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21. INTRODUCTIONLet X = (X1; : : : ;Xp)> be a multivariate normal random vetor Np(�;�), with mean � =(�1; : : : ; �p)> and positive de�nite ovariane matrix �. Consider the quadrati form Q =X>AX, where A represents a p� p symmetri and non-negative de�nite matrix. A problemof interest is to evaluate the probability Pr(Q > q); (1)where q is a salar.In the simplest ase � = A = Ip, where Ip denotes the p�p identity matrix, Q represents anon-entral hi-square random variable with p degrees of freedom and non-entrality parame-ter Æ = �>�. In the general ase, let P be suh that PP> = Ip and that diagonalizes CAC>,that is PCAC>P> = D = diag(�1; : : : ; �p). The matrix C orresponds to the Choleskydeomposition of � and satis�es the relation C>C = �. We assume that �1 � : : : � �r > 0and �r+1 = : : : �p = 0; thus the rank of A is r = rank(A). Let Y = P(C>)�1X and� = P(C>)�1�. Thus the distribution of Y is Np(�; Ip), and it follows that the quadratiform Q an be expressed as a weighted sum of hi-square random variables:Q = X>AX = Y>DY = rXi=1 �i�2hi(Æi);where hi = 1, Æi = �2i , with �2i the ith omponent of the vetor �, i = 1; : : : ; r.Many test statistis onverge in distribution toward �nite weighted sum of hi-square ran-dom variables. A famous example is the Cherno�-Lehmann test statisti for goodness-of-�tto a �xed distribution, whih onverges to a �nite weighted sum of entral (non-entral) hi-square under the null (alternative) hypothesis (see, e.g., Moore and Spruill (1975), Spruill(1976)). In time series analysis, a popular proedure often enountered in applied work is theBox-Piere-Ljung portmanteau test statisti for lak of �t in autoregressive-moving-average(ARMA) time series models. The approximate ritial values of that test proedure are of-ten taken from a hi-square distribution, but in general the valid asymptoti distributionunder the null hypothesis is given by a �nite weighted sum of entral hi-square random vari-ables, see Ljung (1986), Franq, Roy and Zakoïan (2005) and Duhesne and Franq (2008),among others. Under loal alternatives (in the Pitman's sense), it may be seen that the Box-Piere-Ljung portmanteau test statisti onverges in distribution to a �nite weighted sum ofnon-entral hi-square random variables. Another example is the portmanteau test statistiof Peña and Rodriguez (2002) for model heking in linear and non-linear time series models,whih under ertain onditions display more power than the Box-Piere-Ljung test statistis.See also Lin and Mleod (2006). Our literature review is far from being exhaustive, and infat is very seletive. However, it suggests the importane of determining (1) for quadratiforms in entral and non-entral normal variables in level and power studies.



3The omputation of (1) for quadrati forms in non-entral normal variables will typiallyarise in power analysis (note in passing that level studies are typially performed under thenull hypothesis, and thus (1) should also be omputed aurately for quadrati forms inentral normal variables). Many methods have been proposed for that problem, inludingmethods relying on numerial inversion of the harateristi funtion (see, e.g., Imhof (1961),Davies (1973, 1980)). These methods are not limited to non-negative quadrati forms andthey are found to perform better than Pearson's three-moment hi-square approximation inthese situations (Imhof (1961)). Farebrother (1984) and Sheil and O'Muirheartaigh (1977),based on results of Ruben (1962), exploit the fat that (1) an be written as an in�nite seriesof entral hi-square distributions. Farebrother (1990) proposed a method whih expresses aquadrati form in an alternative form, using the so-alled tridiagonal form. Another refereneis Kuonen (1999), who uses saddlepoint approximations.Reently, Liu, Tang and Zhang (2009) proposed a new moment-based approah. Theirmethod relies on a hi-square approximation to the distribution of non-negative de�nite qua-drati forms in non-entral normal variables. When the normal variables have zero mean,their method redues to the Pearson's three-moment hi-square approah. It should be notedthat Pearson's three-moment hi-square approximation may be inaurate to determine prob-abilities in ertain regions of the domain, but it is generally aurate in the upper tail ofthe distribution (see, e.g., Imhof (1961) or Kuonen (1999), among others). Liu, Tang andZhang (2009) presented interesting and enouraging numerial examples: in the upper tailof the distribution of the quadrati form in non-entral normal variables, their results sug-gested that their method provided a better approximation of the distribution than Pearson'smethod. From their numerial results, the probabilities obtained from their approximationwere also very lose to the exat values (in the upper tail, the absolute errors were no morethat 3� 10�6).The prinipal objetive of this note is to provide additional empirial evidene. The Liu-Tang-Zhang approah is ompared to exat methods in Setion 2, notably Imhof's (1961)method and Farebrother's (1984) algorithm (note that these methods are alled exat inthe sense that it is possible to bound the approximation error, whih an be made arbitrarilysmall). The omparisons are made at various points of the distribution support in order to ap-preiate when the moment-based approximation is satisfatory. While the Liu-Tang-Zhang'sfour-moment hi-square approximation is interesting beause of its inherent simpliity, ournumerial �ndings suggest that the method should be used with are, sine signi�ant di�er-enes may our between that moment-based approah and exat methods, even in the uppertail of the distribution. Setion 3 o�ers onluding remarks.



42. EMPIRICAL COMPARISONS AND DISCUSSIONThis setion ompares the Liu-Tang-Zhang's four-moment hi-square approximation with twoexat methods. In order to approximate aurately the true probabilities, we proeed as inLiu, Tang and Zhang (2009) and we use Farebrother's (1984) algorithm, using a theoretialresult of Ruben (1962), as reported in Kotz, Johnson and Boyd (1967, p. 843). See Liu, Tangand Zhang (2009, p. 855) and Farebrother (1984, pp. 333-334). We also inlude Imhof's(1961) method in the numerial omparisons, whih is popular in several studies. We wouldlike to point out that all the omputations were performed using the R pakage CompQuadFormthat we developed reently. Note that in addition to Imhof's (1961) method and Farebrother's(1984) algorithm, our R pakage also inludes an algorithm provided by Davies (1980). Inorder to ahieve omputational e�ieny, the algorithms inluded in our pakage have beenimplemented in the C language and interfaed with the R software. The pakage CompQuadFormis freely available from the authors. All the results using Farebrother's (1984) algorithm inour R pakage have been veri�ed with the NAG routine G01JCF (Mark 18) of the FORTRAN77 language; the results were idential with a preision of 10�6.We onsidered eight quadrati forms, whih are de�ned in Table 1. The quadrati forms Q1and Q2 represent modi�ations of the �rst and seond ases of Liu, Tang and Zhang (2009).For Q1, the weights 0.4 and 0.1 are replaed by the values 4:0 and 1:0, respetively, and thenon-entrality parameters 0.6 and 0.8 are divided by two. For the quadrati form Q2, theweight 0.3 is multiplied by 10, and the non-entrality parameter 2 is divided by 10. In Q3, weonsider a situation where the weight of the �rst �21(Æ) random variable is large but its non-entrality parameter is small, while the weight of the seond �21(Æ) random variable is small,but the assoiated non-entrality parameter is large. The quadrati forms Q4 is inspired fromDavies (1980, Table 3), who onsidered a similar quadrati form expressed as a �nite sum ofentered hi-square random variables; we simply introdued non-entrality parameters.The quadrati forms Q5-Q8 are inspired from the asymptoti distribution of the Box-Piere-Ljung portmanteau test statisti, whih is widely used in time series analysis. If a timeseries follows a �rst-order autoregressive or moving-average model with parameter � and isorretly �tted, then the Box-Piere-Ljung portmanteau test statisti follows asymptotiallythe quadrati form �2m�1 + �2m�21. For Q5 and Q6, we onsidered m = 2, � = 0:6, and weintrodued non-entrality parameters 1.0 and 7.0 in Q5, while the non-entrality parameterswere 0.1 and 10.0 in Q6. For the quadrati form Q7, we examined m = 3, � = 0:7, with non-entrality parameters 0.2 and 10.0. For Q8, we onsidered m = 3, � = 0:8, with non-entralityparameters 0.0 and 8.0. We do not laim that these hoies for the non-entrality parametershave a preise statistial interpretation: they have been hosen in order to appreiate thequality of the Liu-Tang-Zhang approximation ompared with Imhof's (1961) method andFarebrother's (1984) algorithm.



5Table 1. De�nitions of the quadrati formsQ1 = 0:5�21(1:0) + 4:0�22(0:3) + 1:0�21(0:4),Q2 = 0:7�21(6:0) + 3:0�21(0:2),Q3 = 10:0�21(0:1) + �21(10:0),Q4 = 6:0�22(0:2) + 3:0�22(0:8) + 1:0�22(12:0),Q5 = �21(1:0) + (0:6)4�21(7:0),Q6 = �21(0:1) + (0:6)4�21(10:0),Q7 = �22(0:2) + (0:7)6�21(10:0),Q8 = �22 + (0:8)6�21(8:0).The results are presented in Table 2. Our numerial examples demonstrate that Fare-brother's (1984) and Imhof's (1961) methods di�er very little, using both the absolute orrelative errors. When the probabilities are ompared with the exat values, the relative errorsof the Liu-Tang-Zhang four-order moment hi-square approximation are more important thanthose presented in Liu, Tang and Zhang (2009). More importantly, the numerial examplesin Liu, Tang and Zhang (2009) seem not representative of all situations of interest in pra-tial appliations, sine the probabilities obtained from the Liu-Tang-Zhang method may berelatively far from the exat probabilities.We now disuss the results presented in Table 2 in more details. We �rst study Q1.The di�erene with the �rst example of Liu, Tang and Zhang (2009) is related to more im-portant weights in the quadrati forms for the non-entral hi-square variables with smallnon-entrality parameters. It may be noted that the absolute errors are larger than thosedisplayed in Liu, Tang and Zhang (2009). For example, in their numerial example, whenthe true probability was 3.1% they obtained an absolute error of 3 � 10�5, while in our ex-ample the absolute error is larger by a fator 10 when the true probability is around 5%.We did a similar experiment with Q2, where the non-entral hi-square variable with a smallweight was assoiated with a large non-entrality parameter, and the other non-entral hi-square variable o�ered a larger weight but a smaller non-entrality parameter. In that ase,the Liu-Tang-Zhang four-order moment hi-square approximation gave large errors, as largeas 7% when the true probability was about 5%. The quadrati form Q3 is similar to Q2but it o�ers more extreme di�erenes between the weights are the non-entrality parameters;again, the Liu-Tang-Zhang approximation performed poorly. The quadrati form Q4 alsosuggests that the moment-based approximation an be relatively unsatisfatory. Under Q5,the non-entrality parameters were 1.0 and 7.0, and the relative error in the upper tail of thedistribution is about 1.2%, when the true probability is approximately 3.6%. The quadratiform Q6 is similar to Q5, with the di�erenes that the �rst non-entrality parameter is divided



6by 10, and the seond non-entrality parameter is inreased from 7.0 to 10.0. In that ase,the relative error in the upper tail of the distribution was about 8.6% when the true prob-ability was 4.7%, about 2.6% when the true probability was 1.6%, and 6.8% when the trueprobability was 0.6%. Note that Imhof's (1961) method and Farebrother's (1984) algorithmdisplayed some di�erenes using the relative error riterion when the true probability wasvery small. However, the absolute error was 10�6 and was onsiderably smaller than the oneof the Liu-Tang-Zhang approximation. The quadrati forms Q7 and Q8 also suggested thatthe moment-based approximation an be unsatisfatory in the upper tail of the distribution,while the exat methods were generally in lose agreement.3. CONCLUSIONOur numerial results suggest that the moment-based hi-square approximations may providepoor approximations to the distributions of quadrati forms in non-entral normal variables,when ompared to the exat values. While that kind of tehniques are nevertheless interestingand appealing giving their inherent simpliity, it should be noted that modern omputer re-soures allow us to implement exat methods suh as Imhof's (1961) method very e�iently.In the numerial examples presented in this note, the ost in omputer time was too small tobe a determinant fator. The objetive here was not to explain under whih onditions theLiu-Tang-Zhang hi-square approximation is appropriate (however, our numerial examplesmay suggest when the approximation is not satisfatory), but to point out that it should beused with are, even in the upper tail of the distribution. In onlusion, it is possible thatthe Liu-Tang-Zhang approximation performs better that Pearson's method under ertain on-ditions, but the probabilities found using that method may be relatively far from the exatprobabilities.REFERENCESDavies, R. B. (1973), `Numerial inversion of a harateristi funtion', Biometrika 60, 415�417.Davies, R. B. (1980), `Algorithm AS 155: the distribution of a linear ombination of �2 randomvariables', Journal of the Royal Statistial Soiety, Series C (Applied Statistis) 29, 323-333.Duhesne, P. and Franq, C. (2008), `On diagnosti heking time series models with portmanteautest statistis based on generalized inverses and { 2 }-inverses', COMPSTAT 2008, Proeedingsin Computational Statistis, 143�154.Farebrother, R. W. (1984), `Algorithm AS 204: the distribution of a positive linear ombinationof �2 random variables', Journal of the Royal Statistial Soiety, Series C (Applied Statistis)33, 332-339.
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8 Table 2. Probability that the quadrati form exeeds q. The olumn F gives theexat values with auray 10�6 using Farebrother's (1984) algorithm. The olumn Iprovides the values using Imhof's (1961) method. The olumn AEI (REI(%)) givesthe absolute error (relative error in perentage) of Imhof's (1961) method omparedto Farebrother's (1984) algorithm. The olumn LTZ presents the values using theLiu, Tang and Zhang's (2009) method. The olumn AELTZ (RELTZ(%)) gives theabsolute error (relative error in perentage) of the Liu-Tang-Zhang method omparedto Farebrother's (1984) algorithm.Quadrati form q F I AEI REI(%) LTZ AELTZ RELTZ(%)Q1 6 0.679440 0.679440 0.000000 0.000003 0.669712 0.009728 1.4317338 0.556520 0.556520 0.000000 0.000004 0.549650 0.006870 1.23452120 0.152962 0.152962 0.000000 0.000008 0.154503 0.001541 1.00756330 0.050874 0.050874 0.000000 0.000059 0.051294 0.000419 0.824287Q2 6 0.591269 0.591269 0.000000 0.000008 0.567547 0.023722 4.01209315 0.127068 0.127068 0.000000 0.000012 0.132639 0.005570 4.38376320 0.052153 0.052153 0.000000 0.000113 0.056008 0.003855 7.39163525 0.022099 0.022100 0.000001 0.004046 0.023224 0.001126 5.093545Q3 40 0.114930 0.114930 0.000000 0.000022 0.122072 0.007142 6.21404150 0.064546 0.064546 0.000000 0.000140 0.069020 0.004474 6.93121760 0.037203 0.037203 0.000000 0.000392 0.039296 0.002093 5.62582270 0.021772 0.021772 0.000000 0.001076 0.022482 0.000710 3.260405Q4 30 0.570073 0.570073 0.000000 0.000000 0.561196 0.008877 1.55710340 0.330482 0.330482 0.000000 0.000010 0.329954 0.000528 0.15970560 0.086659 0.086659 0.000000 0.000031 0.089430 0.002771 3.19746670 0.041871 0.041871 0.000000 0.000314 0.043121 0.001250 2.985924Q5 4 0.249843 0.249843 0.000000 0.000000 0.254194 0.004351 1.7414615 0.169313 0.169313 0.000000 0.000003 0.171716 0.002402 1.4188806 0.115043 0.115043 0.000000 0.000051 0.115845 0.000802 0.6969239 0.035784 0.035785 0.000001 0.000289 0.035350 0.000434 1.214135Q6 4 0.151668 0.151668 0.000000 0.000014 0.159370 0.007702 5.0780906 0.047146 0.047146 0.000000 0.000073 0.051219 0.004073 8.6388548 0.016046 0.016046 0.000000 0.000471 0.016459 0.000413 2.57693410 0.005676 0.005675 0.000001 0.010978 0.005289 0.000387 6.818694Q7 3 0.484953 0.484953 0.000000 0.000018 0.474929 0.010024 2.0670136 0.125851 0.125851 0.000000 0.000014 0.129265 0.003414 2.7128537 0.079686 0.079686 0.000000 0.000116 0.081951 0.002264 2.8414488 0.050413 0.050413 0.000000 0.000084 0.051630 0.001217 2.414282Q8 6 0.215605 0.215605 0.000000 0.000004 0.217333 0.001728 0.8014478 0.085359 0.085359 0.000000 0.000028 0.088209 0.002850 3.33882510 0.032178 0.032178 0.000000 0.000875 0.033241 0.001063 3.30326514 0.004394 0.004395 0.000001 0.010090 0.004111 0.000284 6.453687


