in 
lose agreement.3. CONCLUSIONOur numeri
al results suggest that the moment-based 
hi-square approximations may providepoor approximations to the distributions of quadrati
 forms in non-
entral normal variables,when 
ompared to the exa
t values. While that kind of te
hniques are nevertheless interestingand appealing giving their inherent simpli
ity, it should be noted that modern 
omputer re-sour
es allow us to implement exa
t methods su
h as Imhof's (1961) method very e�
iently.In the numeri
al examples presented in this note, the 
ost in 
omputer time was too small tobe a determinant fa
tor. The obje
tive here was not to explain under whi
h 
onditions theLiu-Tang-Zhang 
hi-square approximation is appropriate (however, our numeri
al examplesmay suggest when the approximation is not satisfa
tory), but to point out that it should beused with 
are, even in the upper tail of the distribution. In 
on
lusion, it is possible thatthe Liu-Tang-Zhang approximation performs better that Pearson's method under 
ertain 
on-ditions, but the probabilities found using that method may be relatively far from the exa
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8 Table 2. Probability that the quadrati
 form ex
eeds q. The 
olumn F gives theexa
t values with a

ura
y 10�6 using Farebrother's (1984) algorithm. The 
olumn Iprovides the values using Imhof's (1961) method. The 
olumn AEI (REI(%)) givesthe absolute error (relative error in per
entage) of Imhof's (1961) method 
omparedto Farebrother's (1984) algorithm. The 
olumn LTZ presents the values using theLiu, Tang and Zhang's (2009) method. The 
olumn AELTZ (RELTZ(%)) gives theabsolute error (relative error in per
entage) of the Liu-Tang-Zhang method 
omparedto Farebrother's (1984) algorithm.Quadrati
 form q F I AEI REI(%) LTZ AELTZ RELTZ(%)Q1 6 0.679440 0.679440 0.000000 0.000003 0.669712 0.009728 1.4317338 0.556520 0.556520 0.000000 0.000004 0.549650 0.006870 1.23452120 0.152962 0.152962 0.000000 0.000008 0.154503 0.001541 1.00756330 0.050874 0.050874 0.000000 0.000059 0.051294 0.000419 0.824287Q2 6 0.591269 0.591269 0.000000 0.000008 0.567547 0.023722 4.01209315 0.127068 0.127068 0.000000 0.000012 0.132639 0.005570 4.38376320 0.052153 0.052153 0.000000 0.000113 0.056008 0.003855 7.39163525 0.022099 0.022100 0.000001 0.004046 0.023224 0.001126 5.093545Q3 40 0.114930 0.114930 0.000000 0.000022 0.122072 0.007142 6.21404150 0.064546 0.064546 0.000000 0.000140 0.069020 0.004474 6.93121760 0.037203 0.037203 0.000000 0.000392 0.039296 0.002093 5.62582270 0.021772 0.021772 0.000000 0.001076 0.022482 0.000710 3.260405Q4 30 0.570073 0.570073 0.000000 0.000000 0.561196 0.008877 1.55710340 0.330482 0.330482 0.000000 0.000010 0.329954 0.000528 0.15970560 0.086659 0.086659 0.000000 0.000031 0.089430 0.002771 3.19746670 0.041871 0.041871 0.000000 0.000314 0.043121 0.001250 2.985924Q5 4 0.249843 0.249843 0.000000 0.000000 0.254194 0.004351 1.7414615 0.169313 0.169313 0.000000 0.000003 0.171716 0.002402 1.4188806 0.115043 0.115043 0.000000 0.000051 0.115845 0.000802 0.6969239 0.035784 0.035785 0.000001 0.000289 0.035350 0.000434 1.214135Q6 4 0.151668 0.151668 0.000000 0.000014 0.159370 0.007702 5.0780906 0.047146 0.047146 0.000000 0.000073 0.051219 0.004073 8.6388548 0.016046 0.016046 0.000000 0.000471 0.016459 0.000413 2.57693410 0.005676 0.005675 0.000001 0.010978 0.005289 0.000387 6.818694Q7 3 0.484953 0.484953 0.000000 0.000018 0.474929 0.010024 2.0670136 0.125851 0.125851 0.000000 0.000014 0.129265 0.003414 2.7128537 0.079686 0.079686 0.000000 0.000116 0.081951 0.002264 2.8414488 0.050413 0.050413 0.000000 0.000084 0.051630 0.001217 2.414282Q8 6 0.215605 0.215605 0.000000 0.000004 0.217333 0.001728 0.8014478 0.085359 0.085359 0.000000 0.000028 0.088209 0.002850 3.33882510 0.032178 0.032178 0.000000 0.000875 0.033241 0.001063 3.30326514 0.004394 0.004395 0.000001 0.010090 0.004111 0.000284 6.453687


