The R Software

Fundamentals of Programming and Statistical Analysis

Pierre Lafaye de Micheaux
Rémy Drouilhet
Benoit Liquet

Springer

To the open-source community

To all those who have contributed, are contributing and will
contribute to the awakening of our consciousness

To our colleagues from Montpellier, Grenoble, Bordeaux and
ISPED

Foreword

This book has been translated from french by Robin Ryder, who is assistant professor in the CEREMADE (Centre De Recherche en Mathématiques de la Décision) at Université Paris Dauphine (France). We are very pleased that he has agreed to make this translation.

This book is based on notes from a series of lectures given for a few years at the Institut Universitaire de Technologie Grenoble 2, in the Department of Statistics and Business Intelligence (STID, Statistique et informatique décisionnelle). It has therefore been "digested" first, in a very imperfect form, by the students of this department, whom we thank here. Had they not shown so much interest, this book would probably never have existed. We also thank our colleague and friend Michel Lejeune, who managed to talk us into writing a manuscript and submitting it to Springer. It is worth pointing out the role of chance, which made the paths of the three authors cross in the same place for a few years. The human and scientific experience of this encounter was very enriching, and each author provided complementary skills which made it possible to overcome the tremendous amount of work necessary for this book. Finally, we wish to warmly thank our colleague and friend Matthieu Dubois, researcher in experimental psychology and addicted to \mathbf{R} and to Macintosh, who was the first to read the french version of the book in its almost finalized version and gave us many ideas for improvement.

The contents of this book were chosen and organized in the best possible way for them to be exhaustive but also easy to assimilate by the reader. This book can be used as support material for lectures on \mathbf{R} at any level from beginner to advanced. We have paid particular attention to the form of the book, which we think should aid understanding. It can also be used as a support for self-teaching. Note that most of this book can be useful to users of any operating system. However, a few chapters are mostly meant for users of Microsoft Windows. We have also felt it useful to give, occasionally, complements aimed at users of Linux or Macintosh.

All chapters follow the same structure. A chapter begins with a small insert listing the prerequisites necessary for the chapter, and a short description of the contents. All theoretical notions are explained with numerous examples, and include breaks so that the reader can put into practice on a computer the recently introduced notions. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. A practical sheet is also given at the end of each chapter. It can be used to check that the practical aspects of the chapter have been taken in. Note that all exercises and practicals only require the contents of the previous chapters.

The structure of the book is sequential. After a short introduction, aimed at getting the reader interested, and a description of a few data sets which will be used throughout the book to illustrate how to use \mathbf{R}, the first part of the book is dedicated to the fundamental concepts of R: data organization, import and export, various manipulations, documentation, plots, programming and maintenance. This part should help you "learn the ropes" of R.

The second part of the book is dedicated to using R in a few mathematical and statistical settings. You should read the first part before moving on to this part, although it can be understood by users who already have a few notions in R. It covers \mathbf{R} instructions for some of the main statistics and mathematics courses up to third-year undergraduate (for example, it covers the baccalaureate in statistics and actuarial sciences curriculum at Université de Montréal, as well as the French IUT curriculum in Statistics and Business Intelligence): matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, analysis of variance.

Finally, note that each statistical chapter in the second part relies on one or several real data sets, kindly made available by ISPED (Institut de santé publique, d'épidémiologie et de développement in Bordeaux) and described at the beginning of the book. These make learning more concrete and more attractive. We take this opportunity to thank all the teaching staff at the ISPED Masters in Public Health. These data, as well as several functions developped specially for this book and which are described or used here, are available in an R package associated with this book, called TheRSoftware. We also thank Mohamed El Methni and Taghi Barumandzadeh for the material they gave us for the chapter on ANOVA, and Hubert Raymondaud for many comments he has made on our french version which allowed us to significantly improve several parts of this book.

Alternative order of reading

We have used the symbol \dagger to make explicit more difficult or less fundamental sections, which you can skip at first read without prejudicing your understanding or mastering of R.

Note that this book was conceived for students from a mathematical or statistical background. However, students or scientists from a more "applied" background can also use it: for these readers, we propose a different order of reading, as follows; the difficult sections should also be omitted.

PART I: THE BASICS OF R

a) Basic concepts; data organization (chapter 1).
b) Import-export and data production (chapter 2).
c) Data manipulation (chapter 3).
d) R and its documentation (chapter 4).
e) Techniques for plots (chapter 5).
f) Maintaining sessions (chapter 7).

PART II: ELEMENTARY STATISTICS

a) Random variables, distributions and simulation (chapter 10).
b) Descriptive statistics (chapter 9).
c) Confidence intervals and hypothesis testing (chapter 11).
d) Simple and multiple linear regression (chapter 12).
e) Elementary analysis of variance (chapter 13).

PART III: ADVANCED CONCEPTS

a) Basic mathematics: matrix operations, integration, optimization (chapter 8).
b) Programming in R (chapter 6).

Inserts

We have tried to be careful with the presentation of the book (the form), to make the information (the content) more easy going. Inserts are located at strategic points in the book, to help bring out some of the important information and make notions easier to understand. These inserts are distinguished by icons in the margin.

See also

Refers to another chapter or a website.

Advanced users

Advanced elements. You can omit these at first.

Linux

Information for Linux users.

Solutions to exercises and practicals

Solutions to exercises and practicals are given on the book's website (http: //www.biostatisticien.eu/springeR).

Other projects, more ambitious than the practicals, will be made available on the same website.

Font conventions

- The letter \mathbf{R} refers to the \mathbf{R} software.
- We use italics for words borrowed from Latin or French.
- We use a fixed width font (Verbatim environment) for R instructions.
- We use Small caps for data sets and sans serif for the name of the file including these data sets. This font will be used for all file names and folder names used in this book.

Contents

Foreword 1
Table of figures 19
List of tables 23
Mathematical notations 25
A Introducing R 1
A. 1 Presentation of the software 1
A.1.1 Origins 1
A.1.2 Why use R? 1
A. 2 R and Statistics 3
A. $3 \quad \mathrm{R}$ and plots 3
A. 4 The R Graphical User Interface (GUI) 5
A. 5 First steps in R 5
A.5.1 Using RCommander 5
A.5.1.1 Launching RCommander 6
A.5.1.2 Handling data with RCommander 7
A.5.1.3 A few statistical tasks with RCommander 12
A.5.1.4 Adding functionalities to the RCommander in- terface 17
A.5.2 Using R with the console 18
A.5.2.1 The strenght of R shown on an example 19
A.5.2.2 A brief introduction of R syntax through some instructions to type 22
B A few data sets and research questions 27
B. 1 Body Mass Index (BMI) of children 27
B. 2 Weight at birth 28
B. 3 Intima-media thickness 29
B. 4 Diet of elderly people 30
B. 5 Study case of myocardial infarction 31
B. 6 Summary table of use of data sets 31
Part I The bases of R 33
1 Basic concepts and data organisation 35
1.1 Your first session 35
1.1.1 $\quad \mathrm{R}$ is a calculator 36
1.1.2 Displaying results and variable redirecting 37
1.1.3 Work strategy 38
1.1.4 Using functions 41
1.2 Data in R 44
1.2.1 Data nature (or type, or mode) 44
1.2.1.1 \quad Numeric type (numeric) 45
1.2.1.2 \dagger Complex type (complex) 45
1.2.1.3 Boolean or logical type (logical) 47
1.2.1.4 Missing data (NA) 47
1.2.1.5 Character string type (character) 48
1.2.1.6 \dagger Raw data (raw) 49
Summary 49
1.2.2 Data structures 49
1.2.2.1 Vectors (vector) 50
1.2.2.2 Matrices (matrix) and arrays (array) 51
1.2.2.3 Lists (list) 52
1.2.2.4 \quad The individual \times variable table (data.frame) 54
1.2.2.5 Factors (factor), ordinal variables (ordered) 54
1.2.2.6 Dates 56
1.2.2.7 Time series 56
Summary 57
Memorandum 58
Exercises 58
Worksheet 59
2 Importing, exporting and producing data 61
2.1 Importing data 61
2.1.1 Importing data from an ASCII text file 61
2.1.1.1 Reading data with read.table() 62
2.1.1.2 Reading data with read.ftable() 65
2.1.1.3 Reading data with the function scan() 66
2.1.2 Importing data from Excel or the Open Office spread- sheet 67
Contents 9
2.1.2.1 Copy-pasting 67
2.1.2.2 Using an intermediary ASCII file 68
2.1.2.3 Using specialized packages 68
2.1.3 Importing data from SPSS, Minitab, SAS or Matlab 68
2.1.4 Large data files 69
2.2 Exporting data 70
2.2.1 Exporting data to an ASCII text file 70
2.2.2 Exporting data to Excel or OpenOffice Calc 71
2.3 Creating data 71
2.3.1 Entering toy data 71
2.3.2 Generating pseudo-random numbers 72
2.3.3 Entering data from a hard copy 73
$2.4 \dagger$ Reading/Writing in databases 74
2.4.1 Creating a database and a table 74
2.4.2 Creating a data source compatible with MySQL 75
2.4.3 Writing in a table 76
2.4.4 Reading a table 77
Memorandum 78
Exercises 78
Worksheet 79
3 Data manipulation, functions 83
3.1 Operations on vectors, matrices and lists 83
3.1.1 Vector arithmetic 83
3.1.2 Recycling 84
3.1.3 Basic functions 85
3.1.4 Operations on matrices and data.frames 86
3.1.4.1 Information on architecture 86
3.1.4.2 Merging tables 87
3.1.4.3 The function apply() 91
3.1.4.4 The function sweep() 91
3.1.4.5 The function stack() 92
3.1.4.6 The function aggregate() 92
3.1.4.7 The function transform() 93
3.1.5 Operations on lists 93
3.2 Logical and relational operations 95
3.3 Operations on sets 96
3.4 Extracting and inserting elements 97
3.4.1 Extracting from/Inserting into vectors 97
3.4.2 Extracting from/Inserting into matrices 99
3.4.3 Extracting from/Inserting into arrays 103
3.4.4 Extracting from/Inserting into lists 104
3.5 Manipulating character strings 106
3.6 Manipulating dates and time units 109
3.6.1 Displaying the current date 109
3.6.2 Extracting dates 109
3.6.3 Operations on dates 111
3.7 Control flow 113
3.7.1 Conditional instructions 113
3.7.2 Loop instructions 116
3.8 Creating functions 118
$3.9 \dagger$ Fixed-point and floating point number representation 124
3.9.1 Representing a number in a base 124
3.9.2 Floating point representations 126
3.9.2.1 Definitions 126
3.9.2.2 Limitations of this representation due to the significand 127
3.9.2.3 Avoiding some numerical pitfalls 128
3.9.2.4 Limitations of this representation due to the exponent 129
Memorandum 132
Exercises 132
Worksheet 134
$4 \quad \mathrm{R}$ and its documentation 139
4.1 Integrated help 139
4.1.1 The command help() 139
4.1.2 Some complementary commands 141
$4.2 \dagger$ Help on the Web 143
4.2.1 Search engines 143
4.2.2 Message boards 144
4.2.3 Mailing lists 144
4.2.4 Internet Relay Chat (IRC) 145
4.2.5 Wiki 145
$4.3 \dagger$ Literature about R 145
4.3.1 Online 145
4.3.2 Printed material 146
Memorandum 147
Exercises 147
Worksheet 147
5 Drawing curves and plots 149
5.1 Graphics windows 149
5.1.1 Basic graphics windows; manipulation; saving 149
5.1.2 Splitting the graphics window: layout () 151
5.2 Low level drawing functions 154
5.2.1 The functions plot() and points() 154
5.2.2 The functions segments(), lines() and abline() 156
5.2.3 The function arrows() 158
5.2.4 The function polygon() 159
5.2.5 The function curve() 160
5.2.6 The function box () 161
5.3 Managing colours 161
5.3.1 The function colors() 161
5.3.2 Hexadecimal colour coding 162
5.3.3 The function image() 165
5.4 Adding text 167
5.4.1 The function text () 167
5.4.2 The function mtext () 169
5.5 Titles, axes and captions 169
5.5.1 The function title() 169
5.5.2 The function axis() 171
5.5.3 The function legend() 172
5.6 Interacting with the plot 173
5.6.1 The function locator() 173
5.6.2 The function identify() 174
$5.7 \dagger$ Fine-tuning graphical parameters: par() 174
$5.8 \dagger$ Advanced plots: rgl, lattice and ggplot2 185
Memorandum 186
Exercises 186
Worksheet 187
6 Programming in R 191
6.1 Preamble 191
6.2 Developing functions 192
6.2.1 Quick start: declaring, creating and calling functions 192
6.2.2 Basic concepts on functions 193
6.2.2.1 Body of a function 193
6.2.2.2 List of formal and effective arguments 193
6.2.2.3 Object returned by a function 196
6.2.2.4 Variable scope in the body of a function 198
6.2.3 Application to the practical problem 200
6.2.4 Operators 201
6.2.5 $\quad \mathrm{R}$ seen as a functional language 203
$6.3 \dagger$ Object oriented programming 203
6.3.1 How the internal object-oriented mechanism works 203
6.3.1.1 Class of an object and declaring an object 203
6.3.1.2 Declaring objects and using methods 205
6.3.2 Back to the practical problem 208
6.3.3 Information about methods 210
6.3.4 Inheriting classes 211
$6.4 \dagger$ Going further in R programming 214
6.4.1 $\quad \mathrm{R}$ attributes 215
6.4.1.1 Attribute class 216
6.4.1.2 Attribute dim 216
6.4.1.3 Attributes names and dimnames 219
6.4.2 Other R objects 222
6.4.2.1 \quad expressions 222
6.4.2.2 $\quad \mathrm{R}$ formulae 224
6.4.2.3 The \mathbf{R} environment 227
$6.5 \dagger$ Interfacing R and $C / C++$ or Fortran 228
6.5.1 Creating and running a $C / C++$ or Fortran function 230
6.5.2 Calling C/C++ (or Fortran) from \mathbf{R} 235
6.5.3 Calling external C/C++ or Fortran libraries 240
6.5.3.1 The R API 241
6.5.3.2 The newmat library 244
6.5.3.3 The BLAS and LAPACK packages 246
6.5.3.4 Mixing C/C++ and Fortran packages 248
6.5.4 Calling R code from a $\mathrm{C} / \mathrm{C}++$ program called by \mathbf{R} 250
6.5.5 Calling R code from Fortran 253
6.5.6 Some useful functions 253
$6.6 \dagger$ Debugging functions 253
6.6.1 Debugging functions in pure \mathbf{R} 253
6.6.2 Error in R code 255
6.6.3 Error in the C/C++ or Fortran code 256
6.6.4 Debugging with GDB 257
6.6.4.1 Debugging with Emacs 259
6.6.4.2 Debugging with DDD 262
6.6.4.3 Debugging with Insight 263
6.6.4.4 Detecting memory leaks 267
6.7 Parallel computing and computation on graphical cards 270
6.7.1 Parallel computing 270
6.7.2 Computation on graphical cards 271
Memorandum 273
Exercises 273
Worksheet 275
7 Managing sessions 281
7.1 R commands, objects, and storage 281
7.2 Workspace: .RData files 283
7.3 Command history: .Rhistory files 285
7.4 Saving plots 286
Contents 13
7.5 Managing packages 288
7.6 Managing access paths to R objects 288
$7.7 \dagger$ Other useful commands 290
$7.8 \dagger$ Problems in memory management 291
7.8.1 Organisation of RAM 291
7.8.2 Accessing the memory 292
7.8.2.1 Problems caused by memory management of integers 293
7.8.2.2 Successive allocation of memory 294
7.8.3 Object size in R 296
7.8.4 Total memory used by R 297
7.8.5 A few recommendations 299
$7.9 \dagger$ Using R in BATCH mode 300
$7.10 \dagger$ Creating a simple R package 301
Memorandum 304
Exercises 304
Worksheet 304
Part II Elementary mathematics and statistics 309
8 Basic Mathematics: matrix operations, integration, optimization 311
8.1 Basic mathematical functions 312
8.2 Matrix operations 313
8.2.1 Basic matrix operations 314
8.2.2 Outer product 316
8.2.3 Kronecker product 317
8.2.4 Triangular matrices 317
8.2.5 Operators vec and half vec 318
8.2.6 Determinant, trace, condition number 318
8.2.7 Scaling and centring data 319
8.2.8 Eigenvalues and eigenvectors 319
8.2.9 Square root of a Hermitian positive-definite matrix 320
8.2.10 Singular value decomposition 321
8.2.11 Cholesky decomposition 321
8.2.12 QR decomposition 322
8.3 Numerical integration 323
8.4 Differentiation 324
8.4.1 Symbolic differentiation 324
8.4.2 Numerical differentiation 325
8.5 Optimization 325
8.5.1 Optimization functions 325
8.5.2 Roots of a function 329
Memorandum 331
Exercises 331
Worksheet 332
9 Descriptive statistics 337
9.1 Introduction 337
9.2 Structuring variables according to type 338
9.2.1 Structuring qualitative variables 339
9.2.2 Structuring ordinal variables 341
9.2.3 Structuring discrete quantitative data 341
9.2.4 Structuring continuous quantitative variables 341
9.3 Data tables 342
9.3.1 Individual data tables 342
9.3.2 Tables of counts and frequency tables 342
9.3.3 Tables of grouped data 343
9.3.4 Cross tabulation 343
9.3.4.1 Contingency tables 343
9.3.4.2 Joint distribution 344
9.3.4.3 Marginal distributions 345
9.3.4.4 Conditional distributions 345
9.4 Numerical summaries 346
9.4.1 Summaries of the location of a distribution 346
9.4.1.1 Modes 346
9.4.1.2 Median 347
9.4.1.3 Mean 348
9.4.1.4 Fractiles 349
9.4.2 Summaries of the dispersion of a distribution 349
9.4.3 Summaries of the shape of a distribution 350
9.5 Measures of association 351
9.5.1 Measures of association between two qualitative vari- ables 351
9.5.1.1 Pearson's χ^{2} statistic 351
9.5.1.2 $\quad \Phi^{2}$, Cramér's V^{2} and Pearson's contingency coefficient 352
9.5.2 Measures of association between ordinal variables (or ranks) 352
9.5.2.1 \quad Kendall's τ and τ_{b} 352
9.5.2.2 Spearman's rank correlation coefficient ρ 353
9.5.3 Measures of association between two quantitative vari- ables 354
9.5.3.1 Covariance and Pearson's correlation coeffi- cient 354
9.5.4 Measures of association between a quantitative variable and a qualitative variable 354
Contents 15
9.5.4.1 Correlation ratio $\eta_{Y \mid X}^{2}$ 354
9.6 Graphical representations 355
9.6.1 Plotting qualitative variables 356
9.6.1.1 Cross chart 356
9.6.1.2 Bar charts 357
9.6.1.3 Pareto chart 358
9.6.1.4 Stacked bar chart 359
9.6.1.5 Pie chart 360
9.6.2 Plotting ordinal variables 362
9.6.2.1 Bar chart with cumulative frequencies line 362
9.6.3 Plotting discrete quantitative variables 362
9.6.3.1 Cross chart 362
9.6.3.2 Bar chart 363
9.6.3.3 Plotting the empirical distribution function 363
9.6.3.4 Stemplot 364
9.6.3.5 Boxplot 364
9.6.4 Plotting continuous quantitative variables 366
9.6.4.1 Empirical distribution function 366
9.6.4.2 Stemplot 367
9.6.4.3 Boxplots 368
9.6.4.4 Density histogram with identical or different class ranges 368
9.6.4.5 Frequency polygon 369
9.6.4.6 Cumulative frequency polygon 370
9.6.5 Graphical representations in a bivariate setting 371
9.6.5.1 Two-way plots for two qualitative variables 371
9.6.5.2 Two-way plots for two quantitative variables 373
9.6.5.3 Two-way plots for one qualitative and one quan- titative variable 374
Memorandum 376
Exercises 376
Worksheet 377
10 A better understanding of random variables, distributions and simulations using R specificities 381
10.1 Notions on random number generation 381
10.2 The notion of random variables 383
10.2.1 Realizations of a random variable and functioning law 383
10.2.2 I.i.d. random variables 384
10.2.3 Characterizing the distribution of a random variable 385
10.2.3.1 Density function, distribution function, quan- tile function 386
10.2.4 Parameters of the distribution of a random distribution 389
10.3 Law of large numbers and central limit theorem 392
10.3.1 Law of large numbers 392
10.3.2 Central limit theorem 393
10.4 Inferential statistics 394
10.4.1 Point estimate of parameters 394
10.4.2 Empirical cumulative distribution function 396
10.4.3 Maximum likelihood estimation 397
10.4.4 Sampling variation and properties of an estimator 399
10.5 A few techniques to draw from a distribution 401
10.5.1 Simulating from another distribution 401
10.5.2 Inverse transform method 402
10.5.3 Rejection sampling 402
10.5.4 Simulation of discrete random variables 403
10.6 Bootstrap 404
10.7 Standard and less standard distributions 405
10.7.1 Standard distributions 405
10.7.2 \dagger Less standard distributions 407
10.8 Modelling a phenomenon 408
Memorandum 412
Exercises 412
Worksheet 412
11 Confidence intervals and hypothesis testing 415
11.1 Notations 415
11.2 Confidence intervals 416
11.2.1 Confidence intervals for the mean 416
11.2.2 Confidence intervals for a proportion p 418
11.2.3 Confidence intervals for a variance 419
11.2.4 Confidence intervals for a median 420
11.2.5 Confidence intervals for a correlation coefficient 421
11.2.6 Summary table for confidence intervals 422
11.3 Standard hypothesis testing 422
11.3.1 Parametric tests 424
11.3.1.1 Tests of the mean 424
11.3.1.2 Tests of variance 427
11.3.1.3 Tests of proportion 429
11.3.1.4 Tests of correlation 432
11.3.2 Independence tests 434
11.3.2.1 $\quad \chi^{2}$ test for independence 434
11.3.2.2 Yates' χ^{2} test 435
11.3.2.3 Fisher's exact test 436
11.3.3 Non-parametric tests 437
11.3.3.1 Goodness-of-fit tests 437
11.3.3.2 Tests of position 440
11.3.4 Memorandum of standard tests 445
11.4 Other tests 446
Memorandum 448
Exercises 448
Worksheet 449
12 Simple and multiple linear regression 455
12.1 Introduction 455
12.2 Simple linear regression 457
12.2.1 Aim and model 457
12.2.2 Fitting data 457
12.2.3 Confidence and prediction intervals for a new value 462
12.2.4 Analysis of residuals 464
12.2.5 Student tests for means and linear model 468
12.2.6 Summary 469
12.3 Multiple linear regression 470
12.3.1 Aim and model 470
12.3.2 Fitting data 470
12.3.3 Confidence and prediction intervals for a new value 474
12.3.4 Testing a linear sub-hypothesis: partial Fisher test 475
12.3.5 Qualitative variables with more than two modalities 476
12.3.6 Interaction between variables 479
12.3.7 Issues with collinearity 483
12.3.8 Variable selection 484
12.3.9 Analysis of residuals 492
12.3.10 Polynomial regression 500
12.3.11 Summary 500
Memorandum 501
Exercises 501
Worksheet 502
13 Elementary analysis of variance 507
13.1 Analysis of variance with one factor 507
13.1.1 Aims, data and model 507
13.1.2 Example and graphical inspection 508
13.1.3 ANOVA table and parameter estimation 510
13.1.4 Validation of assumptions 513
13.1.5 Multiple comparisons and contrasts 514
13.1.6 Summary 517
13.2 Analysis of variance with two factors 518
13.2.1 Aims, data and model 518
13.2.2 Example and graphical inspection 519
13.2.3 ANOVA table, tests, and parameter estimation 521
13.2.4 Validating assumptions 524
13.2.5 Contrasts 526
13.2.6 Summary 526
13.3 Repeated measures analysis of variance 527
13.3.1 One-way repeated measures ANOVA 528
13.3.2 Two factor model with repeated measures for both fac- tors 529
13.3.3 Two factors model with repeated measures for one factor 530
Memorandum 532
Exercises 532
Worksheet 532
Appendix: Installing R and R packages 537
C. 1 Installing R under Microsoft Windows XP 537
C. 2 Installing additional packages 538
C.2.1 Installing from a file on your disk 538
C.2.2 Installing directly from Internet 539
C.2.3 Installing from the command line 540
C.2.4 Installing packages under Linux 541
C. 3 Loading installed packages 542
References 545
General index 548
Index of commands and R symbols 556
Index of authors 569
List of R packages mentioned in the book 571
Solutions to Exercises 573
Solutions to Worksheet 584

List of Figures

A. 1 A few of the graphical possibilities offered by R. 4
A. 2 The RCommander graphical interface. 7
A. 3 Entering data with the RCommander graphical interface. 8
A. 4 Basic statistics with RCommander. 10
A. 5 Manipulating a dataset with RCommander. 11
A. 6 Mean comparison test with RCommander. 13
A. 7 Independence test with RCommander. 15
A. 8 Least squares plane. 17
1.1 The script window and the command console 39
1.2 Characteristics of a complex number. 46
1.3 Illustration of an array. 52
5.1 Effect of argument mfrow of function par(). Numbers have been added to gain a better understanding of where future plots will be drawn. 152
5.2 Potential of the function layout (). 153
5.3 The function layout () and its arguments widths and heights. 154
5.4 The function plot() 155
5.5 The function points() 156
5.6 The functions segments() and lines() 157
5.7 The function abline(). 157
5.8 The function arrows(). 159
5.9 The function curve(). 160
5.10 The function box () 161
5.11 The argument col of function plot (). 162
5.12 The argument alpha of function rgb() 163
5.13 An example using function rainbow(). 164
5.14 The function display.brewer.all() 165
5.15 The function image() 166
5.16 The function image() with a coherent display of the data. 167
5.17 The function text() 168
5.18 The function mtext () 169
5.19 The function title() 170
5.20 Plot title on several lines 170
5.21 The function axis(). 171
5.22 The function legend() with squares. 172
5.23 The function legend() with line segments. 173
5.24 Figure illustrating the fine management of graphical parameters. 176
5.25 Managing the colours of a plot. 177
5.26 Example of use of the arguments adj and srt. 179
5.27 Using different fonts on a plot. 180
5.28 Labels on a plot. 182
5.29 The arguments lend and ljoin. 183
5.30 The argument pch. 184
5.31 The arguments lty and lwd. 184
6.1 Result of the call of the function mydisplay.reg1() 201
6.2 Emacs and GDB. 261
6.3 DDD and GDB. 263
7.1 Illustration of storage of values in memory. Each little box con- tains a binary number (0 or 1). Each green number gives the deci- mal representation of the number in binary form in the block above. Each red number gives the address (expressed here in decimal no- tation) of the 8-box block above. Note that the same memory ad- dresses could have been written in hexadecimal notation $(b=16)$, giving $3 \mathrm{C}, 3 \mathrm{D}, 3 \mathrm{E}$ and 3 F 292
7.2 Illustration of \mathbf{R} storage in memory of a (signed) integer. Each little box contains a binary $\operatorname{digit}(0$ or 1). The green number gives the decimal notation of the integer expressed in binary notation in the four blocks above. The red number gives the address (expressed here in decimal base) of the first 8 -box memory block above. Note that here, a number is stored over 32 boxes, and not over 8 as in figure 7.8.1. Furthermore, the first box is used to specify the sign of the number, negative here. 293
8.1 Modified sinc function. 327
9.1 Algorithm to determine the type of a variable. 339
9.2 Cross chart for a qualitative variable. 356
9.3 Dot chart for a qualitative variable. 357
9.4 Bar chart for a qualitative variable. 357
9.5 Pareto chart for a qualitative variable. 358
9.6 Stacked bar chart for a qualitative variable. 359
9.7 Bar chart with cumulative frequencies line for an ordinal vari- able. 362
List of Figures 21
9.8 Bar chart for a discrete quantitative variable. 363
9.9 Empirical distribution function for a discrete quantitative vari- able. 364
9.10 Boxplot and explanations. 365
9.11 Plot of the empirical distribution function for a continuous quan- titative variable. 367
9.12 Density histogram with identical or different class ranges. 369
9.13 Frequency polygon. 370
9.14 Cumulative frequency polygon. 370
9.15 Bar plot for two qualitative variables. 371
9.16 Mosaic plot for two qualitative variables. 372
9.17 Cohen-Friendly association plot for two qualitative variables. 372
9.18 table. cont plot for two qualitative variables 373
9.19 Plot of two quantitative variables 374
9.20 Box plots of a quantitative variable as a function of the levels of a qualitative variable 375
9.21 stripchart plot for a quantitative and a qualitative variable. 375
10.1 Plot approximating the density of X. 388
10.2 Convergence in distribution in action on an example with simu- lated data. 394
12.1 Scatter plot of child weight against mother weight. 458
12.2 Least squares regression line on a scatter plot. 459
12.3 Visualization of confidence and prediction intervals. 464
12.4 Graphical inspection of normality of residuals 466
12.5 Plot of residuals as a function of predicted values 467
12.6 Scatter plot of all pairs of variables. 472
12.7 Effect of age on BWT in a model without interaction. 481
12.8 Effect of age on BWT in a model with interaction 482
12.9 Selecting variables with the BIC. 486
12.10 Checking the assumptions of homoscedasticity (left) and normal- ity (right). 493
12.11 Residuals as a function of explanatory variables 494
12.12 Visualizing outliers: studentized residuals against fitted values. 496
12.13 Visualizing influential observations: Cook's distance. 498
13.1 Box plot of scarring times for each treatment. 510
13.2 Analysing the residuals in single-factor ANOVA 513
13.3 Exploration of interaction in two-way ANOVA. 521
13.4 Residual analysis in two-way ANOVA. 525

List of Tables

1.1 The various data types in \mathbf{R}. 49
1.2 The various data structures in R. 57
2.1 Data importation functions 62
2.2 Main arguments to read.table(). 62
2.3 Packages and R importation functions from common software. 69
3.1 Operators and functions which take logical values as input or output. 95
3.2 Operations on sets. 96
3.3 Codes for the function strptime(). 110
3.4 Correspondence between BMI and weight categories 122
5.1 Parameters to manage the graphics window 175
5.2 Colour management parameters. 177
5.3 Managing text displayed on a plot. 178
5.4 Parameters to manage axes. 181
5.5 Parameters for lines and symbols. 183
6.1 Conventions on argument types. 236
8.1 Table of basic mathematical functions. 312
10.1 Standard discrete distributions. 405
10.2 Standard continuous distributions. 406
10.3 Less standard distributions I. 407
10.4 Less standard distributions II. 408
11.1 Some notation for standard parameter estimation. 415
11.2 Notation of various quantiles of order p. 416
11.3 Summary for confidence intervals. 422
11.4 Standard tests. 446
12.1 Main R functions for simple linear regression. 469
12.2 Main R functions for multiple linear regression. 500
13.1 Main functions for single-factor ANOVA 517
13.2 Main functions for two-way ANOVA 526

Mathematical notations

$:=$	Symbol indicating different notations for a single object
\cup	Table fusion
$a \in A$	a belongs to set A
$A \subset B$	A is included in B
$A \supset B$	A includes B
$A \cap B$	Intersection of sets A and B
$A \cup B$	Union of sets A and B
$A \backslash B$	Complement of set B in set A
$(A \cup B) \backslash(A \cap B)$	Symmetric difference of sets A and B
f_{i}	Frequency of a modality
$\|x\|$	Absolute value of number x
$x!$	Factorial of number x
$\binom{n}{p}$	Binomial coefficient: number of ways of picking p elements
$\Gamma(\cdot)$	out of n
γ	Gamma function
$\psi(\cdot)$	Euler's constant
π	Digamma function
λ	Number π
$\mathcal{A}, \mathcal{B}, C \ldots$	Scalar number
\mathcal{I} etc \ldots	Matrices
$n \times p$	Identity matrix
\mathcal{A}^{\top}	Indicates the size of a matrix
\mathcal{B}^{-1}	Transpose of matrix \mathcal{A}
$\overline{\boldsymbol{C}}$	Inverse of matrix \mathcal{B}
$\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$	Conjugate of complex matrix \mathcal{C}
\boldsymbol{x}^{\top}	Tramn vector
$\mathcal{A} \otimes \mathcal{B}$	Kronecker product of matrix \mathcal{A} with matrix \mathcal{B}
$v e c(\mathcal{A})$	Vector resulting from the stacking of columns of matrix \mathcal{A}
$v e c h(\mathcal{A})$	Vector resulting from the stacking of columns of matrix \mathcal{A},
	but excluding elements above the diagonal

*	Adjunct matrix (conjugate transpose) of matrix
1/2	Square root of matrix
$\mathbb{1}_{[A]}(x)$	Equals 1 if $x \in A$ and 0 otherwise
[a, b]	Interval of values between a and b
$\operatorname{det}(\mathcal{F})$	Determinant of matrix \mathcal{A}
$\Phi(\cdot)$	Cumulative distribution function of a standard normal random variable $\mathcal{N}(0,1)$
$\dot{\chi}$	Matrix given by centring the columns of matrix \mathcal{X}
$\mathbb{1}_{n}$	Vector $(1, \ldots, 1)^{\top}$ of length n
X, Y	Non-random variables (descriptive statistics)
N	Population size
n	Sample size
$m_{e}:=q_{1 / 2}$	Median
$P F C_{X}(\cdot)$	Value of the polygon of cumulative frequencies of X
μ_{X}	Expected value of random variable X, or population mean in descriptive statistics
q_{p} or x_{p}	Fractile (quantile) of order p of a variable
$q_{1 / 4}, q_{3 / 4}$	First and third quartiles (also noted q_{1} and q_{3})
$\sigma_{\text {Pop }}^{2}(\boldsymbol{x})$	Population variance (descriptive statistics)
$\sigma_{\text {Pop }}(\boldsymbol{x})$	Population standard error (descriptive statistics)
c_{v}	Population coefficient of variation (descriptive statistics)
γ_{1}	Skewness
β_{2}	Kurtosis
μ_{3}	Centred moment of order 3
μ_{4}	Centred moment of order 4
χ^{2}	Pearson's χ^{2} statistic
Φ^{2}, V^{2}	Cramér's Φ^{2} and V^{2}
τ, τ_{b}	Kendall's τ and τ_{b}
ρ	Theoretical Pearson coefficient of correlation
$\eta_{Y \mid X}^{2}$	Correlation ratio
$\mathrm{X}, \mathrm{Y}, \epsilon$	Random variables
$x_{i}, y_{i}, \epsilon_{i}$	Realizations of random variables X, Y, ϵ
$\mathbf{X}, \mathbf{Y}, \boldsymbol{\epsilon}$	Random vectors
\mathbf{X}_{n}	Sample (random)
\boldsymbol{x}_{n}	Sample (observed)
X	Random matrix
\mathcal{L}	Generic distribution of a random variable
$\mathcal{N}(0,1)$	Standard normal distribution
$\mathcal{N}\left(\mu, \sigma^{2}\right)$	Normal distribution with mean μ and variance σ^{2}
$\mathcal{U}(a, b)$	Uniform distribution over the interval [a, b]
$\mathcal{B i n}(n, p)$	Binomial distribution with parameters n and p
$\mathcal{E}(\lambda)$	Exponential distribution with parameter λ

$\mathcal{P}(\lambda)$	Poisson distribution with parameter λ
$\mathcal{T}(n)$	Student distribution with n degrees of freedom
$\chi^{2}(n)$ or χ_{n}^{2}	χ^{2} distribution with n degrees of freedom
$\mathcal{F}(n, m)$	Fisher distribution with n and m degrees of freedom
$f_{\mathrm{X}}(\cdot)$	Probability density function of random variable X
$F_{\mathrm{X}}(\cdot)$	Cumulative distribution function of random variable X
$F_{\mathrm{X}}^{-1}(\cdot)$	Inverse cumulative distribution function of random variable X
μ	Expected value of a random variable
σ^{2}	Variance of a random variable
$\mathbb{E}(\mathrm{Y})$	Theoretical expectation of random variable Y
Var(Y)	Theoretical variance of random variable Y
$\overline{\mathrm{X}}_{n}$	Empirical mean $\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i}$ of sample $\mathbf{X}_{n}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)^{\top}$, estimator of μ_{X}
\bar{x}_{n}	Realization of the empirical mean $\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i}$ of sample $\mathbf{X}_{n}=$ $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)^{\top}$, estimate of μ_{X}
\xrightarrow{P}	Convergence in probability
$\hat{\mathrm{F}}_{n}(\cdot):=\hat{\mathrm{F}}_{\mathbf{X}_{n}}(\cdot)$	Empirical cumulative distribution function of sample \mathbf{X}_{n}
θ	Unknown parameter (the true unknown value of the parameter will sometimes be noted θ^{\bullet})
$\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ or $\hat{\theta}$	Estimator of unknown parameter θ based on the sample $\mathbf{X}_{n}=$ $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)^{\top}$
$\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ or $\hat{\theta}$	Estimate of unknown parameter θ based on the observed sample $\boldsymbol{x}_{n}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$
$\mathbb{B}\left(\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right) ; \theta\right)$	Bias of estimator $\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ to estimate unknown parameter θ
$P[A]$	Probability of set A
$\mathcal{V}\left(\theta ; \mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$	Likelihood function of sample \mathbf{X}_{n} evaluated at θ
$\boldsymbol{x}^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)^{\top}$	Bootstrap sample generated from the observed sample $\boldsymbol{x}_{n}=$ $\left(x_{1}, \ldots, x_{n}\right)^{\top}$
$\hat{\sigma}$	Estimator of σ
$\hat{\sigma}$	Estimate of σ
p	Proportion
$\hat{\mathrm{p}}$	Estimator of a proportion (or of a probability)
\hat{p}	Estimate of a proportion (or of a probability)
m_{e}	Estimator of a median
$\widehat{m_{e}}$	Estimate of a median
M	Number of iterations (of generated samples) in a Monte Carlo simulation
B	Number of generated bootstrap samples
$B(\cdot, \cdot), \Gamma(\cdot)$	Beta function, gamma function
$I_{x}^{\prime}(\cdot, \cdot)$	Derivative of incomplete beta function
$I(\cdot)$	Modified Bessel function

$I_{\alpha}(\cdot)$	Modified Bessel functions
u_{p}	Quantile of order p of a $\mathcal{N}(0,1)$
t_{p}^{n}	Quantile of order p of a $\mathcal{T}(n)$
q_{p}^{n}	Quantile of order p of a $\chi^{2}(n)$
$f_{p}^{n, m}$	Quantile of order p of a $\mathcal{F}(n, m)$
$I C_{1-\alpha}(\theta)$	Random confidence interval at confidence level $1-\alpha$ for θ
$i c_{1-\alpha}(\theta)$	Realized confidence interval at confidence level $1-\alpha$ for θ
$1-\alpha$	Level of a confidence interval
$\left(x_{(1)}, \ldots, x_{(n)}\right)$	Observed sample, sorted from smallest to largest value
\mathcal{H}_{1}	Assertion of interest in hypothesis testing
\mathcal{H}_{0}	"Null" hypothesis, opposite of \mathcal{H}_{1}
α	Significance level or risk of the first kind in hypothesis testing
R	Random Pearson empirical coefficient of correlation
r	Realized Pearson empirical coefficient of correlation
β_{0}, β_{1}	Unknown coefficients of a simple linear regression model
$\hat{\beta}_{0}, \hat{\beta}_{1}$	Estimates of unknown coefficients of a simple linear regression model
$\hat{\epsilon}_{i}$	Observed residuals in a simple linear regression model
\hat{y}_{i}	Adjusted observed values in a simple linear regression model
R^{2}	Random coefficient of determination in regression
r^{2}	Realized coefficient of determination in regression
R_{a}^{2}	Random adjusted coefficient of determination in regression
r_{a}^{2}	Realized adjusted coefficient of determination in regression
$\hat{\mathrm{Y}}^{p}$	Predictor of random variable Y for a new value of the explanatory variable X in regression
$I P_{1-\alpha}\left(\mathrm{Y}_{0}, x_{0}\right)$	Prediction interval at level $1-\alpha$ for random variable Y_{0} associated with a new value x_{0} of the explanatory variable
$\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p}\right)^{\top}$	Vector of the $p+1$ unknown coefficients in a multiple linear regression model with p explanatory variables
$\hat{\boldsymbol{\beta}}=\left(\mathcal{X}^{\top} \boldsymbol{X}\right)^{-1} \mathcal{X}^{\top} \boldsymbol{y}$	Estimator of the vector of unknown parameters β for the matrix \mathcal{X} of observed explanatory variables and for the observed vector of explained values in a muliple linear regression model
$\hat{\boldsymbol{\beta}}$	Estimate of $\boldsymbol{\beta}$
VIF	Variance inflation factor
AIC	An Information Criterion
BIC	Bayesian information criterion
$h_{i i}$	Leverage of i th observation in regression
t_{i}	Standardized residuals
t_{i}^{*}	Studentized residuals
$\hat{\sigma}_{(-i)}$	Estimate of σ excluding i th observation
C_{i}	Cook's distances

$\hat{y}_{j}^{(-i)}$	Prediction of y_{j}, not using the i th observation
$\hat{\beta}_{j}^{(-i)}$	Estimate of β_{j}, not using the i th observation
I, J	Number of levels of a factor in ANOVA
$\mu_{\bullet \bullet}$	Mean general effect in ANOVA
$\mu_{\bullet \bullet}$	Effect of level i of a factor in ANOVA
$\mu_{\bullet j}$	Effect of level j of a factor in ANOVA

Chapter A
 Introducing R

Prerequisites and goals of this chapter

- You may find it useful to read the chapter on installing R in the Appendix first.
- This chapter presents the origins, objectives and specificities of R.

SECTION A. 1

Presentation of the software

A.1.1 Origins

\mathbf{R} is a piece of statistical software created by Ross Ihaka \& Robert Gentleman [21]. It is both a programming language and a work environment: commands are executed thanks to instructions coded in a relatively simple language; results are displayed as text; plots are visualized directly in their own window. It is a clone of the software S-plus, which is based on the object-oriented programming language S, developed by AT\&T Bell Laboratories in 1988 [3]. This piece of software is used to manipulate data, draw plots and perform statistical analyses of data.

A.1.2 Why use R?

First of all, R is free and open-source. It works under UNIX (and Linux), Windows and Macintosh: it is cross-platform. It is being developed in the free software
movement by a large and growing community of eager volunteers. Anyone can contribute to and improve \mathbf{R} by integrating more functionalities or analysis methods. It is thus a quickly and constantly evolving piece of software.

It is also a very powerful and complete tool, especially adapted for statistical methods. The learning curve is steeper than for other software on the market (such as SPSS or Minitab): R is not the kind of software you can use out of the box with a few clicks of the mouse on menus. However, this approach has two advantages:

- it is didactic, since you have to understand a statistical method before you can put it at use;
- R is very efficient once you master it: you will then be able to create your own tools, enabling you to operate very sophisticated data analyses.

Warning

\mathbf{R} is harder to comprehend than other software on the market. You need to spend time learning the syntax and commands.
\mathbf{R} is especially powerful for data manipulation, calculations and plots. Its features include:

- an integrated and very well conceived documentation system (in English);
- efficient procedures for data treatment and storage;
- a suite of operators for calculations on tables, especially matrices;
- a vast and coherent collection of statistical procedures for data analysis;
- advanced graphical capabilities;
- a simple and efficient programming language, including conditioning, loops, recursion and input-output possibilities.

Note

For the readers already used to SAS, SPSS or Stata, we advise to read the books [32] and [33], and also to consult the two following internet web sites:

- http://rforsasandspssusers.com/
- http://www.statmethods.net/

Note also that it is possible to call \mathbf{R} functions directly from Matlab using the R.matlab package and from Excel using the RExcelInstaller package. Reading of [20] might be useful in this context. Finally, a similar tool for OpenOffice, called ROOO, exists; see the internet website http://rcom. univie.ac.at.

- SECTION A. 2
 R and Statistics

Many classical and modern statistical techniques are implemented in \mathbf{R}. The most common methods for statistical analysis, such as:

- descriptive statistics;
- hypothesis testing;
- analysis of variance;
- linear regression methods (simple and multiple);
- and so on
are directly included at the core of the system. It should be noted than most advanced statistical methods are also available through external packages. These are easy to install, directly from a menu. They are all grouped and can be browsed on the website of the Comprehensive R Archive Network (CRAN) (http://cran. r-project.org). This website also includes, for some large domains of interest, a commented list of packages associated with a theme (called Task View). This facilitates the search for a package on a specific statistical method. Furthermore, detailed documentation for each package is available on the CRAN.

It should also be noted that recent statistical methods are added on a regular basis by the Statistics community itself.

See also

Section C.2, page 538, gives details on the procedure to install a new package.

$[$ SECTION A. $3 \longrightarrow \mathrm{R}$ and plots

One of the main strengths of \mathbf{R} is its capacity (much greater than that of other software on the market) to combine a programming language with the ability to draw high-quality plots. Usual plots are easily drawn using predefined functions. These functions also include many parameters, for example to add titles, captions, colours... But it is also possible to create more sophisticated plots to represent complex data such as contour lines, volumes with a 3D effect, density curves, and many other things. It is also possible to add mathematical formulae. You can arrange or overlay several plots in the same window, and use many colour palettes.

You can get a demonstration of the graphical possibilities in \mathbf{R} by typing in the following instructions:

```
demo(image)
example(contour)
demo(graphics)
demo(persp)
demo(plotmath)
demo(Hershey)
require(lattice) # Load the package, which you must have
    # previously installed by using the menu
    # Packages/Install packages.
demo(lattice)
example(wireframe)
require(rgl) # Same remark as above.
demo(rgl)
# You can interact by using your mouse.
example (persp3d)
The next figures shows a few of these plots.
```


Fig. A.1: A few of the graphical possibilities offered by R.

- SECTION A. 4
 The R Graphical User Interface (GUI)

The R Graphical User Interface (i.e. its set of menus) is very limited, and completely nonexistent on some operating systems, when compared to other standard software. This minimality can set back some new users. However, this drawback is limited since:

- it has the didactic advantage that it incites users to know well the statistical procedures they wish to use;
- there are additional tools which extend the GUI.

In the next section, we present the package Rcmdr, which can be installed from the menu Packages, and which allows standard graphical and statistical analyses with a more user-friendly interface, which includes drop-down menus. Furthermore, the \mathbf{R} instructions for the analysis chosen from the RCommander menus are displayed in dedicated panel. This can be useful if you do not know (or remember) the \mathbf{R} instruction for a specific task

Tip

Note that after you have learnt R thoroughly, you will be able to develop yourself tools similar to Rcmdr, made for a final users who does not desire to learnR but only to use, in the most user-friendly way, a procedure created by you. To this end, you can use the package tcltk.

Warning

Note that by using RCommander, we are distancing ourselves from what makes the strength and flexibility of \mathbf{R}. We therefore advise against using such a tool if you wish to become an advanced user.

- SECTION A. 5

First steps in R

A.5.1 Using RCommander

In this section, we offer a brief introduction to the package Rcmdr. We then present some functionalities given by this interface for statistical manipulations. We conclude by explaining how to add functionalities to the RCommander interface.

A.5.1.1 Launching RCommander

Follow these steps to start RCommander :

- Double-click on the R icon on your Desktop.
- In the console, type install. packages ("Rcmdr"). Choose a nearby mirror.
- In the console, type require (Rcmdr). Answer Yes to all the questions you may be asked. The RCommander graphical interface then opens. Another option is to click on the menu Packages, then Load package. . ., then Rcmdr.
- In the Messages panel, you should see WARNING: the Windows version of R Commander works better under RGui with the Single Document Interface (SDI).
- To remedy thit issue, close RCommander.
- In RGui, go to Edit, then Preferences. Check SDI then click on Save. . . and on Save. You can take this opportunity to customize R.
- Close R and save an image of the session.
- Restart R, then RCommander by typing require(Rcmdr) in the \mathbf{R} console.

Sce also

We refer the reader to section C. 2 which details how to install the package Rcmdr.

Mac

Macintosh users may find useful the instructions at http://socserv. memaster.ca/jfox/Misc/Rcmdr/installation-notes.html, after installing package tcltk which is available on the CRAN.

The graphical interface of RCommander includes four parts as shown on figure A.5.1.1:
A. Drop-down menus to perform specific tasks.
B. A Script window which presents the code executed thanks to click on a dropdown menu.
C. An Output window which gives the output of the executed code.
D. A Messages window giving a message on the last task.

Fig. A.2: The RCommander graphical interface.

A.5.1.2 Handling data with RCommander

To perform statistical analyses, you need data.

- Entering data by hand

Follow these steps to enter data by hand.

- In the menu Data, choose New data set....
- In the window New data table, choose a name for your dataset, for example Data1.
- A data editor appears. Click on var1 and replace it with Name. Enter a few names for this variable: Peter, Jack, Ben (see figure A.5.1.2).
- Create a variable Height of type numeric with the following values: 182, 184, 190.
- Click on the cross (X) at the top right corner of the active window to close the data editor.
- You can visualize your dataset by clicking on View

We can now calculate some basic statistics.

Fig. A.3: Entering data with the RCommander graphical interface.

- Basic statistics.

Follow these steps to get some basic statistics on your data set

- In the menu Statistics, choose Summary, then Descriptive statistics...
- A window called General statistics opens up; the only numeric variable in our data set is the variable Height.
- Choose the statistics Mean, Standard deviation and Quantiles, and click on OK.
- The result is displayed in the Output window. Note that you can check the R instruction which was used for this task in the Script window (see figure A.5.1.2).

Note that it is also possible to type an instruction directly in the Script window without using a menu. Here is an example.

- Type in the Script window:
numSummary (Data1[,"Height"],statistics=c("mean","sd"))
- Click on that line so that the cursor is displayed there, then click on Submit.
- You have just computed the mean and standard deviation of variable Height which contains 3 observations. The result appears in the Output window:

mean	sd $\%$	n	
184	5.291503	0	3

Fig. A.4: Basic statistics with RCommander.

- Manipulating the dataset.

In our toy example, suppose that we also have the weight and wish to compute the body mass index: $B M I=$ Weight $/$ Height 2 (height in metres).

- Click on Edit (below the RCommander menus).
- The data editor opens up and you can add the numeric variable Weight, with the following values: 70, 72 and 75 . Now close the data editor.
- In the Data menu, choose Manage variables in the active dataset, then Calculate a new variable.... A window opens.
- For Name of new variable, type BMI and for Expression to calculate: Weight/((Height/100)**2) (see figure A.5.1.2). Click on OK to complete the calculation.
- Click on View to see the result for your dataset.

You are starting to feel tired and need a coffee break! But before you take one, follow these steps to save your dataset.

Fig. A.5: Manipulating a dataset with RCommander.

In the Data menu, choose Active dataset, then Save active dataset...

- A window opens. You can choose a location to save your dataset. We shall call it BMI and by default it has the .Rdata extension.
- Close RCommander and answer OK to the question Do you wish to quit?, No to Save script file? and No to Save output file?.
- You can now close R and answer No to the question Save session image?.

After a well-deserved break, you wish to add new data to your file BMI.RData.

- Open an R session. Type library (Rcmdr).
- In the Data menu, choose Load data set....
- A window opens. Navigate to and open the file BMI.RData.
- Click on View to display your dataset.
- Add the information for a new person ("Julia", Height=150, Weight=52) by clicking on Edit.
- After closing the editor, you can check the changes by clicking on View. You then see the value NA (Not Available) for Julia's BMI.
- To get Julia's BMI, you need to go through the steps of section Manipulating the dataset again. We shall see later on how to create a function which calculates the BMI in a more user-friendly fashion.

You now wish to send your dataset to a colleague who does not use R yet.

- In the Data menu, choose Active dataset, then Export active data set....
- A first window opens. Uncheck the box Write names of individuals (rows) since we have not defined these. Choose Spaces for the field separator.
- Click on OK. A second window opens. You can choose a place to save your dataset. We shall call it BMI and it has the default extension .txt.
- You can now send your dataset BMI. txt to your colleague, and use this opportunity to mention the wonderfulness of \mathbf{R}, which has a rather user-friendly interface for data manipulation.

A.5.1.3 A few statistical tasks with RCommander

In this section, we present a brief overview of how to use RCommander for statistical tasks. We start with a mean comparison test and a chi-2 test of independence. We then show how to use RCommander to visualize the standard distributions (binomial, Poisson, Normal, Gamma, etc.). We conclude with a linear model fit.

- Mean comparison test.

We propose to use data already available in R. Follow these steps to load a dataset.

- In the Data menu, choose Data in packages, then Read data from an attached package....
- A window opens. Double-click on datasets in the Package section, then on sleep in the right column.
- sleep appears in the box Enter a dataset name (see figure A.5.1.3).
- You can now click on Help on the selected dataset to have some information about it.
- Click on OK to close the previous window, then visualize the dataset by clicking on View.

These data are used to compare the effect on sleep of a soporific drug, compared to a control group. We shall first visualize the distribution of sleep gain in both groups, then do a mean comparison test to see whether there is any difference between the drug and the control.

Fig. A.6: Mean comparison test with RCommander.

- In the Graphs menu, choose Box plot....
- A window opens. Click on Plot by group..., then on the variable group, then on OK twice.
- You can now see two box plots representing the sleep time gain in both groups.
- You can save this plot by clicking on File, then Save as. Several formats are possible.

You can also enhance this plot, for example by adding colours. In the script window, type:

```
boxplot(extra~group,ylab="extra",xlab="group",data=sleep,
    col=c("red","blue"))
```

then click on Submit.

See also

Chapter 5 is dedicated to plots in \mathbf{R}.

We now perform a mean comparison test.

- In the Statistics menu, choose Means, then independent t-test....
- Click on group in section Groups (one). You now see specified the difference 1-2 (group 1 versus group 2).
- Click on OK to see the result in the Output window (see also figure A.5.1.3).

The p-value of this test (greater than 5%) does not allow us to conclude that there is a significant difference between the sleep gains given by the drug and the control.

- Test on a double entry table.

In a therapeutic test, the underlying question is whether a treatment on HIV positive mothers has an effect on the HIV status of the child. If it does not, then the HIV status of the child is independent of the treatment taken by the mother. In this test, out of 391 children, 100 are HIV negative, 193 have mothers under treatment, and 41 are HIV positive and have mothers under treatment. To know whether the treatment has an effect, follow these steps:

- In the Statistics menu, choose Contingency tables, then Fill and analyse a double entry table....
- A window opens. Fill the table as indicated in figure A.5.1.3. Choose Total percentages and Print expected frequencies.
- Click on OK to see the result in the Output window.

At the 5% risk level, we cannot conclude that the treatment has an effect on the child's HIV status.

Fig. A.7: Independence test with RCommander.

- Exploring distributions.

RCommander can be used to visualize standard distributions.

- In the Distributions menu, choose Continuous distributions, the Normal distribution, then Plot of normal distribution....
- A window opens. Specify a mean of 4 and a standard deviation of 2. Click on OK.
- The curve of the density of a normal distribution centred at 4 and with standard deviation 2 appears in a graphical window.

You can follow the same steps for other probability distributions.

- Fitting a linear model.

RCommander can be used to easily fit standard regression models. We illustrate this with the linear model. We shall first download a dataset from an Internet address (URL). It contains the measures, for 80 patients with a disabling illness, of
the variables GENDER ($1=$ Male, $2=$ Female), WEIGHT (in kg), HEIGHT (in cm), PAIN (ordinal variable: a=least pain), DISTANCE (number of metres walked), MOBILITY (self-evaluation of mobility; $1=$ most mobile), STAIRS (number of steps climbed).

- In the Data menu, choose Import data, then from a text file, the clipboard or a URL....
- A window opens. Call the data table Illness. Check the box Internet link (URL) in Data file, and the box Tabulations for Field separator; Click on OK.
- In the field Internet Link (URL), type: http://biostatisticien.eu/springeR/illness.txt.
- Click on OK and you should see the following in the Messages window: The illness dataset contains 80 rows and 8 columns

We shall fit a multiple regression model. Follow these steps:

- In the Statistics menu, choose Model fitting, then Linear regression. ...
- Choose for example Model. 1 as your model name in the field Enter a name for the model.
- Choose variable DISTANCE as the response variable, and variables WEIGHT and HEIGHT as the explanatory variables (keep the CTRL key pressed).
- Click on OK. The result of your linear model adjustment appears in the Output window. This result corresponds to the instructions:

```
Model.1 <- lm(DISTANCE ~WEIGHT+HEIGHT,data=Illness)
summary (Model.1)
which are shown in the Script window.
```


See also

Chapter 12 presents the linear model in further detail.

We now visaulize the least squares plane corresponding to the fitted model.

- In the Plot menu, choose 3D plot, then 3D scatterplot....
- Choose variable DISTANCE as the response variable and the variables WEIGHT and HEIGHT as explanatory variables (use the CTRL key).
- Choose Ordinary least squares as the surface to fit. Click on OK.

You can now see the 3D scatterplot (shown in figure A.5.1.3), and the least squares plane. You can move the image with your mouse.

Fig. A.8: Least squares plane.

A.5.1.4 Adding functionalities to the RCommander interface

Some packages available on the official R website can also be integrated to the RCommander menus. They are easy to identify: their names start with RcmdrPlugin. We now illustrate how to use such a package.

See also
You can read the article [17] which explains how to build a package for RCommander integration.

- The TeachingDemos package.

The RcmdrPlugin. TeachingDemos package can be used to illustrate some statistical concepts.

- Type install.packages("RcmdrPlugin.TeachingDemos") in the Script window. Click on Submit and choose a nearby mirror. Once the installation is complete, close and reopen RCommander using the instruction Commander ().
- In the Tools menu, choose Load Rcmdr plug-ins..., click on OK and answer Yes to the question Restart now?.
- There is a new menu called Demos. In this menu, you can choose for example the submenu Simple Correlation and explore the notion of correlation.

This plug-in also adds submenus to pre-existing menus. For example, in the Distributions menu, you can now choose Visualize distributions, then t distributions. By checking Show Normal Distribution, and by playing with the d.f. (degree of freedom) cursor, you can visualize the closeness of the Student distribution and the normal distribution.

- The sos package.

The RcmdrPlugin. sos package can be used to ease the search for help on a given concept or function. Follow the same steps as before to install this plug-in. A new submenu called Search R Help ... (sos) appears in the Help menu. Explore this new Rcommander functionality, for example by typing linear model.

See also

Chapter 4 describes how to search for information about \mathbf{R}.

A.5.2 Using R with the console

In the previous subsection, we saw how to use \mathbf{R} through menus. In fact, this way of proceeding is far from optimal, since it imposes many limitations on the possibilities offered by R. Many analyses, either deeper or more recent and innovative, are not available in the RCommander menus. It is thus very useful to escape from the "button clicking" approach and master the \mathbf{R} programming language. You will then be able to perform simulations and to code repetitive tasks. We have already encountered a few \mathbf{R} instructions when using RCommander, which is itself a tool written in the R language. We now propose a brief introduction to a few elements of the \mathbf{R} syntax, first through an analysis of complex data arising from a functional Magnetic Resonance Imaging (MRI) experiment, then by letting the reader type a few \mathbf{R} commands and think about the output.

A.5.2.1 The strenght of R shown on an example

Some neuroscientists work on finding which part of the brain deals with visual information on colour. To this end, a visual stimulus, consisting in an alternance of coloured and non-coloured moving patterns, is shown to a subject. During this time, volumic images of the subject's brain are acquired at time $t=1, \ldots, T$ with an MRI scanner. Each 3D image is in fact a large (Rubik's!) cube made of many voxels, the 3D equivalents of 2D pixels. At time $t=1, \ldots, T$, each voxel contains an electromagnetic measurement value $x(t)$. We can thus consider that in each voxel, we have observed a time series $\{x(t) ; t=1, \ldots, T\}$ representing electromagnetic variations. The acquired data (given in file Mond4D.nii) thus consist in a 4-dimensional array, the concatenation of several volumic brain images measured through time.

We used \mathbf{R} to find, in each brain slice, which voxel had temporal variations most correlated with the stimulus signal. The code below can be downloaded from http://biostatisticien.eu/springeR/brain-code.R, and opened thanks to the submenu Open script... of the File menu in R. The key combination CTRL+R then executes one by one the instructions of this script. You can try to execute these instructions to visualize the results. This will help you familiarize yourself with some of the possibilities offered by \mathbf{R}.

We first download the data files we need (the files Mondanat.img and Mondanat.hdr contain an anatomical image of the subject's brain).

```
> getfile <- function(fichier)
+ download.file(paste("http://biostatisticien.eu/springeR/",
+ fichier,sep=""), paste(getwd(),"/", fichier,sep=""),mode="wb")
> getfile("Mond4D.nii")
> getfile("Mondanat.hdr")
> getfile("Mondanat.img")
```

We then install the package to read the data.

```
> install.packages("AnalyzeFMRI") # Choose a mirror.
> # File names.
> file.func <- paste(getwd(),"/", "Mond4D.nii",sep="")
> file.anat <- paste(getwd(),"/","Mondanat.img",sep="")
> # Brain slice number.
> slice <- 10
```

The next instructions read the data.

```
> anat.slice <- f.read.nifti.slice(file.anat,slice,1)
> class(anat.slice)
[1] "matrix"
> dim(anat.slice)
[1] 128 128
> func.slice <- f.read.nifti.slice.at.all.timepoints(file.func,slice)
> class(func.slice)
[1] "array"
```

```
> dim(func.slice)
[1] 128 128 125
```

We now create the coding of the visual stimulus signal ($1=$ colour, $0=$ no colour).

```
> stimulus <- c(rep (c(1, 1, 1, 1, 1, 0,0,0,0,0,0,0,0,0,0), 8),1,1,1,1,1)
```

> plot(stimulus,type="l")

We compute correlations between the observed time series in each voxel and the stimulus series.

```
> corMat <- matrix(NA, nrow=128,ncol=128)
> for (i in 1:128) {
+ for (j in 1:128) {
+ corMat[i,j] <- cor(func.slice[i,j,],stimulus)
+ }
+ }
```

We can now compute the coordinates of the voxel most strongly correlated with the stimulus:

```
> which(abs(corMat)==max(abs(corMat), na.rm=TRUE), arr.ind=TRUE)
    row col
[1,] 67 117
```

and the correlation value of this voxel:

```
> corMat[67,117]
```

[1] -0.6675017

We can then plot the time series observed in this voxel.

```
> par(mfrow=c (2,1))
> plot(stimulus,type="l")
> plot(func.slice[67,117,],type="l",ylab="Intensity")
```


We are now able to identify on the anatomical image of the brain the most active voxel for the visual stimulus.

```
> image(as.matrix(rev(as.data.frame(t(anat.slice)))),col=gray((0:32)/32))
```

> points (117/128,67/128,col="red", cex=2,pch=19)

Note that you can also visualize these data in 3D. The following instructions, taken from the help file for the function contour3d() from package misc3d, give an interactive 3D view of the brain.

```
> install.packages("misc3d").
> require(misc3d)
> a <- f.read.analyze.volume(system.file("example.img",
+ package="AnalyzeFMRI"))
> a <- a[,,,1]
> contour3d(a,1:64,1:64,1.5*(1:21),lev=c(3000, 8000, 10000),
+ alpha=c(0.2,0.5,1),color=c("white","red","green"))
```


You can try to move the image with your mouse.

A.5.2.2 A brief introduction of R syntax through some instructions to type

- Basic operations.

We advise the reader to play with these commands and try to understand how they work.

```
> 1*2*3*4
[1] 24
> factorial(4)
[1] 24
> cos(pi)
[1] -1
> x <- 1:10
> x
[1] 1
> exp(x)
    [1] 
    [5] 148.413159 403.428793 1096.633158 2980.957987
    [9] 8103.083928 22026.465795
> x^2
    [1] }1
> chain <- "R is great!"
> chain
[1] "R is great!"
> nchar(chain)
[1] 11
```

```
> ?nchar
> M <- matrix(x,ncol=5,nrow=2)
> M
rr,1] [,2] [, 3] [,4] [,5]
> M[2,3]
[1] 6
> L <- list (matrix=M, vector=x, chain=chain)
> L[[3]]
[1] "R is great!"
> function <- mini.game() {
+ while(TRUE) {
+ guess <- sample(0:1,1)
+ {cat("Choose a number between 0 and ");valeur <- scan(n=1)}
+ if (valeur==guess) {print("Well done!");break()}
+ else print("Try again.")
+ }
+ }
> # Type: mini.game()
> ls()
[1] "chain" "L" "M" "x"
> rm(chain)
```

The following commands perform matrix operations.

```
> A <- matrix(runif(9),nrow=3)
> 1/A
    [,1] [,2] [,3]
[1,] 2.270797 1.546875 1.422103
[2,] 1.268152 1.957924 1.057803
[3,] 1.642736 5.273120 2.174020
> A * (1/A)
    [,1] [, 2] [,3]
[1,] 1
[2,] 
[3,] 1 1 1
> B <- matrix(1:12,nrow=3)
> A * B
Error in A * B : non-conformable arrays
> A %*% B
    [,1] [,2] [,3] [,4]
[1,] 3.842855 9.212923 14.582990 19.95306
[2,] 4.646105 11.380053 18.114001 24.84795
[3,] 2.367954 6.143031 9.918107 13.69318
> (invA <- solve(A))
    [,1] [,2] [,3]
[1,] 1.145642 -3.376148 5.187347
[2,] 4.379786 -4.641906 2.844607
[3,] -3.321872 6.381822 -5.863772
> A %*% invA
[,1] [,2] [,3]
[1,] 1.000000e+00 0.000000e+00 0
[2,] 0.000000e+00 1.000000e+00 0
```

[3,] -2.220446e-16 4.440892e-16 1
$>\operatorname{det}(\mathrm{A})$
[1] 0.04857799
> eigen (A)
\$values
[1] $1.6960690+0.000000 i-0.1424863+0.091319 i$
[3] -0.1424863-0.091319i
\$vectors
$\begin{array}{rrr}{[, 1]} & {[, 2]} & {[, 3]} \\ 52+0 i & 0.6140784-0.1816841 i & 0.6140784+0.1816841 i\end{array}$
$[1] \quad 0.5859852+,0 i \quad 0.6140784-0.1816841 i \quad 0.6140784+0.1816841 i$
$[2] \quad 0.7064296+,0 i \quad 0.2234155+0.2505528 i \quad 0.2234155-0.2505528 i$
[3,] $0.3969616+0 i-0.6908020+0.0000000 i-0.6908020+0.0000000 i$

- Statistics.

Here are a few statistical calculations.

```
> weight <- c(70,75,74)
> mean(weight)
[1] 73
> height <- c(182,190,184)
> mat <- cbind(weight,height)
> mat
    weight height
[1,] 70 182
[2,] 75 190
[3,] 74 184
> apply(mat,MARGIN=2,FUN=mean)
    weight height
    73.0000 185.3333
> ?apply
> colMeans (mat)
    weight height
    73.0000 185.3333
> names <- c("Peter","Ben","John")
> data <- data.frame (Names=names,height,weight)
> summary(data)
    Names height weight
Ben :1 Min. :182.0 Min. :70.0
John :1 1st Qu.:183.0 1st Qu.:72.0
Peter:1 Median :184.0 Median :74.0
Mean :185.3 Mean :73.0
3rd Qu.:187.0 3rd Qu.:74.5
Max. :190.0 Max. :75.0
```


- Some plots.

```
> f <- function(x) x^2-2*x-2
> curve(f,xlim=c(-5,2));abline(h=0)
> locator(1) # Click on the intersection of the two curves.
```


$>\operatorname{uniroot}(f, C(-5,2))$
\$root
[1] -0.7320503
\$f.root
[1] -1.874450e-06
\$iter
[1] 8
\$estim.prec
[1] 6.103516e-05
> plot (cars)
> abline (lm(dist~speed, data=cars), col="blue")
> points (cars[30,], col="red", pch=20)

par (mfrow=c $(1,2))$
> hist (cars\$speed, main="Histogram")
> boxplot (cars\$dist, col="orange")

This link points to a reference card of the most useful R functions: http: //cran.r-project.org/doc/contrib/Short-refcard.pdf

Chapter B
 A few data sets and research questions

Goals of this chapter

This chapter presents a few data sets from epidemiological studies analysed by various teams at the Bordeaux School of Public Health (Institut de Santé Publique, d'Epidémiologie et de Développement - ISPED). Each data set comes with a short research question, which will help understand the context of the study. They will be used throughout this book to show how to use the functionalities of \mathbf{R} for importing and manipulating data and performing appropriate statistical analyses. For each data set, we give a table with a description, the variables and the coding. The reader should refer to this chapter when the data sets are mentioned later in the book. A table at the end of the chapter indicates in which chapters each data set is used. All these data sets are available online on the website associated with the book: http://www.biostatisticien.eu/springeR

SECTION B. 1

Body Mass Index (BMI) of children

Presentation:

A sample of 152 children (3 or 4 years old) in their first year of kindergarten in schools in Bordeaux (Gironde, South-West France) underwent a physical check-up in 1996-1997.

Variables and coding:

Description	Unit or Coding	Variable
Gender	F for Female; M for male	GENDER
School in an underprivileged area (zone d'éducation prioritaire, ZEP)	Y for yes; N for no	zep
Weight	Kg (to the nearest 100 g)	weight
Age at date of examination	Years	years
Age at date of examination	Months	months
Height	Cm (to the nearest 0.5 cm$)$	height

Data set: BMI-child
File: bmichild.xls

SECTION B. 2
 Weight at birth

Presentation:

This study focused on risks associated with low weight at birth; the data were collected at the Baystate medical centre, Massachussets, in 1986. Physicians have been interested in low weight at birth for several years, because underweight babies have high rates of infant mortality and infant anomalies. The behaviour of the mother-to-be during pregnancy (diet, smoking habits...) can have a significant impact on the chances of having a full term pregnancy, and thus of giving birth to a child of normal weight. The data file includes information on 189 women (identification number: ID) who came to the centre for consultation. Weight at birth is categorized as low if the child weighs less than $2,500 \mathrm{~g}$.

Variables and coding:

Description	Unit or Coding	Variable
Age of mother	Years	AGE
Weight of mother at last menstrual period	Pounds	LWT
Race of mother	$1=$ White; $2=$ Black; $3=$ Other	RACE
Smoking during pregnancy	Yes $=1 ;$ No $=0$	SMOKE
Number of premature births in medical history	=None; $1=$ One; $2=$ Two; etc.	PTL
Medical history of hypertension	Yes $=1 ;$ No $=0$	HT
Uterine irritability	Yes $=1 ;$ No $=0$	UI
Number of medical consultations during first trimester	$0=$ None; $1=$ One; etc.	FVT
Weight at birth	Grams	BWT
Weight at birth less than $2,500 \mathrm{~g}$	Yes $=1 ;$ No $=0$	LOW

Intima-media thickness

Presentation:

Atherosclerosis is the main cause of death for men above 35 and women above 45 in most developed countries. It is a thickening and hardening of internal artery walls. One of its consequences is myocardial infarction. An artery wall is made of three layers; innermost to outermost, they are called intima, media and adventitia. Intima-media thickness is a marker of atherosclerosis. It was measured by ultrasonography on a sample of 110 subjects in 1999 in Bordeaux hospitals. Information on the main risk factors was also collected.

Variables and coding:

Description	Unit or Coding	Variable
Gender	1=Male; 2=Female	GENDER
Age at date of consultation	Years	AGE
Height	Cm	height
Weight	Kg	weight
Smoking status	$0=$ Non-smoker $1=$ Former smoker $2=$ Smoker	tobacco
Estimation of tobacco consumption for smokers and former smokers	Number of packs/year	packyear
Physical activity	$0=$ No; $1=$ Yes	SPORT
Intima-media thickness	Mm	measure
Alcohol consumption	$0=$ Non-drinker $1=$ Occasional drinker $2=$ Regular drinker	alcool

Diet of elderly people

Presentation:

A sample of 226 elderly people living in Bordeaux (Gironde, South-West France) were interviewed in 2000 for a nutritional study.

Variables and coding:

Description	Unit or Coding	Variable
Gender	2=Female; 1=Male	gender
Family status	1=Single 2=Living with spouse 3=Living with family 4=Living with someone else	situation
Daily consumption of tea	Number of cups	tea
Daily consumption of coffee	Number of cups	coffee
Height	Cm	height
Weight	Kg	weight
Age at date of interview	Years	age
Consumption of meat	$\begin{gathered} 0=\text { Never } \\ 1=\text { Less than once a week } \\ 2=\text { Once a week } \\ 3=2 / 3 \text { times a week } \\ 4=4 / 6 \text { times a week } \\ 5=\text { Every day } \\ \hline \end{gathered}$	meat
Consumption of fish	Idem	fish
Consumption of raw fruits	Idem	raw_fruits
Consumption of cooked fruits and vegetables	Idem	cooked_fruits_veg
Consumption of chocolate	Idem	chocol
Type of fat used for cooking	1=Butter $2=$ Margarine $3=$ Peanut oil $4=$ Sunflower oil 5=Olive oil $6=$ Mix of vegetable oils (e.g. Isio4) $7=$ Colza oil 8=Duck or goose fat	fat

Study case of myocardial infarction

Presentation:

The study for which the following data were collected aimed at examining whether women who use or have used oral contraceptives are at a higher risk of myocardial infarction. The sample includes 149 women who had myocardial infarction (cases) and 300 women who did not (controls). The main exposure factor is usage of oral contraceptives; the data also include: age, weight, height, tobacco consumption, hypertension, family history of cardiovascular diseases.

Variables and coding:

Description	Unit or Coding	Variable
Myocardial infarction	$0=$ Controls; $1=$ Cases	infarct
Usage of oral contraceptives	$0=$ Never; $1=$ Yes	co
Tobacco usage	$0=$ No $1=$ Smoker $2=$ Former smoker	tobacco
Age	Years	age
Weight	Kg	weight
Height	Cm	height
Family history of cardiovascular diseases.	$0=$ No; $1=$ Yes	atcd
Hypertension	$0=$ No; $1=$ Yes	hta

Data set: Infarction
File: Infarction.xls

- SECTION B. 6 Summary table of use of data sets

		Methods					
		Import- Export	Manipulation	$\begin{array}{\|l} \hline \text { Descriptive } \\ \text { statistics } \end{array}$	Tests	ANOVA	Regression
	$\begin{aligned} & \text { BMI- } \\ & \text { CHILD } \end{aligned}$	\times	\times		\times		
5	$\begin{aligned} & \text { WEIGHT- } \\ & \text { BIRTH } \end{aligned}$	\times	\times				\times
遂	$\begin{aligned} & \text { INTIMA- } \\ & \text { MEDIA } \end{aligned}$	\times	\times		\times	\times	\times
\bigcirc	NutriElderly	\times	\times	\times	\times		
	Infarction	\times		\times			

Part I
The bases of \mathbf{R}

Chapter 1

Basic concepts and data organisation

Goals of this chapter

This chapter introduces the basic concepts of the \mathbf{R} software (calculator mode, assignment operator, variables, functions, arguments) and the various data types and structures which can be handled by \mathbf{R}.
$[$ SECTION $1.1 \longrightarrow$ Your first session

Launch R by double-clicking its icon on the Windows Desktop (or from the Start menu). At the end of the text displayed in the R Console, you can see the prompt symbol $>$, inviting you to type in your first instruction in the R language.

```
R version 2.14.1 (2011-12-22)
Copyright (C) }2011\mathrm{ The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R is free software and comes with ABSOLUTELY NO WARRANTY
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
```

This symbol invites you to give an instruction. For example, type " R is my friend", then validate by hitting the ENTER key (or RETURN). You will then get:
> "R is my friend"
[1] "R is my friend"
As you can see, R is well behaved and kindly proceeds with your request. This will usually be the case - maybe R is trying to compensate for its lack of conviviality. We shall explain later on why R's reply starts with [1].

1.1.1 R is a calculator

Like many other similar languages, \mathbf{R} can easily replace all the functionalities of a (very sophisticated!) calculator. One of its major strengths is that it also allows calculations on arrays. Here are a few very basic examples.

```
> 5*(-3.2) # Careful: the decimal mark must be a point (.)
[1] -16
> 5*(-3,2) # otherwise, the following error is generated:
Error : ',' unexpected in "5*(-3,"
> 5^2 # Same as 5**2.
[1] 25
> sin(2*pi/3)
[1] 0.8660254
> sqrt(4) # Square root of 4.
[1] 2
> log(1) # Natural logarithm of 1.
[1] 0
> c(1,2,3,4,5) # Creates a collection of the first five
    # integers.
[1] 1 1 2 3 3 4 5
> c(1,2,3,4,5)*2 # Calculates the first five even numbers.
[1] }
```

Any \mathbf{R} code after the symbol " $\#$ " is considered by \mathbf{R} as a comment. In fact, \mathbf{R} does not interpret it.

You can now exit the \mathbf{R} software by typing the following instruction: $q()$.
You are asked whether you wish to save an image of the session. If you answer yes, the commands you typed earlier will be accessible again next time you open R, by using the "up" and "down" keyboard arrows.

1.1.2 Displaying results and variable redirecting

As you have probably noticed, \mathbf{R} responds to your requests by displaying the result obtained after evaluation. This result is displayed, then lost. At first, this might seem sensible, but for more advanced uses, it is useful to redirect the \mathbf{R} output to your request, by storing it in a variable: this operation is called assigning the result to a variable. Thus, an assignment evaluates an expression but does not display the result, which is instead stored in an object. To display the result, all you need to do is type the name of that object, then hit ENTER.

To make an assignment, use the assignment arrow <-. To type the arrow <-, use the lesser-than symbol $(<)$ followed by the minus symbol $(-)$.

To create an object in \mathbf{R}, the syntax is thus:
Name.of.the.object.to.create <- instructions
For example:

```
> x <- 1 # Assignment.
> x # Display.
[1] 1
```

We say that the value of x is 1 , or that we have assigned 1 to x, or that we have stored in x the value 1 . Note that the assignment operation can also be used the other way around $->$, as in

```
> 2 -> x
> x
[1] 2
```


Warning

The symbol = can also be used, but its use is less general and is therefore not advised. Indeed, mathematical equality is a symmetrical relation with a specific meaning, very different to assignment. Furthermore, there are cases where using the symbol = does not work at all.

Tip

Note that a pair of brackets allows you to assign a value to a variable and display the evaluation result at the same time:

```
> (x <- 2+3)
[1] 5
```

If a command is not complete at the end of a line, \mathbf{R} will display a different prompt symbol, by default the plus sign $(+)$, on the second line and on following
lines. \mathbf{R} will continue to wait for instructions until the command is syntactically complete.
$>2 * 8 * 10+\exp (1)$
[1] 162.7183
> 2*8*
$+10+\exp ($
+1)
[1] 162.7183

Warning

Here are the rules for choosing a variable name in R : a variable name can only include alphanumerical characters as well as the dot (.); variable names are case sensitive, which means that R distinguishes upper and lower case; a variable name may not include white space or start with a digit, unless it is enclosed in quotation marks " ".

1.1.3 Work strategy

- Take the habit of storing your files in a folder reserved to this effect (you could call it Rwork). We also advise you to type all your \mathbf{R} commands in a script window called script or R editor, accessible through the "File/New script" menu. Open a new script window, click on the "Windows/Side by side" menu, then copy the script below:

```
x <- 5* (-3.2)
5^2
sin(2*pi/3)
sqrt (4)
c (1, 2, 3, 4, 5)
z <- c(1,2,3,4,5)*2
```

On a Mac, the menu is "File/New Document", and it is not possible to lay the windows side by side.

At the end of your session, you can save this script in the folder Rwork, for example as myscript.R, and reopen it during a later session from the menu "File/Open a script" (or on a Mac "File/Open Document").

- You can then use the key combinations CTRL+A (COMMAND+A on a Mac) to select all the instructions, then CTRL+R (COMMAND+ENTER on a Mac) to paste and execute them in one step in the \mathbf{R} console. You can also execute a single line of \mathbf{R}
instructions from the script by hitting CTRL +R when the blinking cursor is on the relevant line of the script window.

Fig. 1.1: The script window and the command console.

Note in Figure 1.1 the presence of the STOP button that lets you interrupt a calculation that would last too long.

You can also use the function source() from the \mathbf{R} console to read and execute the content of your file. This helps prevent overloading the console, as we will see later. You may find it useful to proceed as follows:
a) clicking once in the R console window;
b) going to the menu "File/Change current directory" ("Misc/Change work directory" on a Mac);
c) exploring your file system and select the folder Rwork;
d) typing in the console source("myscript.R"). Note that for the above example, the use of this instruction will not produce any output. The following

Do it yourself will clarify this point.

Do it yourself

Begin to create a folder called Rwork in your home directory. Then, type in and save in an \mathbf{R} script the preceding instructions. The file containing the \mathbf{R} script will be called myscript.R and will be put in Rwork. Now close then reopen R. Next, type the following instructions in the \mathbf{R} console:

```
rm(list=ls()) # Delete all existing objects.
ls() # List existing objects.
source("myscript.R")
ls()
x
z
```

Note that the source() function has permitted to execute the preceding instructions. You may have noticed that the computations which have not been redirected into variables do not have been printed. So their result is lost. Change your script and add the following instructions at the end of it:

```
print(2*3)
print(x)
```

Save it, then source it. What happened?

- Take the habit of using the online \mathbf{R} help. The help is very complete and in English. You can reach it with the function help(). For example, type help (source) to get help about the function source().

See also

All these notions will be examined in further detail in Chapters 4 and 7 .

Tip

For readers using a Microsoft OS, we suggest using the code editor TinnR, available at http://www.sciviews.org/Tinn-R/. It offers a better interaction between a script's code and its execution. It also provides syntactic colouring of the code.

Under Linux, note that the editors JGR and Emacs/ESS are available.

See also

You can consult the list of \mathbf{R} editors on the webpage: http://www. sciviews.org/_rgui/projects/Editors.html.

Do it yourself

The Body Mass Index (BMI) is used to determine a person's corpulence. It is calculated using the formula:

$$
\mathrm{BMI}=\frac{\text { Weight }(\mathrm{kg})}{\mathrm{Height}^{2}(\mathrm{~m})}
$$

Calculate your BMI. You simply need to type the following lines in your script window:
\# You can type 2 instructions
\# on the same line thanks to the symbol ;
My.Weight <- 75 ; My.Height <- 1.90
My. BMI <- My. Weight/My.Height^2
My.BMI
Execute this script by using the work strategy mentioned earlier. You can then modify this script to calculate your own BMI.

We propose a function to visualize your corpulence type. Execute the following instructions:

```
source("http://www.biostatisticien.eu/springeR/IMC.R",
encoding="utf8")
display.BMI (My.BMI)
```

You will learn how to program this kind of result in later chapters.

1.1.4 Using functions

We have already encountered a few functions: $\sin (), \operatorname{sqrt}(), \exp ()$ and $\log ()$. The base version of \mathbf{R} includes many other functions, and thousands of others can
be added (by installing packages, or by creating them from scratch).
Note that a function in R is defined by its name and by the list of its parameters. Most functions output a value, which can be a number, a vector, a matrix...

Using a function (or calling or executing it) is done by typing its name followed, in brackets, by the list of (formal) arguments to be used. Arguments are separated by commas. Each argument can be followed by the sign = and the value to be given to the argument. This value of the formal argument will be called effective argument, call argument, or sometimes entry argument.

We will therefore use the instruction

```
functionname (arg1=value1, arg2=value2,arg3=value3)
```

where arg1, arg2, ... are called the arguments of the function, whereas value1 is the value given to the argument arg1, etc. Note that you do not necessarily need to indicate the names of the arguments, but only the values, as long as you follow their order.
For any R function, some arguments must be specified and others are optional (because a default value is already given in the code of the function).

Warning

Don't forget the brackets when you call a function. A common mistake for beginners is forgetting the brackets:

```
> factorial
function (x)
gamma(x + 1)
<environment: namespace:base>
> factorial(6)
[1] }72
```

The output to the first instruction gives the code (i.e. the receipe) of the function, whereas the second instruction executes that code. This is also true for functions which do not require an argument, as shown in the following example:

```
> date()
[1] "Wed Jan 9 16:04:32 2013"
> date
function ()
. Internal (date())
<environment: namespace:base>
```

Obviously, this is not the place to comment the code of these functions.

To better understand how to use arguments, take the example of the function $\log (x$, base $=\exp (1))$. It can take two arguments: x and base.

The argument x must be specified: it is the number of which we wish to calculate the logarithm. The argument base is optional, since it is followed with the symbol $=$ and the default value $\exp (1)$.

Tip

An argument which is not followed with the symbol = must be specified. A parameter is optional if it is followed with $=$.

In the following code, R will calculate the natural logarithm of the number 1 , since the base argument is not specified:

```
> log(1)
```

[1] 0

Note

For some functions, no argument needs to be specified, for example matrix which we shall encounter later on.

One last important note is that you can call a function by playing with the arguments in several different ways. This is an important feature of \mathbf{R} which makes it easier to use, and you will find it useful to understand this principle. To calculate the natural logarithm of 3 , any of the following expressions can be used.

```
log(3)
log(x=3)
log(x=3, base=exp(1))
```

$\log (x=3, \exp (1)) \quad \log ($ base $=\exp (1), x=3)$

Warning

Note that calling

```
log(exp (1),3)
```

will calculate the logarithm of $\exp (1)$ in base 3 .

Finally, recall that we have been able to see the code for the function factorial():

```
> factorial
function (x)
gamma(x + 1)
<environment: namespace:base>
```

This function was defined by the R developers with the following instructions:

```
> factorial <- function(x) gamma(x+1)
```

It is very easy to code a new function in \mathbf{R}, by using the function function(). For example, here is how to code a function which takes two arguments n and p and calculates the binomial coefficient $\binom{n}{p}=\frac{n!}{p!(n-p)!}$:

```
> binomial <- function(n,p) factorial(n)/(factorial(p) *
+ factorial(n-p))
```

You can then use this new function as any other \mathbf{R} function:

```
> binomial (4,3)
```

[1] 4

We shall study in much further detail how to create more elaborate functions in Section 3.8 and in Chapter 6.

Note

In fact, there already exists an \mathbf{R} function to compute the Newton binomial coefficient. This is the function choose() that works more efficiently, especially for big numbers.

SECTION $1.2 \longrightarrow$ Data in R

R , like most computer languages, can handle classical data types. R is actually able to automatically recognize data types according to the format of the input. One of the main strengths of \mathbf{R} is its ability to organize data in a structured way. This will turn out to be very useful for many statistical procedures we will study later on.

1.2.1 Data nature (or type, or mode)

Data "types" can be handled using the functions mode() and typeof(), which only differ in very subtle ways which we shall ignore.

Note

The function class() is more general: it is used to handle both data type and structuring. We shall study it later on. For ease of understanding, we shall use the command typeof().

The various types (or modes) of data are now presented:

1.2.1.1 Numeric type (numeric)

There are two numeric types: integers (integer) and real numbers (double).
If you enter

```
> a <- 1
> b <- 3.4
> c <- as.integer(a)
> typeof(c)
[1] "integer"
```

the variables a and b are of the type "double", and the variable c has the same value as a, except that it has been forced to be of the type "integer". This is useful because it takes up less memory space. Instructions starting with as. are very common in R to convert data into a different type. We will see in the subsection 1.2.2.1 how to check that an object's type is numeric.

1.2.1.2 \dagger Complex type (complex)

A complex number is created thanks to the letter i. The functions $\operatorname{Re}()$ for real part, $\operatorname{Im}()$ for imaginary part, Mod() for modulus, and $\operatorname{Arg}()$ for argument, can be used.

Complex numbers

Fig. 1.2: Characteristics of a complex number.

Here are a few examples:
> 1i
[1] 0+1i
$>z<-1+2 i$
> typeof(z)
[1] "complex"
> is.complex(z) \# To know whether an object is of the complex
[1] TRUE
> $\operatorname{Re}(z)$
[1] 1
> $\operatorname{Im}(\mathrm{z})$
[1] 2

1.2.1.3 Boolean or logical type (logical)

The type logical is the result of a logical operation. It can take the values TRUE or FALSE. Here are a few instructions to create logical values:

```
> b>a
[1] TRUE
> a==b
[1] FALSE
> is.numeric(a)
[1] TRUE
> is.integer(a)
[1] FALSE
> x <- TRUE
> is.logical(x)
[1] TRUE
```


Warning

TRUE and FALSE can also be entered in a more condensed form by typing T and F, respectively. But this should not be encouraged.

When needed, this data type is naturally converted to numeric without having to specify the conversion: TRUE is worth 1 and FALSE is worth 0 . The following example illustrates this point:

```
> TRUE + T + FALSE*F + T*FALSE + F
[1] 2
```


1.2.1.4 Missing data (NA)

A missing or undefined value is indicated by the instruction NA (for non available). Several functions exist to handle this data type. In fact, \mathbf{R} considers this data type as a constant logical value. Strictly speaking, it is therefore not a data type. Here are a few examples which use the instruction NA:

```
> x <- c(3,NA, 6)
> is.na(x)
[1] FALSE TRUE FALSE
> mean(x) # Trying to calculate the mean of x.
[1] NA
> mean(x,na.rm=TRUE) # The na.rm argument means that NA's
[1] 4.5
```

This is a very important notion when it comes to reading statistical data files. We shall examine it in further detail in Chapter 3.

Warning

Do not mistake NA for the reserved word NaN, which means not a number:

```
> 0/0
```

[1] NaN

Note also that the following instruction does not output NaN but infinity, represented in R with the reserved word Inf.
> 3/0
[1] Inf

1.2.1.5 Character string type (character)

Any information between quotation marks (single ' or double ") corresponds to a character string:

```
> a <- "R is my friend"
> mode(a)
[1] "character"
> is.character(a)
[1] TRUE
```

Conversions into a character string from another type are possible. Converting a character string into another type is possible as long as \mathbf{R} can correctly interpret the content inside the quotations marks. Note that some conversions are done automatically. Here are a few examples:

```
```

> as.character(2.3) \# Conversion into a character string.

```
```

> as.character(2.3) \# Conversion into a character string.
[1] "2.3"
[1] "2.3"
> b <- "2.3"
> b <- "2.3"
> as.numeric(b) \# Conversion from a character string.
> as.numeric(b) \# Conversion from a character string.
[1] 2.3
[1] 2.3
> as.integer("3.4")
> as.integer("3.4")
[1] 3
[1] 3
> c(2,"3")
> c(2,"3")
[1] "2" "3"
[1] "2" "3"
> as.integer("3.four")
> as.integer("3.four")
[1] NA

```
```

[1] NA

```
```

The differences between single and double quotation marks are given in Chapter 3.

1.2.1.6 \dagger Raw data (raw)

In R , it is possible to work directly with bytes (displayed in hexadecimal format). This can sometimes be useful when reading certain files in binary format. We shall see examples in Chapter 5.

```
> x <- as.raw(15)
> x
[1] Of
> mode (x)
[1] "raw"
```


Summary

Table 1.1: The various data types in \mathbf{R}.

Data type	Type in R	Display
real number (integer or not)	numeric	3.27
complex number	complex	$3+2 i$
logical (true/false)	logical	TRUE or FALSE
missing	logical	NA
text (string)	character	"text"
binary	raw	1c

The function storage.mode() get or set the type or storage mode of an object.

1.2.2 Data structures

In R, you can organize (structure) the various data types defined above. The structures we are about to present can be accessed or created with the function class().

1.2.2.1 Vectors (vector)

This is the simplest data structure. It represents a sequence of data points of the same type. A vector can be created with the function c() (for collection or concatenation). Other functions such as seq() or a colon : can also be used to create a vector. Note that when creating a vector, it is possible to mix data of different types. R will then make an implicit conversion into the more general data type, as shown in the following example:

```
> c(3,1,7)
[1] 3 1 7
> c(3,TRUE,7)
[1] 3 1 7
> c(3,T,"7")
[1] "3" "TRUE" "7"
> seq(from=0,to=1,by=0.1)
    [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.9 1.0
> seq(from=0,to=20, length=5)
[1] 0 5 10 15 20
> vec <- 2:36
> vec
    [1] }
[20] 21 22 23 24 25 26 27 28 29 30}3131 32 33 34 35 36
```

Note that it is possible to "name" the elements of a vector using the function names().
$>$ vec <- $c(1,3,6,2,7,4,8,1,0)$
> names (vec) <- letters[1:9] \# 9 first letters of the alphabet.
> vec
$a b c d e f g h i$
136274810

Warning

The indications [1] and [20] give the rank in the vector vec of the element they precede.

```
> is.vector(vec)
    [1] TRUE
    > x <- 1:3
    > x
    [1] 1 2 3
    > y<- c(1,2,3)
    > Y
    [1] 1 2 3
    > class(x)
    [1] "integer"
    > class(y)
    [1] "numeric"
```

One would actually expect to see appear "vector of doubles" or "vector of integers" instead of "numeric" or "integer", but no software is perfect!

Advanced users

Note that the instructions c() and : give the same output, but that x and y are stored internally in different ways. The type integer uses less memory than the type numeric.

1.2.2.2 Matrices (matrix) and arrays (array)

These two notions are generalizations of the vector notion: they represent sequences with two indices for matrices, and with multiple indices for arrays. As with vectors, elements must be of the same type.

The following instruction

```
> x <- matrix(1:12,nrow=4,ncol=3,byrow=TRUE)
> X
    [,1] [,2] [,3]
[1,] 1 2 3
[2,]
[3,] 7 8 9
[4,] }1
```

creates (and stores in the variable X) a matrix with four rows and three columns, filled by row (byrow =TRUE) with the elements of the vector 1:12 (i.e. the twelve first integers).
Similarly, a matrix can be filled by column (byrow=FALSE).

```
> Y <- matrix(1:12,nrow=4,ncol=3,byrow=FALSE)
> Y
    [,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3
[4,] 4 8 12
> class(Y)
[1] "matrix"
```

The function $\operatorname{array}()$ is used to create multidimensional matrices with more than two dimensions, as shown in the following figure (for a three-dimensional array).

Fig. 1.3: Illustration of an array.

```
> x <- array(1:12,\operatorname{dim}=c(2,2,3))
> X
, , 1
    [,1] [,2]
[1,] 1 3
[2,] 2 4
, , 2
    [,1] [,2]
[1,] 5 7
[2,] 6 8
,, 3
    [,1] [,2]
[1,] 9 11
[2,] 10 12
> class(X)
[1] "array"
```


Warning

Arrays with more than three dimensions can be created thanks to the argument dim, which can be of length greater than 3 .

1.2.2.3 Lists (list)

The most flexible and richest structure in R is the list. Unlike the previous structures, lists can group together in one structure data of different types without altering them. Generally speaking, each element of a list can thus be a vector, a matrix, an array or even a list. Here is a first example:

```
> A <- list(TRUE,-1:3,matrix(1:4,nrow=2),c(1+2i,3),
+ "A character string")
```

```
> A
[[1]]
[1] TRUE
[[2]]
[1] -1 0
[[3]]
    [,1] [,2]
[1,] 1 3
[2,] 2 4
[[4]]
[1] 1+2i 3+0i
[[5]]
[1] "A character string"
> class(A)
[1] "list"
```

In such a structure, with heterogeneous data types, element ordering is often completely arbitrary. Elements can therefore be explicitly named, which makes the output more user-friendly. Here is an example:

```
> B <- list(my.matrix=matrix(1:4,nrow=2),
+ my.complex.numbers=c (1+2i,3))
> B
$my.matrix
    [,1] [,2]
[1,] 1 3
[2,] 2 4
$my. complex.numbers
[1] 1+2i 3+0i
> list1 <- list(my.complex.number=1+1i,my.logical.value=FALSE)
> list2 <- list(my.string="I am learning R",my.vector=1:2)
> C <- list("My first list"=list1,My.second.list=list2)
> C
$ 'My first list
$ 'My first list '$my.complex.number
[1] 1+1i
$'My first list '$my.logical.value
[1] FALSE
$My.second.list
$My.second.list$my.string
[1] "I am learning R"
$My.second.list$my.vector
[1] 1 2
```


See also

Naming elements will make it easier to extract elements from a list (see Chapter 3, page 104).

1.2.2.4 The individual \times variable table (data.frame)

The individual \times variable table is the quintessential structure in Statistics. In R, this notion is expressed by a data.frame. Conceptually speaking, it is a matrix with each line corresponding to an individual, and each column corresponding to a variable measured on the individuals. Each column represents a single variable, which must be of the same type across all individuals. The columns of the data-matrix can have names. Here is an example of a data.frame creation:

```
> BMI <- data.frame(Gender=C("M","F","M","F","M","F"),
+ Height=c(1.83,1.76,1.82,1.60,1.90,1.66),
+ Weight=c(67,58,66,48,75,55),
+ row.names=c("Jack","Julia","Henry","Emma","William","Elsa"))
> BMI
\begin{tabular}{lcrr} 
& Gender & Height & Weight \\
Jack & \(M\) & 1.83 & 67 \\
Julia & \(F\) & 1.76 & 58 \\
Henry & \(M\) & 1.82 & 66 \\
Emma & \(F\) & 1.60 & 48 \\
William & \(M\) & 1.90 & 75 \\
Elsa & \(F\) & 1.66 & 55
\end{tabular}
> is.data.frame(BMI)
[1] TRUE
> class(BMI)
[1] "data.frame"
> str(BMI)
'data.frame': 6 obs. of 3 variables:
    $ Gender: Factor w/ 2 levels "F","M": 2 1 2 1 2 1
    $ Height: num 1.83 1.76 1.82 1.6 1.9 1.66
    $ Weight: num 67 58 66 48 75 55
```


Note

The $\operatorname{str}()$ function enables one to display the structure of each column of a data.frame.

Advanced users

A data.frame can be seen as a list of vectors of identical length. This is actually how \mathbf{R} stores a data.frame internally.
> is.list (BMI)
[1] TRUE

1.2.2.5 Factors (factor) and ordinal variables (ordered)

In R, character strings can be organized in a more astute way thanks to the function factor():

```
> x <- factor(c("blue", "green", "blue", "red",
+ "blue", "green", "green"))
> x
[1] blue green blue red blue green green
Levels: blue green red
> levels(x)
[1] "blue" "green" "red"
> class(x)
[1] "factor"
```


Tip

The function cut () enables one to recode a continuous variable into a factor.
> Poids <- c $(55,63,83,57,75,90,73,67,58,84,87,79,48,52)$
$>$ cut (Poids,3)
[1] $(48,62](62,76](76,90](48,62])(62,76])(76,90])(62,76]$
[8] $(62,76](48,62](76,90](76,90](76,90](48,62](48,62]$ Levels: $(48,62](62,76](76,90]$

Factors can of course be used in a data.frame.
R indicates the different levels of the factor. The function factor() should thus be used to store qualitative variables. For ordinal variables, the function ordered is better suited:

```
> z <- ordered(c("Small","Tall","Average","Tall","Average",
+ "Small","Small"),levels=c("Small","Average","Tall"))
> class(z)
[1] "ordered" "factor"
```

The levels argument of the function ordered is used to specify the order of the variable's modalities.

See also

Examples of uses of these two functions are given in Chapter 9, pages 339 and 341.

Tip

The function gl() generate factors by specifying the pattern of their levels.

```
> gl(n = 2,k = 8,labels = c("Control", "Treat"))
    [1] Control Control Control Control Control Control Control
    [8] Control Treat Treat Treat Treat Treat Treat
[15] Treat Treat
Levels: Control Treat
```

In the above instruction, n and k are two integers, the first one giving the number of levels and the second one the number of replications.

Advanced users

A vector of character strings can be organized in a more efficient way by taking into account repeated elements. This approach allows better management of the memory: each element of the factor or of the ordinal variable is in fact coded as an integer.

1.2.2.6 Dates

R can be used to structure the data representing dates, using the as.Date() function for example.

```
> dates <- c("92/27/02", "92/02/27", "92/01/14",
+ "92/02/28", "92/02/01")
> dates <- as.Date(dates, "%y/%m/%d")
> dates
[1] NA "1992-02-27" "1992-01-14" "1992-02-28"
[5] "1992-02-01"
> class(dates)
[1] "Date"
```

We will return in detail on the functions for manipulating dates in Chapter 3.

1.2.2.7 Time series

When data values are indexed by time, it may be useful, using the ts(), to organize them into an \mathbf{R} structure that reflects the temporal aspect of these data.

```
> ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of
    Qtr1 Qtr2 Qtr3 Qtr4
1959 1 2 3
1960 4 5 6 7
1961 8 9 10
```


See also

The reader may consult with profit the book [40] which outlines the basic techniques for modeling time series, present the \mathbf{R} functions to use for these models, and give applications of these functions on several real datasets.

Summary

Table 1.2: The various data structures in \mathbf{R}.

Data structure	Instruction in R	Description
vector	c()	Sequence of elements of the same nature.
matrix	matrix()	Two-dimensional table of elements of the same na- ture.
multidimensional table	array()	More general than a matrix; table with several di- mensions.
list	list()	Sequence of R structures of any (and possibly dif- ferent) nature.
individual×variable table	data.frame()	Two-dimensional table where a row represents an individual and a column represents a variable (nu- merical or factor). The columns can be of different natures, but must have the same length.
factor	factor(), ordered()	lector of character strings associated with a modality table.
dates	as.Date()	Vector of dates. time series ts() Time series, containing the values of a variable ob- served at several time points.

Memorandum

<-, ->: variable assignment arrows
mode(), typeof(): gives the nature of an object
is.numeric(): determine whether an object is numerical
TRUE, FALSE, is.logical (): True, False, determine whether an object is a boolean
is. character (): determine whether an object is a character string
NA, is.na(): Missing value, determine whether a value is missing
class(): determine the structure of an object
$c()$: create a sequence of elements of the same nature
matrix(), array(): create a matrix, a multidimensional table
list (): create a list (collection of different structures)
data. frame(): create an individual \times variable table
factor (): create a factor

Exercises

1.1- What is the output of this instruction: $1: 3^{\wedge} 2$?
1.2- What is the output of this instruction: $(1: 5) * 2$?
1.3- What is the output of these instructions: var<-3? Var*2?
1.4- What is the output of these instructions: $x<-2$? $2 x<-2 * x$?
1.5- What is the output of these instructions: root.of.four <- sqrt (4)? root.of.four?
1.6- What is the output of these instructions: $\mathrm{x}<-1$? $\mathrm{x}<-1$?
1.7- What is the output of this instruction: An even number <- 16 ?
1.8- What is the output of this instruction: "An even number" <- 16?
1.9- What is the output of this instruction: " 2 x " <-14 ?
1.10- What is the output of this instruction: An even number?
1.11- Two symbols have been removed from this R output. What are they?
>2
$+$
[1] 6
1.12- What is the output of this instruction: TRUE $+\mathrm{T}+\mathrm{FALSE} * \mathrm{~F}+\mathrm{T} * \mathrm{FALSE}+\mathrm{F}$?
1.13- Name the five data types in R.
1.14- Give the R instruction which gives the following output:
$>x$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	5	9
$[2]$,	2	6	10
$[3]$,	3	7	11
$[4]$,	4	8	12

1.15- Names the data structures (classes) available in R.

Worksheet

Study of Body Mass Index

We wish to analyse the characteristics of a sample of children. These children went through a medical examination in their first year of kindergarten in 1996-1997 in schools in Bordeaux (South-West France). The sample below contains information on ten children between the ages of 3 and 4 .

The following information is available for each child:

- gender: G for girls and B for boys;
- whether their school is in a ZEP (zone d'éducation prioritaire: area targeted for special help in education, recognized as socially deprived): Y for yes and N for no;
- age in years and months (two variables: one for years and one for months);
- weight in kg , rounded to the nearest 100 g ;
- height in cm , rounded to the nearest 0.5 cm .

Name	Edward	ynth	gene	zab	atrick	John	Albe	wren	Joseph	Leo
Gender	G	G	B	G	B	B	B	B	B	B
ZEP	Y	Y	Y	Y	N	Y	N	Y	Y	Y
Weight	16	14	13.5	15.4	16.5	16	17	14.8	17	16.7
Years	3	3	3	4	3	4	3	3	4	3
Months	5	10	5	0	8	0	11	9	1	3
Height	100.0	97.0	95.5	101.0	100.0	98.5	103.0	98.0	101.5	100.0

In Statistics, it is of the utmost importance to know the type of the variables under study: qualitative, ordinal or qualitative. These types can be specified in R thanks to the structure functions we introduced earlier in this chapter.

Try the following manipulations under R. Remember to use the work strategy we presented at the beginning of the chapter.
1.1- Choose the best R function to save the data from each variable in vectors which you will call Individuals, Weight, Height and Gender.
1.2- Where possible, calculate the mean of the variables.
1.3- Calculate the BMI of the individuals. Group the results in a vector called BMI (be careful of the units).
1.4- Group these variables in the R structure which seems most appropriate.
1.5- Use R's online help to get information on the plot() function.
1.6- Make a scatter plot of Weight as a function of Height. Remember to add a title to your graph and to label your axes.

Chapter 2
 Importing, exporting and producing data

Prerequisites and goals of this chapter

- \quad Chapter 1.
- This chapter describes the instructions to enter data in R. It presents the various possibilities \mathbf{R} offers to import or export data, to and from software as different as Excel, SPSS, Minitab, SAS or Matlab. It also shows how to interact with databases (SQL queries). You may benefit from reading the (very complete) manual http//cran.r-project.org/doc/manuals/R-data.pdf.
[Importing data

2.1.1 Importing data from an ASCII text file

Either your data are already available in a text file in the ASCII format, or you can enter them by hand using a text editor such as Wordpad under Microsoft Windows, or Emacs under Linux.

Note

Entering data by hand can be done for a small number of values. If you are dealing with large amounts of data, it is more convenient to use a spreadsheet (see the next section).

The three main R functions to import data from a text file are presented in the following table.

Table 2.1: Data importation functions

Function name	Description
read.table()	Best suited for data sets presented as tables, as it is often the case in Statistics.
read. ftable()	Reads contingency tables.
scan()	Much more flexible and powerful. Use this in all other cases.

2.1.1.1 Reading data with read. table()

The following \mathbf{R} instruction will read the data present in a file (to be chosen in a dialog window) and import them into \mathbf{R} as a data.frame which we have chosen to call my.data.

```
my.data <- read.table(file=file.choose(),header=T,sep="\t",
    dec=".", row. names=1)
```

The function read.table() accepts many arguments; the most common are described in the following table.

Table 2.2: Main arguments to read.table().

Argument name	Description
file=path/to/file Location and name of the file to be read.	
header=TRUE	Logical value indicating whether the variable names are given on the first line of the file.
sep=" $\backslash \mathrm{t} "$	The values on each line are separated by this character $(" \backslash t "=$ TABULATION; ""=whitespace; ", "=,; etc.).
dec="."	Decimal mark for numbers (". or ", "). The first column of the file gives the individuals' names. If this is not the case, simply omit this argument.

When using the function read.table(), you will need to specify the value of the argument file which must contain, in a character string, the name of the file and its complete path. You might have noticed that we used the function file. choose(), which opens up a dialog window to select a file and returns the required character string. This is an easy method to get the path to a file, but the path can also be specified explicitly:

```
my.data <- read.table(file="C:/MyFolder/data.txt")
```


Warning

Note that file paths are specified using slashes (/). This notation comes from the UNIX environment. In R, you cannot use backslashes (\backslash), as you would in Microsoft Windows, unless you double all the backslashes ($\backslash \backslash$).

Another option is using the function setwd() to change the work directory (equivalent to using the menu "File/Change current directory"). The argument file will then accept the file name alone, without its path.

```
setwd("C:/MyFolder")
my.file <- "mydata.txt"
data <- read.table(file=my.file)
```

Your data are now available in the R console: they are stored in the object which you have chosen to call data. You can visualize them by typing data; you can also type head(data) or tail(data) to display only the beginning or the end of the dataset.

Tip

- The function attach() (see Chapter 7) gives direct access to the variables (columns) of a data.frame, by typing the name of a variable as it is written on the first line of the file in ASCII format (assuming this is the case).
attach (data)
- If your file contains completely empty lines, or incomplete lines, use the two arguments fill=TRUE and blank.lines.skip=FALSE.

Do it yourself

Create a folder called DataFolder. Now download the file http://www. biostatisticien.eu/springeR/Intima_Media_Thickness.txt and save it in the folder DataFolder.

Use the function readLines() to visualize the beginning of the data file, to get an idea of how it is structured, and thus to determine which arguments of the function read. table() you will need.

```
setwd("path/to/DataFolder/") # Replace path/to/ with your path.
readLines("Intima_Media_Thickness.txt",n=5)
```

You will get the following output:

```
[1] "GENDER AGE height weight tobacco packyear SPORT measure alcohol"
[2] "1 33 170 70 1 1 0 0,52 1"
[3] "2 33 177 67 2 20 0 0,42 1"
[4] "2 53 164 63 1 30 0 0,65 0"
[5] "2 42 169 76 1 26 1 0,48 1"
```

You will notice that the first line gives the variables names. Fields are separated by simple whitespace, and the decimal mark is a comma. Therefore, you need to use the arguments header=TRUE, sep=" " and dec=", ".

```
mydata <- read.table("Intima_Media_Thickness.txt",sep=" ",
                                    header=T, dec=",")
mydata # To display the content of mydata.
head(mydata) # Only displays the first few rows
    # of the data.frame.
```

Note that some data points are missing, as indicated by the symbol NA.
Let us now verify the structure of the object mydata and the types of its columns:

```
class (mydata)
str(mydata)
```

The function attach() is used to enable a direct acces to the variables of the table.

```
attach (mydata)
```

The command names (mydata) outputs variable names. You can use these to make calculations with the variables; for example:

```
mean(AGE) # Mean age.
var(taille) # Variance of the heights.
```

Note that case (upper/lower) is important.

The function read.table() takes many arguments. However, since many data sets come in a standard format, a few functions exist to read these easily. Such functions are in fact equivalent to calling read. table() with some arguments filled in by default.

For example, if you have a file in the .csv format (csv stands for comma separated values), created for example using OpenOffice's spreadsheet, you can also use the following function:

```
read.csv(file.choose()) # To read comma-separated data
# (with a . as decimal mark).
read.csv2(file.choose()) # To read semi-colon-separated data
    # (with a , as decimal mark).
```

To read Tab-separated data, it is better to use:

```
read.delim(file.choose()) # (with a . as decimal mark).
read.delim2(file.choose())# (with a , as decimal mark).
```


2.1.1.2 Reading data with read.ftable()

Sometimes, individual data are not available: instead, we only have a contingency table. In this case, the relevant import function is read.ftable().

For instance, suppose that the contents of the file Intima_ftable.txt come in the following form:

"GENDER"				
"M"	"non-smoker"	6	19	7
	"former smoker"	0	9	0
	"smoker"	1	6	5
"F"	"non-smoker"	12	26	2
	"former smoker"	3	5	1
	"smoker"	1	6	1

The following functions can be used to read and display these data in R:

```
Intima.table <- read.ftable("Intima_ftable.txt",row.var.names
    =c("GENDER","tobacco"),col.vars=list("alcohol"=
    c("nondrinker","occasional drinker",
    "regular drinker")))
ftable(Intima.table)
```

The output will then be:
alcohol nondrinker occasional drinker regular drinker
GENDER tobacco

```
M non-smoker
    former smoker
    smoker
F non-smoker
    former smoker
    smoker
```


See also

We shall present a descriptive analysis of this type of data in Chapter 9 , pages 344,351 and 371 . Note that standard statistical tests on contingency tables are possible, such as the chi-squared independence test presented in Chapter 11, page 434. You may also be interested in the article http://www.jstatsoft.org/v17/i03/paper which presents several tools to analyse such data.

2.1.1.3 Reading data with the function scan()

The function scan() takes many arguments. It is useful when the data are not organized as a rectangular table. We recommend you read the documentation help (scan).

For example, suppose your data file, called Intima_Media2.txt, contains the following lines:

```
File description:
```

The individual data are registered for nine variables
in the following order:
GENDER AGE height weight tobacco packyear SPORT measure alcohol
Data:


```
2 53 164 63 1 30 0 0,65 0 2 42 169
76 1 26 1 0,48 1
```

Here are the commands we suggest you use to read this file. The argument skip $=n$ is used to omit reading the first n lines of the file.

```
# Reading variable names:
variable.name<-scan("Intima_Media2.txt",skip=5,nlines=1,what="")
```

```
# Reading data:
data <- scan("Intima_Media2.txt",skip=9,dec=",")
mytable <- as.data.frame(matrix(data,ncol=9,byrow=T))
colnames(mytable) <- variable.name
```

Here is the output:

GENDER AGE			heig	weig				me	
1	1	33	170	70	1	1	0	0.52	1
2	2	33	177	67	2	20	0	0.42	1
3	2	53	164	63	1	30	0	0.65	0
4	2	42	169	76	1	26	1	0.48	1

Tip

Note that the functions read.table() and scan() can also be used to read online ASCII files directly from the Internet.

```
read.table("http://www.biostatisticien.eu/springeR/
```

 temperature.dat")

2.1.2 Importing data from Excel or the Open Office spreadsheet

2.1.2.1 Copy-pasting

Using the mouse, select the range of the data (in the spreadsheet) which you wish to incorporate into R. Once the data are selected, copy them to the clipboard (from the Edit menu, or with the keyboard shortcuts CTRL+C on Windows or COMMAND + C on a Mac).

All you need to do now is type the following instructions in the R console to transfer the data from the clipboard.

```
x <- read.table(file("clipboard"),sep="\t",header=TRUE,dec=",")
```

Tip
The instruction fix (x) opens a small spreadsheet in R, which can be used to visualize and edit the data stored in x. It is more useful than the command edit, which only allows modifications. Similarly, the function View() displays the data in a small spreadsheet, but cannot be used to edit them.

Warning

Be aware that the Excel file might include formulae or other hidden characters in the data range which you wish to copy. A possible workaround is to first copy, then do a special paste of this data range in a new sheet of the Excel file. You can then use the function read. table() on this new sheet, as indicated above.

2.1.2.2 Using an intermediary ASCII file

Save your file in an ASCII format, then refer to the previous section.

- Under Excel, go to File / Save as ... and choose Data type: Text (tab-separated) (*.txt) (*.txt) then save.
- Under OpenOffice, go to File / Save as ... and choose File type: CSV text (.csv; .txt) then save.
In the next window, choose:
- field separator: Tab
- text separator: "
then click OK.

2.1.2.3 Using specialized packages

A few packages exist to read .xls files directly in R. One function worth mentioning is read.xls() from the package gdata, which works very well, as long as your computer has PERL installed (this free software can be obtained by installing the file http://www.biostatisticien.eu/springeR/Rtools29.exe). You can also use the package xlsReadWrite.

2.1.3 Importing data from SPSS, Minitab, SAS or Matlab

The following table gives the packages and \mathbf{R} functions you can use to import data from common proprietary software.

The function lookup. xport () outputs (as a list) information on the SAS library of a SAS XPORT file (extension *. xpt).

Table 2.3: Packages and R importation functions from common software.

Software	Package	R function	File extension	Output format
SPSS	foreign	read.spss()	*.sav	list
Minitab	foreign	read.mtp()	*.mtp	list
SAS	foreign	read.xport()	*.xpt	data.frame
Matlab	R.matlab	readMat()	*.mat	list

Warning

First, note that if you use Windows, the package foreign is pre-installed (but not loaded) in R and that you cannot install another version from the CRAN (only Linux and Mac versions are available).

Also note the following caveats. The function read. spss () can require the argument reencode="utf8" under Linux. The function read.mtp() works on files containing only numeric data. At the time of writing, the function read. xport () cannot be used to read files directly from the Internet.

2.1.4 Large data files

R can handle large data sets. For this, you need to specify explicitly the type of each column. If you do not, R will have to read the entire file to check that numeric columns are indeed numeric (it could be the case that a column contain numbers at the beginning, then character strings later on). The following example illustrates this point with genomic data, well-known for their large size. You will need to download the file http://www.biostatisticien.eu/springeR/dbsnp123.dat to your computer, then try the instructions below.

Warning

Be careful that if you issue the commands below, this will freeze your \mathbf{R} session for a few minutes.

```
tm <- Sys.time() # Gets the current time.
dbsnp <- read.table("dbsnp123.dat")
Sys.time()-tm
Time difference of 5.063645 mins
tm <- Sys.time()
dbsnp<-read.table("dbsnp123.dat", colClasses=rep("character", 3))
Sys.time()-tm
Time difference of 13.75810 secs
```

Very big data sets can thus be handled by R relatively quickly, when the correct instructions are given. The main limit is how much RAM you have available. Note also that using the function scan() instead of read.table() in the previous example would give similar execution times.

Large data sets are sometimes stored in binary format. In that case, the function readBin() can be used to read the data. We shall see an example in the practical of Chapter 5.

See also

If \mathbf{R} displays a message indicating a failure of memory, you could consult with profit section 7.8.

Advanced users

If the function scan() is used correctly, a text file can be read very quickly (as quickly as with the SAS software, for example).

If your file is really big, you should consider storing your data in a data base (for example MySQL) and accessing them piece by piece. See section 2.4 for more details.

Also note that several packages exist to handle large data sets: R.huge and filehash. The latter is more general than the former: with the filehash package, the limit to the size of data which can be handled is the size of the hard disk.

SECTION 2.2

Exporting data

2.2.1 Exporting data to an ASCII text file

The relevant function is write. table().
Suppose you have a data.frame called mydata, containing data that you wish to save in a text file. You would then use the instruction:

```
write.table(mydata, file = "myfile.txt", sep = "\t")
```


Note

There also exists a function write(), which is used on vectors and matrices. This function has an interesting argument: ncolumns allows you to specify the number of columns in the resulting file. Note however that the file will contain the transpose of the matrix or vector you are writing.

2.2.2 Exporting data to Excel or OpenOffice Calc

For example, type the following instructions in the \mathbf{R} console:

```
X <- data.frame (Weight=c (80,90,75),Height=c (182,190,160))
write.table(X,file("clipboard"),sep="\t",dec=",",row.names=FALSE)
```

The data have now been copied to the clipboard. You can now paste them in your spreadsheet, for example by typing CTRL+V.

You can also use the package xlsReadWrite (only under Windows).

SECTION 2.3

Creating data

2.3.1 Entering toy data

This section shows how you can quickly create some data. This is useful when you need to test various \mathbf{R} functions on small data sets.

The main functions are $c()$, seq(), : () and rep().

- The function c() is used to create a vector by concatenating its arguments.

```
> c(1, 5, 8, 2.3)
[1] 1.0 5.0 8.0 2.3
```

- The function seq() generates a sequence of values as a vector.

```
> seq(from=4,to=5)
[1] 4 5
> seq(from=4,to=5,by=0.1)
    [1] 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
> seq(from=4,to=5,length=8)
[1] 4.000000 4.142857 4.285714 4.428571 4.571429 4.714286
[7] 4.857143 5.000000
```

The last two functions can also be used to create character strings.

- The function ": "() generates a sequence of integers.
> $1: 12$
$\left[\begin{array}{llllllllllllll}{[1]} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}\right.$
- The function rep () replicates the values of its first argument in several smart ways. We leave it to the sagacity of the reader to understand all the following instructions.

```
> rep(1,4)
[1] 1 1 1 1
> rep(1:4, 2)
[1] 1 2 2 3 4 4 1 2 3 4
> rep(1:4, each = 2)
[1] 1 1 1 2 2 2 3 3 4 4
> rep(1:4, c(2,1,2,3))
[1] 1 1 1 2 3 3 4 4 4
> rep(1:4, each = 2, len = 4)
[1] 1 1 2 2
> rep(1:4, each = 2, len = 10)
    [1] 1 1 2 2 2 3 3 4 4 1 1
> rep(1:4, each = 2, times = 3)
    [1] 11 1 2 2 2 3 3 4
```


2.3.2 Generating pseudo-random numbers

The function runif() generates a sequence of randomly generated numbers (at uniform).

```
> runif(5)
[1] 0.4344968 0.7153407 0.4561363 0.9580362 0.7260245
> runif(5,min=2,max=7)
[1] 5.634204 4.046403 5.415685 5.251441 2.209174
```

The function rnorm() generates a sequence of random numbers from a normal distribution.

```
> rnorm(5)
[1] 0.13585341 -0.09483162 -2.12326103 0.45974393 1.29587671
> rnorm(5,mean=2,sd=3)
[1] -0.8673785 3.5660222 0.9401026 3.4794672 4.2175481
```


See also

We shall encounter many other similar functions in Chapter 10, page 405.

2.3.3 Entering data from a hard copy

- Creating a vector with the function scan()

In this context, scan() is more user-friendly than c(). It can be used to easily enter data as you go.

```
> z <- scan() # R is waiting for you to enter data.
1: 4.2
2: 5.6
3: 8.9
4: 1
5: 2.3
6: # Press ENTER after an empty line
    # to halt the procedure.
Read 5 items
> z
[1] 4.2 5.6 8.9 1.0 2.3
```


- Creating several vectors of different lengths

The function data.entry() is useful for this purpose. This function does not output anything. The variables you enter by hand are stored in the small spreasheet which is displayed.

```
# The following instruction (which is explained later on)
# can be used to delete all the objects in the session.
rm(list=ls())
data.entry("")
```

You can now change the names of the variables (columns) and enter data. Columns can contain different numbers of observations. If you leave the mini spreadsheet and type in the instruction ls(), you will see the variables you have created.

Mac

The way this function works can vary on different operating systems.

- Creating and individual \times variables table

To enter data directly into R's mini spreadsheet (as if using Excel), simply use the function de() (for data entry), as shown in the following instruction.

```
X <- as.data.frame(de(""))
```


Warning

Remember to change the names of the variables, as well as the types of the columns (numeric or character), by clicking on the cells on the first row of the table (the row with the variable names). Once you have finished entering your data, you need to close that window to return to the R console.

If you need to make small modifications to your data table X , simply use the function $f i x(): f i x(X)$.

Tip

The following (optional) function is used to name the rows of X :

```
rownames(X) <- paste("ind",1:nrow(X),sep="")
```

The names of the individuals will then appear in the first column of the mini spreadsheet (called row. names).

SECTION 2.4

\dagger Reading/Writing in databases

R is capable of communicating with most Database Management Systems (DBMS). In this section, we briefly look at the main operations for the DBMS MySQL.

EasyPHP is an environment with two servers (an Apache web server and a MySQL database server), a script interpreter (PHP) and a SQL administration tool (phpMyAdmin). Download, install and run the latest version of EasyPHP. (http:// www. easyphp.org).

Note

You may need to configure your firewall so that it allows services started by EasyPHP (mysqld and Apache).

2.4.1 Creating a database and a table

Start EasyPHP and right-click on the icon on the right side of the task bar (you may need to check on the small white triangle Show hidden icons), then select

Administration. Your web browser should then open (if it does not, try using the browser firefox and configuring Apach by right-clicking on the EasyPHP icon, then Configuration: Listen 127.0.0.1:80). On the page that opens up, check on the open button in section MODULES to get to the phpMyAdmin administration page. Then click on the tab Databases and create a new database called BMI. Click on the icon Create table which appears in the left panel.

Then give a name to the table: mytable.
Define four fields for your table (one per line), and fill them as follows:

- \quad Name=FirstName, Type=VARCHAR and Length/Values=20;
- Name=Weight, Type=FLOAT and Length/Values=3;
- \quad Name=Height, Type=FLOAT and Length/Values=3;
- Name=BMI, Type=FLOAT and Length/Values=5.

Click on Save.

2.4.2 Creating a data source compatible with MySQL

The functions odbcConnect (), sqlQuery () and odbcClose() from package RODBC are useful to handle databases from different systems (PostgreSql, MySQL, etc.) through R thanks to an ODBC (Open DataBase Connnectivity) link created with an existing database. Under Windows, here is how you create an ODBC data source compatible withMySQL.

First install MyODBC (MySQL Connector/ODBC) (http://dev.mysql. com/ downloads/connector/odbc). Next, in order to display the window Data source (ODBC), you will have to execute the file $C: \backslash$ Windows \backslash System $32 \backslash$ odbcad32. exe.

Click on Add and select entry MySQL ODBC 5.1 Driver. In the windows which opens up, enter the following fields:
Data Source Name: dsnBMI
TCP/IP Server: 127.0.0.1 Port: 3306
User: root
Database: BMI
Then click on button Test. The message Connection successful should appear if everything happened correctly. Then click on OK (twice) to close the dialog boxes.

We have thus configured an ODBC link which will allow \mathbf{R} to communicate with MySQL.

Linux

Check that the file /etc/odbcinst.ini includes references to the drivers of the MySQL database. You also need to modify (as root) the file /etc/odbc.ini so that it includes the following lines

```
[dsnBMI] # name of the data source.
Description =
    Driver = MySQL
    Server = localhost
    Database = BMI
    Port = 3306
```


2.4.3 Writing in a table

We shall now write information in table mytable of base BMI. The following instruction are used to add the weight, height and BMI (temporarily set at 0) for an individual named Peter.

```
> require(RODBC)
> Connection <- odbcConnect(dsn="dsnBMI",uid="root",pwd="")
> request <- "INSERT INTO mytable VALUES ('Peter', 72,182,0)"
> result <- sqlQuery(Connection, request)
> odbcClose(Connection)
```

Here is now a multiple insertion example.

```
> FirstNames <- c("Ben","John")
> Weight <- c(70,75)
```

```
Height <- c(190,184)
BMI <- round(Weight/(Height/100)^2,3)
mat <- cbind(FirstNames,Weight,Height, BMI)
> insertmult <- function(vect)
+ paste("(",toString(c(encodeString(vect[1],quote="'"),
+ vect[-1])),")",sep="")
tobeinserted <- toString(apply(mat,1,insertmult))
tobeinserted
[1] "('Ben', 70, 190, 19.391), ('John', 75, 184, 22.153)"
> require(RODBC)
> Connection <- odbcConnect (dsn="dsnBMI",uid="root",pwd="")
> request <- paste("INSERT INTO mytable (FirstName,Weight,Height,BMI)
+
VALUES ",tobeinserted,sep="")
> result <- sqlQuery(Connection, request)
> odbcClose(Connection)
```


Tip

You can return to phpMyAdmin to check that the table mytable has indeed been modified (tab Browse).

2.4.4 Reading a table

To read from R information in the table mytable, you can use the following instructions.

```
> require(RODBC)
> Connection <- odbcConnect(dsn="dsnBMI",uid="root",pwd="")
> request <- "SELECT * FROM mytable"
> data <- sqlQuery(Connection,request)
> odbcClose(Connection)
> data
    FirstName Weight Height BMI
1 Peter 72 182 0.000
2 Ben 
3 John 75 184 22.153
```


Memorandum

read.table(): read a rectangular data file scan(): read data line by line read.ftable(): read a contingency table ftable(): display a contingency table readLines(): read and display a few lines of a file file. choose(): open a dialogue window to select a file
file, header, sep, dec, row. names, skip: main arguments of read.table()
read. spss(), read.mtp(), read. xport (), readMat(): import data from other software
write.table(): write a data file
file("clipboard"): copy from or paste to the clipboard
$c()$: create a sequence of elements of the same nature
seq(): create a sequence of numbers or a character string
$\operatorname{rep}()$: repeat the values of the first argument
de(), data.entry (): enter data using a mini spreadsheet
fix () : modify a data.frame or a matrix in a mini spreadsheet

Exercises

2.1- Name the three main R functions to import data from an ASCII text file.
2.2- One of the usual data reading functions takes the following arguments: header, sep, dec, row.names, skip, nrows. Explain their purpose. Give an example of a value each argument can take.
2.3- What is the purpose of the function readLines()?
2.4- What is the purpose of the function fix()?
2.5- Give the specificities of the functions read. $\operatorname{csv}()$, read. $\operatorname{csv} 2()$, read. delim() and read. delim2().
2.6- What is the purpose of the function read.ftable()?
2.7- What is the difference between the functions scan() and read.table()?
2.8- Explain how you would import data from an Excel spreadsheet. Give details.
2.9- Which package includes several functions to import data from commercial statistical software?
2.10- When reading a large data file, which argument to the function read.table() can speed up the reading?
2.11- Which R function should be used to write to a file a data set contained in a data.frame? Which other function do you know?
2.12- Name the four basic functions to create a vector.
2.13- Explain how the function seq() can be used to get the following vector:
[1] 1.01 .11 .21 .31 .41 .51 .61 .71 .81 .92 .0
2.14- Give the shortest R instruction which outputs the following vector:
2.15- Give the shortest R instruction which outputs the following vector:

123123
2.16- Name two R functions which can be used to enter data by hand in a mini spreadsheet.

Reading various data sets

A- Entering data from a hard copy

- Fever blisters: Thirty patients have been randomly assigned to one of five treatments against fever blisters, including one placebo (there are six patients in each treatment group). For each patient, the number of days between the apparition of the first blisters and complete healing has been recorded.

Treatments trt1 (placebo)				
5	4	trt3	trt4	trt5
8	6	6	7	9
7	6	4	6	5
7	3	5	6	7
10	5	4	3	7
8	6	3	5	6

We would like to know whether there is a difference between the treatments, by comparing the mean healing time in each independent random sample (treatment group). The relevant statistical method is called ANOVA; we shall present it in Chapter 13. In this practical, we shall simply see how to enter these data in \mathbf{R} to compute the sample mean for each treatment.
2.1- Enter the data in R directly, using the function de().
2.2- Use the function attach(), then the function mean() to compute the mean for each treatment.
2.3- Compute the means of all treatments simultaneously thanks to the function colMeans().
2.4- Use the function write.table() to save your data.frame in a file called blisters.txt.
2.5- Open your file in a text editor and check that there was no problem.
2.6- Use the function rm() to delete all the R objects you have created in your work environment.
2.7- Import the file blisters.txt with the function read.table() and display the data.

- Risk factors for atherosclerosis: As part of a study on risk factors for atherosclerosis, data were collected and are summed up in this contingency table:
alcohol nondrinker occasional-drinker regular-drinker

```
GENDER tobacco
M non-smoker
    former smoker
    smoker
F non-smoker
    former smoker
    smoker
```

6

19	7
9	0
6	5
26	2
5	1
6	1

It would be interesting to know whether there is a dependence between smoking and drinking, according to gender. To enter these data in R , there are several steps.
2.1- Use the function $\operatorname{scan}()$ to get a matrix X of size 6×3. This matrix will contain the data only.
2.2- Use the instruction class(X) <- "ftable" to specify that it is a contingency table.
2.3- Type the two instructions:

```
attributes(X) $col.vars <- list(alcohol=c("nondrinker",
    "occasional-drinker","regular-drinker"))
attributes(X) $row.vars <- list (GENDER=c("M", "F"),tobacco=
            c("non-smoker","former smoker","smoker"))
```

2.4- Display the contingency table you have created.
2.5- Use the function write.ftable() to save the contingency table in a file called athero.txt.
2.6- Open the file in a text editor and check that there was no problem.
2.7- Use the function rm () to delete all the \mathbf{R} objects you have created in your work environment.
2.8- Import the file athero.txt with the function read.table() and display the data.

B- Importing from other software

During a study of BMI (Body Mass Index) of children, a team of statisticians collected data in different formats. As an exercise, we are going to read these various formats. There are several files called bmichild, but with different file extensions.
2.1- Import the file bmichild.xls into a data.frame called bmi. XLS.
2.2- Import the file bmichild.xpt into a data.frame called bmi. SAS.
2.3- Import the file bmichild.sav into a data.frame called bmi. SPSS.
2.4- Import the file bmichild.mat into a data.frame called bmi. MAT. The procedure is trickier for this file, so here are detailed instructions:

```
x <- readMat("bmichild.mat")
class(x) # x is a list
x # you can see that the data are in $bmi[, 1]
x <- x$bmi[, 1]
# Note that the elements of GENDER and zep
# are recorded in a list.
x$GENDER
class(x$GENDER) <- "character"
x$GENDER
class(x$zep) <- "character"
bmi.MAT <- as.data.frame(x)
```

2.5- To check that there was no problem during importation, use the function summary () on all these data.frames. This will display a few numerical summaries.
2.6- All these data.frames are identical. Save one of them in a file called bmichild.txt.

C- Importing more complex data files

Statisticians often encounter data files in non-standard formats. This section therefore provides training in reading several non-standard files on which we wish to perform statistical analysis.
2.1- Import the file raf98.gra into the most relevant structure. To this end, you will need to read the associated file geoidformat.txt which describes the file format.
2.2- Import the file Infarction.xls into a data.frame. Make sure you handle missing values correctly.
2.3- The file nutrition_elderly.txt contains thirteen variables measured on 226 individuals. Import the file into a data.frame (hint: use the functions $t()$ and as.data. frame()).
2.4- The file Birth_weight.txt contains ten variables measured on 189 individuals. Import it into a data.frame, which will contain the names of the variables as well as the names of the individuals (these are available in the column Id). Remember that you can use the online help!

Chapter 3

Data manipulation, functions

Prerequisites and goals

- First, read Chapters 1 and 2.
- In this chapter, we shall present elementary data manipulation functions. We shall also describe the main control structures, and show how to use the object component extraction tool. This is a very powerful method, which you will need in order to use \mathbf{R} in the most efficient way. We shall present direct extraction and extraction by logical mask. We shall also explain how to handle character strings and dates in \mathbf{R}.

SECTION 3.1

Operations on vectors, matrices and lists

3.1.1 Vector arithmetic

One of the advantages of \mathbf{R} is that it can operate on vectors and matrices. For example, the instruction

```
> x <- c(1, 2,4,6,3)
> y<-c(4,7,8,1,1)
> x+y
[1] }
```

returns, in a single operation, the vector of sums $\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$.

Warning

This is one of the main strengths of \mathbf{R}. It is called vectorization. You should get used to working in this fashion. Thus, you should avoid using programming loops, as is often done in other languages: such code would run much slower.

R operates in a similar fashion for many functions, such as: +, *, -, /, exp, \log, sin, cos, tan, sqrt, and so on.

For example, the following instruction calculates the exponential of all the elements of the matrix M:

```
> M <- matrix(1:9,nrow=3)
> exp(M)
[,1] [,2] [,3]
[1,] 2.718282 54.59815 1096.633
[2,] 7.389056 148.41316 2980.958
[3,] 20.085537 403.42879 8103.084
```


3.1.2 Recycling

At this stage, it is important to note how \mathbf{R} behaves when given an operation on two vectors of different lengths. \mathbf{R} will complete the shortest vector, reusing the values of this vector. The following example should help understand this concept:

```
> x <- c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) # Vector of length
>y<-c(1,2,3,4,5,6,7,8,9,10) # Vector of length
> x+y # Vector of length
    # 15.
[1]
```

R has completed the vector y thus: $c(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5)$ by reusing its values, in a circular fashion.

Note

This behaviour is called recycling. It is important that you be aware of this behaviour, since it can provoke hard-to-detect errors. As a matter of fact, \mathbf{R} usually displays a warning:

```
Warning message:
In x + y :
```

```
the length of the longest object is not a multiple
of the length of the shortest object
```

Here is another example of recycling, this time used to create a matrix. The vector $1: 4$ is reused in a circular fashion to fill in the matrix, which is declared to be of size 3×3.

> matrix(1:4, ncol=3, nrow=3)			
[,1] [,2]			
[1,]	1	4	3
[2,]	2	1	4
[3,]	3	2	1

3.1.3 Basic functions

Here are a few basic data manipulation functions. These are used very often; it is essential that you know them.

- length(): returns the length of a vector.
$>$ length $(\mathrm{c}(1,3,6,2,7,4,8,1,0))$
[1] 9
- $\operatorname{sort}():$ sorts the elements of a vector, in increasing or decreasing order.

```
> sort(c(1,3,6,2,7,4,8,1,0))
[1] 0 1 1 2 3 4 6 7 8
> sort(c(1,3,6,2,7,4,8,1,0), decreasing=TRUE)
[1] 8 7 6 4 3 2 1 1 0
```

- $\quad \operatorname{rev}():$ rearranges the elements of a vector in reverse order.
$>\operatorname{rev}(c(1,3,6,2,7,4,8,1,0))$
[1] 0118472631
- order (), $\operatorname{rank}():$ the first function returns the vector of (increasing or decreasing) ranking indices of the elements. The second function returns the vector of ranks of the elements. In case of a tie, the ordering is always from left to right.
$>$ vec <- $c(1,3,6,2,7,4,8,1,0)$
$>$ names (vec) <- 1:9
$>$ vec
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$\begin{array}{lllllllll}1 & 3 & 6 & 2 & 7 & 4 & 8 & 1 & 0\end{array}$
$>$ sort (vec)
$\begin{array}{lllllllll}9 & 1 & 8 & 4 & 2 & 6 & 3 & 5 & 7\end{array}$
$\begin{array}{lllllllll}0 & 1 & 1 & 2 & 3 & 6 & 8\end{array}$

```
> order(vec)
[1] 9 1 8 4 2 6 3 5 7
> rank(vec)
    1
2.5 5.0 7.0 4.0 8.0 6.0 9.0 2.5 1.0
```

- unique(): as the name suggests, this function removes the duplicates of a vector.
$>$ unique $(c(1,3,6,2,7,4,8,1,0))$
[1] 143627480
- duplicated(): indicates elements which have already been encountered earlier in the vector (read from left to to right).
> duplicated (c (1, 3, 6, 2, 7, 4, 8, 1, 0))
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

3.1.4 Operations on matrices and data.frames

We shall describe several specialized \mathbf{R} functions which give information on a matrix (or a data.frame), or help manipulate its rows and columns.

See also

Standard matrix operations (product, decomposition, Jacobian...) are described in Chapter 8, page 314.

3.1.4.1 Information on architecture

Here are a few functions which give information on a matrix or a data.frame:

- $\quad \operatorname{dim}():$ size of the matrix or data.frame.
- nrow () : number of rows.
- ncol(): number of columns.
- dimnames (): names of rows and columns (as a list).
- names(), colnames(): names of columns.
- rownames(): names of rows.

Do it yourself

Import, into an \mathbf{R} object called X , the data from the file http:// www.biostatisticien.eu/springeR/Weight_birth.xls, and use the above functions on X . Note that the first column of the file gives the patient identifier.

3.1.4.2 Merging tables

It is often very useful to combine (merge) several matrices or data.frames. The basic functions to this end are cbind() to merge columns and rbind() to merge rows.

- Merging columns

The generic function is cbind().

> cbind(1:4,5:8)		
[,1] [,2]		
[1,]	1	5
[2,]	2	6
[3,]	3	7
[4,]	4	8

However, this function is not optimal, as the following example shows. Let us try to merge in columns the two following tables.

Id	GENDER	Weight		Id	GENDER	Height
1	M	75		1	M	182
$\mathrm{X} 1=2$	F	68	U	$\mathrm{X} 2=2$	F	165
3	F	48		3	F	160
4	M	72		4	M	178

```
> X1 <- data.frame(Id=1:4,GENDER=c("M","F","F","M"),
+ Weight=c(75,68,48,72))
> X2 <- data.frame(Id=1:4,GENDER=c("M","F","F","M"),
+ Height=c(182,165,160,178))
> cbind(X1,X2)
    Id GENDER Weight Id GENDER Height
1 1 1 
2 2 F F 68 2 % F
    3 Flllll
4 4
```

This works, but it is a shame that the columns Id are GENDER are duplicated. A very useful function in this context is merge():

> merge (X1, X2)				
	Id	GENDER	Weight	Height
1	1	M	75	182
2	2	F	68	165
3	3	F	48	160
4	4	M	72	178

Now suppose that the individuals are not sorted in the same way in both tables.

In this case, you cannot use the function cbind(), but the function merge still works:

```
> X3 <- data.frame(Id=c(2,1,4,3),GENDER=c("F","M","M","F"),
+
> merge (X1,X3)
    Id GENDER Weight Height
        1 M 75 182
        2 F
        3 F
4 M 72 178
```

You will have noticed that, by default, the function merge() combines two data.frames. Let X and Y be the two data.frames we wish to merge, and let Z be the data.frame resulting from the merge of X and Y . The merge is based upon the columns of these two data.frames which have the same names. These columns will be called "common columns". The argument by can be used to specify (force) which columns are common. The value of this argument can be a vector of names, a vector of indices, or a vector of logical values. All other columns will then be treated as different columns by merge(), even if they bear the same name. The function merge() then works in the following way:

- for every row (individual) of the data.frame X , the function merge() compares the elements of this row to those of every row of Y , but only over the subset of common columns;
- if it finds a perfect match, it considers that it is the same individual: this individual is added to Z, then completed with the values from the non-common columns of X , then with the values from the non-common columns of Y ;
- if no perfect match is found, the individual is either added to Z and completed with NA's (if the argument all takes the value TRUE), or removed (if the argument all takes the value FALSE, which is the default value);
- the operation is repeated for the next row, until the last row.

This example should help clarify things:

```
X <- data.frame (GENDER=c ("F", "M","M", "F"),Height=c (165,182,
178,160),Weight=c(50,65,67,55),Income=c(80,90,60,50))
Y <- data.frame (GENDER=c("F","M","M", "F"), Height=c (165,182,
        178,160),Weight=c (55,65,67,85),Salary=c (70,90,40,40),
                row.names=4:7)
X
    GENDER Height Weight Income
1 F 165 50 80
2 M 182 65 90
3 lllll
F 160 55 50
Y
    GENDER Height Weight Salary
4 F
M 182 65 90
        M 178 67 40
merge (X,Y,by=c("GENDER", "Weight"))
GENDER Weight Height.x Income Height.y Salary
\begin{tabular}{llllll}
\(F\) & 55 & 160 & 50 & 165 & 70 \\
\(M\) & 65 & 182 & 90 & 182 & 90 \\
\(M\) & 67 & 178 & 60 & 178 & 40
\end{tabular}
    M 67 178 60 178 (178
merge (X,Y, by=c ("GENDER", "Weight"), all=TRUE)
GENDER Weight Height.x Income Height.y Salary
\begin{tabular}{lrrrrr}
\(F\) & 50 & 165 & 80 & \(N A\) & \(N A\) \\
\(F\) & 55 & 160 & 50 & 165 & 70 \\
\(F\) & 85 & \(N A\) & \(N A\) & 160 & 40 \\
\(M\) & 65 & 182 & 90 & 182 & 90 \\
\(M\) & 67 & 178 & 60 & 178 & 40
\end{tabular}
```


Warning

You will have noticed that, by default, the function merge does not take into account the names of the individuals in the data.frames X and Y , when determining the common individuals. The names of the individuals can be included either by adding a column Id to X and Y to identify the individuals, or by using the name "row. names" as the value of the argument by.

```
> merge(X,Y,by=c("row.names","Weight"))
    Row.names Weight GENDER.x Height.x Income GENDER.y Height.y
1 4 50 5 % F
    Salary
170
> merge(X,Y,by=c("row.names","Weight"), all=TRUE)
    Row.names Weight GENDER.x Height.x Income GENDER.y Height.y
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & Weight & GENDER.x & Height.x & Income & GENDER. Y & Height.y \\
\hline 1 & 1 & 50 & \(F\) & 165 & 80 & <NA> & NA \\
\hline 2 & 2 & 65 & M & 182 & 90 & <NA> & NA \\
\hline 3 & 3 & 67 & M & 178 & 60 & <NA> & \(N A\) \\
\hline
\end{tabular}
    67 M 178 60 <NA> NA
```

4		4	55	F	160	50	F	165
5		5	65	<NA>	NA	NA	M	182
6		6	67	<NA>	$N A$	$N A$	M	178
7		7	85	<NA>	$N A$	$N A$	F	160
Salary								
1	NA							
2	NA							
3	NA							
4	70							
5	90							
6	40							
7	40							

- Merging lines

The generic function is rbind().
> rbind(1:4,5:8)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	2	3	4
$[2]$,	5	6	7	8

The function smartbind() from the package gtools is more sophisticated, as shown in the following example:

```
> require(gtools)
> df1 <- data.frame(A=1:5, B=LETTERS[1:5]) # The square
# brackets [] to
# extract
> df2 <- data.frame(A=6:10, E=letters[1:5]) # elements are
# described in
# section 3.5.
```

> smartbind(df1, df2)
1 A B E
$1.11 \quad A<N A>$
$1.22 \quad B<N A>$
1.3 $3 \quad C$ <NA $>$
1.44 D <NA>
$1.55 \quad E<N A>$
2.16 <NA> a
2.27 <NA> b
2.38 <NA> c
2.49 <NA> d
2.510 <NA> e

Tip

The package gdata includes several very interesting functions to manipulate data.

3.1.4.3 The function apply()

An oft-used function is apply(), which applies a given function (specified as the value of the argument FUN) to all rows (MARGIN=1) or to all columns (MARGIN=2) of a matrix or data.frame.
$>\mathrm{X}<-\operatorname{matrix}(\mathrm{c}(1: 4,1,6: 8), \mathrm{nr}=2)$
$>\mathrm{X}$
$\begin{array}{lrrrr}{[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} \\ {[1,]} & 1 & 3 & 1 & 7\end{array}$
$\left[\begin{array}{lllll}{[2,]} & 2 & 4 & 6 & 8\end{array}\right.$
> apply (X, MARGIN=1, FUN=mean)
[1] 35
> apply (X, MARGIN=2, FUN=sum)
[1] $3 \quad 7 \quad 7 \quad 15$

Tip

When the operation is summing or calculating the means of rows or columns, other possible functions are: rowSums(), colSums(), rowMeans(), colMeans().

Do it yourself

We are going to see how to calculate the sum of squares of all rows of a matrix. First, create a matrix M of size 5×2 containing numbers of your choosing. Next, use the function apply() on the rows of the matrix M. You will take the argument and associated value $F U N=f u n c t i o n(x)\left\{\operatorname{sum}\left(x^{\wedge} 2\right)\right\}$.

Warning

In this do-it-yourself, we saw in passing how to use a self-created function (sum($x^{\wedge} 2$)) when calling apply(), by using the reserved word function. In Chapter 6, we shall explore in further detail how to create more elaborate functions.

3.1.4.4 The function sweep()

The function sweep () is very useful. It is used to "sweep out" (in a sense defined by the value of the argument FUN) a certain statistic (given by the value of the argument STATS) from every row (MARGIN=1) or from every column (MARGIN=2) of a table. The two next examples should help you understand this function.

```
> X
[1,] [,1] [,2] [,3] [,4]
[2,] 2 4 6 8
> # Substract 3 from row 1, and 5 from row 2.
> sweep(X,MARGIN=1,STATS=c (3,5),FUN="-")
            [,1] [,2] [,3] [,4]
[1,] -2 0
[2,] -3 -1 1 3
> # Divise the first two columns by 2, and the last two columns
    # by 3
> sweep(X,MARGIN=2,STATS=c(2, 2, 3, 3),FUN="/")
    [,1] [,2] [,3] [,4]
[1,] 0.5 1.5 0.3333333 2.333333
[2,] 1.0 2.0 2.0000000 2.666667
```


3.1.4.5 The function stack()

The function stack () concatenates into a single vector the values of certain columns of a data.frame. This function outputs a data.frame, with the stacked vector in its first column, and a second column containing a factor which indicates the origin of each observation. The function unstack () performs the reverse operation. This function is very useful for analysis of variance (ANOVA)

```
X <- data.frame(trt1=c(1,6,3,5),trt2=c(8,8,3,1))
> X
trt1 trt2
    8
        8
        3
        1
stack(X)
values ind
    trt1
    6 ~ t r t 1
    trt1
    trt1
    trt2
    trt2
    trt2
    trt2
```


3.1.4.6 The function aggregate()

The function aggregate() splits a data.frame into sub-populations according to a factor (specified by the argument by) and applies a given function to each subpopulation

```
> X<-data.frame(Weight=c (80,75,60,52),Height=c(180, 170, 165,150),
+ Cholesterol=c(44,12,23,34),
+ Gender=c("Male","Male","Female","Female"))
> X
    Weight Height Cholesterol Gender
1 80 180 44 Male
2 75 170 12 Male
3 60 165 23 Female
4 52 150 34 Female
> aggregate(X[, -4],by=list (Gender=X[, 4]),FUN=mean)
    Gender Weight Height Cholesterol
1 Female 56.0 157.5 28.5
    Male 77.5 175.0 28.0
```


Note

The instruction $\mathrm{X}[,-4]$ is used to extract all the columns of X except the fourth column. Extraction instructions are explored in further detail in Section 3.4.

3.1.4.7 The function transform()

This function makes transformations on the columns of a data.frame. For example, the following example transforms the height in centimetres into the height in metres, and adds to the data.frame a column with the BMI.

```
> X <- transform(X,Height=Height/100,BMI=Weight/(Height/100)^2)
> X
    Weight Height Cholesterol Gender BMI
1 80 1.80 44 Male 24.69136
2 75 1.70 12 Male 25.95156
3 60 1.65 23 Female 22.03857
4 52 1.50 34 Female 23.11111
```


See also

The package plyr can be used to manipulate data tables in a simple and efficient way.

3.1.5 Operations on lists

The functions lapply() and sapply() are similar to the function apply(): they apply a function to every element of a list. The former outputs a list; the latter outputs a vector if possible.

```
> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,
+ FALSE,TRUE))
> lapply(x,mean) # Mean of each element of the list.
$a
[1] 5.5
$beta
[1] 4.535125
$logic
[1] 0.5
> lapply(x,quantile,probs=(1:3)/4) # Median and quartiles of the
                                    # elements of the list.
$a
25% 50% 75%
3.25 5.50 7.75
$beta
    25% 50% 75%
0.2516074 1.0000000 5.0536690
$logic
25% 50% 75%
0.0 0.5 1.0
> sapply(x, quantile) # Quantiles of the elements of the list.
            a beta logic
0% 1.00 0.04978707 0.0
25% 3.25 0.25160736 0.0
50% 5.50 1.00000000 0.5
75% 7.75 5.05366896 1.0
100% 10.00 20.08553692 1.0
> i36 <- sapply(3:6, seq) # Creates a list of vectors.
> i36
[[1]]
[1] 1 2 3
[[2]]
[1] 1 2 3 4
[[3]]
[1]}1122)344
[[4]]
[1] 1 2 2 3 4 5 6
> sapply(i36, sum) # Sum of every vector in the list.
[1] 6 10 15 21
```


Tip

The function do.call() takes two arguments: the first is the name of a function, and the second is the name of a list. It executes the function, taking as input the elements of the list. We shall see an example of use in the practical. We should also mention the existence of the function mapply().

- SECTION 3.2
 Logical and relational operations

The two logical values are TRUE (or T) and FALSE (or F). Also note that in R, NA is considered to be a logical constant. Logical vectors are very useful in R , for example for extracting elements by logical mask, as we shall see later on.

This table gives operators and functions which take logical values as input or output.

Table 3.1: Operators and functions which take logical values as input or output.

Operator in R	Description	Example	Output			
logical()	Create a vector of logical values	logical(2)	F F			
as.logical()	Transform into logical values	as.logical (c (0,1))	F T			
is.logical()	Is the argument a logical value?	is.logical(F)	T			
$\mathrm{x}<\mathrm{y}$	Is $x_{i}<y_{i}$?	c (1,4) <c (2,3)	T F			
$\mathrm{x}>\mathrm{y}$	Is $x_{i}>y_{i}$?	$c(1,4)>c(2,3)$	F T			
$\mathrm{x}<=\mathrm{y}$	Is $x_{i}<=y_{i}$?	$c(1,4)<=c(1,3)$	T F			
$\mathrm{x}>=\mathrm{y}$	Is $x_{i}>=y_{i}$?	$c(1,4)>=c(1,3)$	T T			
$\mathrm{x}=\mathrm{y}$	Is $x_{i}=y_{i}$?	$c(1,4)==c(1,3)$	T F			
x ! $=\mathrm{y}$	Is $x_{i} \neq y_{i}$?	$c(1,4)!=c(1,3)$	F T			
! x	Negation of x	! $\mathrm{c}(\mathrm{T}, \mathrm{F})$	F T			
$x \& y$	Term-by-term conjunction (AND)	$c(T, T) \& c(T, F)$	T F			
x \& $\&$ y	Sequential conjunctions	F \& \quad T \& \& T	F			
$\mathrm{x} \mid \mathrm{y}$	Term-by-term disjunction (OR)	$\mathrm{c}(\mathrm{T}, \mathrm{T}) \mid \mathrm{c}(\mathrm{T}, \mathrm{F})$	T T			
x \\| ${ }^{\text {y }}$	Sequential disjunction (OR)	$\mathrm{F}\\|\mathrm{T}\\| \mathrm{F}$	T			
xor (x, y)	Exclusive disjunction (XOR)	$\operatorname{xor}(\mathrm{c}(\mathrm{T}, \mathrm{T}), \mathrm{c}(\mathrm{T}, \mathrm{F}) \mathrm{)}$	F T			
any (x)	TRUE if at least one of the x_{i} is TRUE	any (c ($\mathrm{T}, \mathrm{F})$)	T			
all(x)	TRUE if all of the x_{i} are TRUE	all (c (T, F))	F			
all.equal (x, y)	$\begin{aligned} & \text { Is } x_{i} \approx y_{i} \text { ? } \\ & \text { (see the argument tolerance) } \end{aligned}$	all.equal (0.2-0.1,0.3-0.2)	T			
identical (x,y)	TRUE if $\forall i, x_{i}=y_{i}$	identical(1,as.integer(1))	F			

Warning

Note that the two following instructions give different results:

```
> all.equal(0.2-0.1,0.3-0.2)
[1] TRUE
> (0.2-0.1) == (0.3-0.2)
[1] FALSE
```

This stems from the fact that the computer has a limited precision for its calculation. The function all. equal () takes an optional tolerance argument for rounding errors. We shall discuss this further in the section on conditional instructions. See also section 3.9 that exlains why the second instruction above returns FALSE.

Operations on sets

R can handle all usual operations on sets.

$>A<-C(4,6,2,7) \quad \#$ A first set.
$>B<-C(2,1,7,3) \quad \# A$ second set.
$>\operatorname{vec}<-c(2,3,7) \quad \#$ A few elements.

Table 3.2: Operations on sets.

Operation	R Instruction	Output
Membership: $a \in A$	is.element(vec, A)	T F T
Inclusion (subset): $A \subset B$	all(A \%in\% B)	F
Superset: $A \supset B$	all(B \%in\% A)	F
Intersection: $A \cap B$	intersect (A, B)	27
Union: $A \cup B$	union(A, B)	462713
Complement: $A \backslash B$	setdiff(A, B)	46
Symmetric difference: $(A \cup B) \backslash(A \cap B)$	setdiff(union(A, B) , intersect (A, B))	4613

Tip

It is very easy in R to define its own set functions, such as functions of inclusion, contenance and symmetric difference.
> "\%inclus\%" <- function(A, B) all (A \%in\% B)
> "\%contient\%" <- function(A, B) B \%inclus\% A
> "\%diffsym\%" <- function(A, B) setdiff(union (A, B), intersect (A, B))

- SECTION 3.4
 Extracting and inserting elements

In this section, we shall see how to extract part of a vector, matrix or list. Indeed, \mathbf{R} includes very specific mechanisms to this effect, which can be confusing at first, but are very powerful tools.

3.4.1 Extracting from/Inserting into vectors

- Extraction

To extract components from a vector, use the function "["(). It can take the following arguments:

- a vector of indices of elements to extract;
- a vector of indices of elements not to extract;
- a vector of logical values TRUE/FALSE indicating which elements to extract.

A few examples will make this easier to understand.

```
> vec <- c(2,4,6,8,3)
> vec[2]
[1] 4
> "["(vec,2) # Note: "[" is indeed a function
[1] 4
> vec[-2] # All elements except the second.
[1] 2 6 8 8
> vec[2:5]
[1] 4 6 8 3
> vec[-c(1,5)]
[1] 4 6 8
> vec[c(T,F,F,T,T)] # Extraction by logical mask.
[1] 2 8 3
> vec>4
[1] FALSE FALSE TRUE TRUE FALSE
> vec[vec>4] # Extraction by logical mask.
[1] }6
```

It is important to note here the syntactical simplicity of an instruction such as $\mathrm{x}[\mathrm{y}>0]$, which extracts from x all elements of index i such that $y_{i}>0$.

```
> y <- c(-1,2,-3,4,-2)
```

```
> x[y>0]
[1] 2 4
```

You need to learn to use as often as possible such constructions, which are called logical masks. There are two advantages: the code is easy to read, and execution is very fast.

Also note the functions which(), which.min() and which.max(), which are often very useful.

```
> mask <- c(TRUE,FALSE,TRUE,NA, FALSE, FALSE, TRUE)
> which(mask) # Outputs the indices corresponding to the values
    # TRUE.
[1] 1 3 7
> x <- c(0:4,0:5,11)
> which.min(x) # Outputs the index of the smallest value.
[1] 1
> which.max(x) # Outputs the index of the largest value.
[1] }1
```


Warning

It is important to note that \mathbf{R} does note handle nidex 0 , unlike some other programming languages.

- Replacement

Replacing elements in a vector is done in a similar fashion to extraction. All you need to do is select the elements as if you wanted to extract them, then use the affectation symbol <- followed by the replacement elements. Of course, you need to specify the same number of replacement elements as of selected elements.

Let us examine a few examples of this principle.

```
> z
[1] 0}0
> z[c(1,5)] <- 1
> z
[1] 1 0}00<2
> z[which.max(z)] <- 0
> z
[1] 1 0}0
> z[z==0] <- 8 # The zi such that
    # zi is worth 0 are replaced with
    # 8.
> z
[1] 1 8 8 8 1
```

- Insertion

Inserting or adding elements to a pre-existing vector uses the function c() .

```
> vecA <- c(1, 3, 6, 2, 7, 4, 8, 1, 0)
> vecA
[1] 1 3 6 2 7 4 8 1 0
> (vecB <- c(vecA, 4, 1))
    [1] 1 3 6 6 2 7 4 4 8 1 0 4 1
> (vecC <- c(vecA[1:4], 8, 5, vecA[5:9]))
    [1] 1 3 6 2 8 5 7 4 8 1 0
```

This mechanism provides the ability to complete a vector whose size is not fixed at first.

```
> a <- c()
> a <- c(a,2)
> a <- c(a,7)
> a
[1] 2 7
```


Do it yourself

- Create the vector height <- $c(182,150,160,140.5,191)$ and the vector gender <- $c(0,1,1,1,0)$ containing the height (in cm) and the gender (coded as $0=\mathrm{M} / 1=\mathrm{F}$) of five people. Extract from the vector height the heights of the men. Use the method of extracting by indices, then repeat the task with a logical mask.
- Extract from the following vector all numbers between 2 and 3:
$>x<-c(0.1,0.5,2.1,3.5,2.8,2.7,1.9,2.2,5.6)$

3.4.2 Extracting from/Inserting into matrices

- Extraction

Two methods are possible to extract elements from a matrix X. Each method has its own syntax.
3.1- Extracting by indices: X [indr, indc], where indr is the vector of indices of rows and indc is the vector of indices of columns to extract. Omitting indr (respectively indc) means that all rows are selected (respectively all columns). Note that indr and indc can be preceded by a minus sign (-) to indicate elements not to extract.
3.2- Extracting by logical mask: X [mask], where mask is a matrix of logical values TRUE/FALSE of the same size as X , indicating which elements to extract.

Here are a few examples of the first method:

```
> Mat <- matrix(1:12,nrow=4,ncol=3,byrow=TRUE)
> Mat
1, [,1] [,2] [,3]
1 2 3
[2,] 4 5 6
[3,] 7 7 8 9
[4,] 10 11 12
> Mat[2,3] # Extracting the element at the intersection
    # of row 2 and column 3.
[1] 6
> Mat[,1] # All rows, and only column 1.
[1] 1 4 4 7 10
> Mat[c(1,4),] # All columns, and rows 1 and 4.
    [,1] [,2] [,3]
[1,] 1 2 
[2,] 10 11 12
> Mat[3,-c(1,3)] # Row 3 and column 2.
[1] 8
```

Here is an example with a logical mask:

```
> MatLogical <- matrix(c(TRUE,FALSE), nrow=4,ncol=3)
> MatLogical # Is of the same size as Mat.
    [,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] FALSE FALSE FALSE
[3,] TRUE TRUE TRUE
[4,] FALSE FALSE FALSE
> Mat[MatLogical] # Make sure that you understand this
    # instruction.
[1] 1 7 2 8 3 9
```


Tip

It so happens that a matrix is stored in \mathbf{R} as a long vector, the concatenation of all columns. Try for example the command as.vector (Mat). Elements of a matrix can thus be extracted without using the form [rows, columns], but instead by using vector extraction [ind] where ind is a vector of indices (or a vector of logical values) of elements to extract from the long vector.
> ind
[1] 24688
> Mat [ind]
[1] $\begin{array}{llllll}4 & 10 & 5 & 11 & 7\end{array}$

Warning

Using the function " [" () sometimes leads to a change in the structure of the manipulated object. Let us see this on the example below.

```
> m <- matrix(1:6,nrow=2) ; m
    [,1] [,2] [,3]
[1,] 1 3 5
[2,] 
> m[,1]
[1] 1 2
> class(m[,1])
[1] "integer"
```

It is found that the extraction has transformed our result into a simple one row vector. This can be annoying since here one could expect to get a one column matrix. But there is a solution to this problem as the following code shows.

```
> m[,1,drop=FALSE]
    [,1]
[1,] 1
[2,] 2
```


Do it yourself

Try to automatically alternate the vectors $c(0,2,3,4)$ and $c(1,0,0,0)$, so as to get the vector $\mathrm{c}(1,0,0,2,0,3,0,4)$ (hint: use the functions cbind(), t() and as.vector()).

As with vectors, the function which() can be used to return the indices of the elements of a matrix which verify some condition. For example:

```
> m <- matrix(c(1,2,3,1,2,3,2,1,3),3,3)
> m
[1,] [,1] [,2] [,3]
[2,] 2 2 1
[3,] 3 3 3
> which(m == 1) # m is seen as the concatenation of
    # its columns.
[1] 1 4 8
> which(m == 1,arr.ind=TRUE) # Outputs the indices as couples.
    row col
1,] 1 1
[2,] 1 2
[3,] 2 3
```

- Insertion

Inserting elements into a matrix is done as with vectors. Elements are selected either by indices or with a logical mask, and are then replaced with other elements thanks to the affectation symbol <-.

```
> m
[,1] [,2] [,3]
[2,] 2 2 1
[3,] 3 3 3
> m[m!=2] <- 0
> m
[,1] [,2] [,3]
[2,] 2 2 0
[3,] 0 0 0
> Mat <- Mat [-4,] ; Mat
            [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4
[3,] 7 8 9
> m[Mat>7] <- Mat[Mat>7]
> m
    [,1] [,2] [,3]
[1,] 0 0 2
[2,] 2 2 0
[3,] 0 8 9
```

Another function can be used to extract (and therefore also to insert) elements: subset(). For example, try subset(airquality, Temp >80, select = c(Ozone, Temp)).

Do it yourself

```
> m1 <- matrix(c(0,22,0,23,34,0,0,0,28),ncol=3)
> m2 <- matrix(c(10,1,4,10,9,9,2,6,4),ncol=3)
> m1
    [,1] [,2] [,3]
23 0
[2,] 22 34 0
[3,] 0 0 28
> m2
    [,1] [,2] [,3]
[1,] 10 10 2
[2,] 1 9 6
[3,] 4
```

Replace all non-zero values of m 1 with the corresponding values in m 2 .
Remove the second column from m 1 .

3.4.3 Extracting from/Inserting into arrays

Extracting from and inserting into arrays is done as with matrices, except that there can be more than two dimensions. We shall therefore only list a few examples, and leave it to the reader to check that they understand everything.

```
> A <- array (1:12,dim=c (2,2,3))
> A
, , 1
    [,1] [,2]
[1,] 1 3
[2,] 2 4
, , 2
    [,1] [,2]
[1,] 5 7
[2,] 6 8
, , 3
    [,1] [,2]
[1,] 9 11
[2,] 10 12
> A[2,2,1]
[1] 4
> A[1,2,3] <- 4 # Replaces 11 with 4.
> which(A==4,arr.ind=TRUE)
    dim1 dim2 dim3
[1,] 2 2 1
[2,] 1 2 3
> A[which(A==4, arr.ind=TRUE)]
```

```
[1] 4 4
> length(A [A>4])
[1] }
```


3.4.4 Extracting from/Inserting into lists

- Extraction

Extracting from lists is slightly more complicated than with matrices, because each element of a list is a list itself. Using the function " ["() on a list therefore outputs another list.

```
> L <- list(12,c(34,67,8),Mat,1:15,list(10,11))
> class(L)
[1] "list"
> L
[[1]]
[1] 12
[[2]]
[1] 34 67 8
[[3]]
    [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 7 8 9
[[4]]
[1]
[[5]]
[[5]][[1]]
[1] 10
[[5]][[2]]
[1] 11
> L[2]
[[1]]
[1] 34 67 8
> class(L[2])
[1] "list"
> L[c(3,4)]
[[1]]
    [,1] [,2] [,3]
[1,] 1 2 3
[2,]
[[2]]
    [1] 110lllllllllllllllll
```

Because lists are used to store elements of different natures, the function " [[" () must be used to access the elements of a list.

```
> L[[2]]
[1] 34 67 8
> "[["(L, 2)
[1] 34 67 8
> class(L[[2]])
[1] "numeric"
> L[[5]][[2]]
[1] 11
```


Warning

The following instructions generate an error:

```
> L[2,3]
Error in L[2, 3] : incorrect number of dimensions
> L[[2,3]]
Error in L[[2, 3]] : incorrect number of subscripts
```


Advanced users

R defines what is called recursive indexing. For example, the next example starts by retrieving the content of the second element of the list L (i.e. the vector $c(34,67,8))$, then extracts the third element of this vector.

```
> L[[c(2,3)]] # Recursive indexing.
```

[1] 8

Furthermore, there is a mechanism in \mathbf{R} to explicitly name the various elements of a list. The symbol $\$$ can then be used to extract elements by name.

```
> L <- list(cars=c("FORD","PEUGEOT"), climate=
+ c("Tropical","Temperate"))
> L[["cars"]]
[1] "FORD" "PEUGEOT"
> L$cars
[1] "FORD" "PEUGEOT"
> L$climate
[1] "Tropical" "Temperate"
```

- Insertion

Inserting elements is done as previously with the arrow <-.

```
> L$climate[2] <- "Continental"
> L
$cars
[1] "FORD" "PEUGEOT"
$climate
[1] "Tropical" "Continental"
```


Tip

A column name can include spaces. To access it, you will then need to use quotation marks.
> L <- list("pretty cars"=c("FORD","PEUGEOT"))
$>\mathrm{L}$
\$ 'pretty cars'
[1] "FORD" "PEUGEOT"
> L\$"pretty cars"
[1] "FORD" "PEUGEOT"

SECTION 3.5
 Manipulating character strings

Manipulating character strings is very useful when dealing with many statistical files and when annotating graphs. We shall therefore present the major \mathbf{R} functions in this context.

As we have seen, creating a character string is done with quotation marks " ", or with the function as.character ().

```
> string <- c("one","two","three")
> string
[1] "one" "two" "three"
> as.character(1:3)
[1] "1" "2" "3"
```


Tip

The function noquote() can be used to suppress the display of quotation marks in the R output.

```
> noquote(string)
[1] one two three
```

The functions sQuote() and dQuote() are used for different styles of quotation marks.
The function format () is used to produce a personalized display, for example data.frames.

```
> zz <- data.frame("First names"=c("Pierre","Benoit","Rémy"),
+
> zZ
    First names
            Pierre
            Benoit
```

```
3 Rémy
> format(zz, justify = "left")
First names
    Pierre
    Benoit
    Rémy
```

Other interesting functions to manage the display are cat(), sprintf() and print().

The function nchar() counts the number of symbols in a string. It can be used on a vector of strings.

```
> string1 <- c("a","ab","B","bba","one","!@","brute")
> nchar(string1) # Counts the number of symbols in each string.
[1] 1 2 1 3 3 2 5
> string1[nchar(string1)>2]
[1] "bba" "one" "brute"
```


Tip

The commands letters and LETTERS return the twenty-six letters of the alphabet in lower and upper case.

```
> letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"
[15] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
> string1[string1 %in% c(letters,LETTERS)]
[1] "a" "B"
```

The function paste() is used to concatenate several strings.

```
> string2 <- c("e","D")
> paste(string1,string2) # Concatenates the strings.
[1] "a e" "ab D" "B e" "bba D" "one e" "!@ D"
[7] "brute e"
> paste(string1,string2,sep="-") # A separator can be included
# between the strings.
[1] "a-e" "ab-D" "B-e" "bba-D" "one-e" "!@-D"
[7] "brute-e"
> paste(string1,string2,collapse="",sep="") # collapse is used
                                    # to concatenate
                                    # the elements
                                    # into a single
                                    # string.
```


[1] "aeabDBebbaDonee!@Dbrutee"

The function substring () is used to extract sub-strings from a string.

```
> substring("abcdef",first=1:3,last=2:4)
[1] "ab" "bc" "cd"
```

The function strsplit() is used to split a string.

```
> strsplit(c("05 Jan","06 Feb"), split=" ")
[[1]]
[1] "05" "Jan"
[[2]]
[1] "06" "Feb"
```

The function grep () is used to search for a pattern in a vector of strings. It returns the indices of the elements of the vector containing this pattern.

```
> grep("i",c("Pierre","Benoit", "Rems"))
[1] 1 2
```

The function gsub() replaces all occurrences of a pattern found in a string with another string.

```
> gsub("i","L",c("Pierre","Benoit","Rems"))
[1] "PLerre" "BenoLt" "Rems"
```

The function sub () only replaces the first occurrence.

```
> sub("r","L",c("Pierre","Benoit","Rems"))
```

[1] "PieLre" "Benoit" "Rems"

Tip

The functions tolower() and toupper () are used, respectively, to put a string into lower or upper case.

```
> tolower("loWER")
```

[1] "lower"
> toupper("UPper")
[1] "UPPER"

Do it yourself

Input the folllowing data.frame:

```
> X <- data.frame(date=c("03 JANUA","02 SEPTE","15 NOVEM"),
+ sun=c(10,15,12))
> X
    date sun
1 03 JANUA 10
2 02 SEPTE 15
3 15 NOVEM 12
```

Remove the first column from X and add in two new columns: one called day, containing the day number coded as an numeric (1 or 2 digits), and the other called month, containing the month coded as four letters in lower case (hint: use the function transform()).

Manipulating dates and time units

3.6.1 Displaying the current date

In R, there are two functions to display the current date: Sys.time() and date().

```
> Sys.time()
[1] "2013-01-09 16:04:35 EST"
> date()
[1] "Wed Jan 9 16:04:35 2013"
```

The year, month, day, hours, minutes and seconds can be extracted as follows:

```
> as.numeric(substring(Sys.time(),c(1,6,9,12,15,18),
+ c(4,7,10,13,16,19)))
[1] 2013 1 1 9 16 4 35
```


Tip

The function system.time() is used to find the execution time of an instruction. The function Sys.sleep() is used to halt the execution of a list of instructions for a given number of seconds.

3.6.2 Extracting dates

In Statistics, one often needs to extract dates from files. There are several functions in R to handle these data, which would otherwise be very difficult to manipulate.

The first useful instruction is strptime(), which is used to retrieve a date from a string of characters and to put it into an R object of class POSIXIt (named list of vectors containing informations on date and time).

```
> strptime("27/mar/73",format="%d/%b/%y")
```

[1] "1973-03-27"

In the preceding instruction, you will have noted the argument format, which is used to describe how the date and/or time are coded in the character string. Many codes are available; we describe them in the following table.

Note

If the previous instruction outputs NA, you may need to use the following instruction to change the regional parameters (locale) used by default by R:

```
> Sys.setlocale("LC_TIME","C")
```

Table 3.3: Codes for the function strptime(). The examples have been created with format(Sys.time(),"\%letter").

Code	Description	Example
\%a	Day of the week, abbreviated	Mon
\%A	Day of the week, full name	Monday
\%b	Month, abbreviated	Dec
\%B	Month, full name	December
\%c	Date and time, locale-specific	Mon 20 Dec 2010 13:06:24 CEST
\%d	Day of the month (01-31)	20
\%H	Hours (0-24)	13
\%I	Hours (0-12)	01
\%j	Day of the year (001-366)	354
\%m	Month (01-12)	12
\%M	Minutes (00-59)	06
\%S	Seconds (00-61), with 2 "leap seconds"	24
\%U	Week of the year (00-53); the 1st Sunday is counted as day	51
	1 of week 1	
\%w	Day of the week (0-6); Sunday is 0	1
\%W	Week of the year (00-53); the 1 ${ }^{\text {st }}$ Monday is counted as day	51
\%x	1 of week 1	Date, locale-specific
\%X	Time, locale-specific	$2010-12-20$
\%y	Year without the century	$13: 06: 24$
\%Y	Year with the century	10
\%z	Time offset from Greenwich; '-0800' is 8 hours West of	2010
\%Z	Greenwich	Time zone as a character string (output only)

Tip

Under Linux, the instruction man strptime typed into a terminal window can give you more codes.

Do it yourself

Try to read the following dates with the function strptime().

```
> dates1
[1] "3jan1948" "4jan1950" "30apr1961" "18sep1990"
> dates2
[1] "01/21/99 21:04:22" "03/28/99 22:19:55"
[3] "07/15/99 03:01:32"
```

Note that the functions weekdays() and months() can be used to retrieve the day and month of a date in the POSIXIt format.

3.6.3 Operations on dates

Before manipulating dates, you should always start by converting dates and times into objects of the class POSIXIt or POSIXct. There are two functions in R to this effect: as.POSIXct (), which gives the number of seconds elapsed since $1^{\text {st }}$ January 1970 as a numeric vector, and as.POSIXlt () which is a list of vectors representing: sec 0-61: seconds.
$\min 0-59$: minutes.
hour 0-23: hours.
mday 1-31: day of the month.
mon 0-11: number of months since the $1^{\text {st }}$ month of the year.
year : number of years since 1900 .
wday 0-6: day of the week, starting on Sunday.
yday 0-365: day of the year.
isdst : Daylight Saving Time (DST) flag. Positive if DST is observed, zero otherwise (negative if unknown).
Here are a few instructions using these functions:

```
> z <- Sys.time() # In the POSIXct format.
> class(z) ; is.double(z)
[1] "POSIXt" "POSIXCt"
[1] TRUE
> z
[1] "2013-01-09 16:04:35 EST"
> as.numeric(z) # Number of seconds since 1st January 1970.
[1] 1357765476
> # The origin can be changed:
> as.POSIXct(as.numeric(z), origin="1960-01-01")
[1] "2003-01-09 21:04:35 EST"
> # About fourty years have elapsed:
> as.numeric(z)/60/60/24/7/c(53,52)
[1] 42.35816 43.17274
> z <- as.POSIXlt(z) # In the POSIXlt format.
> class(z) ; is.list(z)
[1] "POSIXt" "POSIXIt"
[1] TRUE
> z
[1] "2013-01-09 16:04:35 EST"
> names(z)
[1] "sec" "min" "hour" "mday" "mon" "year" "wday"
[8] "yday" "isdst"
> z$year # Number of years since 1900.
[1] 113
```

Note that the functions as.POSIXct() and as.POSIXIt () can be used either on vectors of numeric values, or on vectors of character strings. In the former case, you will need to give a value to the argument origin, as a character string representing a date. In the latter case, each character string must be in a format such as "2001-02-03" or "2001/02/03", optionally followed by a space and a time in the
format "14:52" or "14:52:03". It might be useful to use the function strptime() to get a format compatible with these functions (see Table 3.3 for a description).

```
> as.POSIXct("2001/02/03")
[1] "2001-02-03 EST"
> as.numeric(as.POSIXct("2001/02/03"))
[1] 981176400
> as.POSIXlt("2001/02/03") $wday
[1] 6
> lct <- Sys.getlocale("LC_TIME")
> Sys.setlocale("LC_TIME","C") # See Note on page 109.
[1] "C"
> as.POSIXlt(strptime("27/mar/73",format="%d/%b/%y"))
[1] "1973-03-27"
> Sys.setlocale("LC_TIME",lct) # To recover the locale.
[1] "fr_FR.UTF-8"
```


Note

The class Date can also be used to represent dates.

```
> z <- as.Date(c("2006-06-01", "2007-01-01"))
> class(z)
[1] "Date"
> z[1] + 100 # Add 100 days.
[1] "2006-09-09"
> z[2]-z[1]
Time difference of 214 days
> z[2] < z[1]
[1] FALSE
```

The advantage of storing dates in objects with one of the classes described above, apart from the pretty display, is that operations can then be made on these dates (difference between two dates, anteriority test...), as illustrated in the following examples.

```
> date2 <- as.POSIXlt("2009-04-15")
> date1 <- as.POSIXlt("2000-11-24")
> date2-date1
Time difference of 3063.958 days
> difftime(date2,date1,units="hours")
Time difference of }73535\mathrm{ hours
> date1 <= date2
[1] TRUE
```


Advanced users

The package chron includes many functionalities to handle dates.
\qquad
Like all programming languages, \mathbf{R} includes the necessary control structures to direct the execution flow of a program.

3.7.1 Conditional instructions

- Instruction switch()

It is used in the following way:

```
switch(<expr:test>,<expr:case1>=<code1>,<expr:case2>=<code2>, etc.)
```

In the instruction above, <expr: test> is either a number or a character string. This instruction outputs <code1> if <expr: test> is equal to <expr: case1>, <code2> if <expr : test> is equal to <expr : case2>, and so on. If <expr : test> is not equal to any of the <expr: casei>, the function switch() outputs NULL.

Here is an example:

```
> x <- rcauchy(10) # Generate ten random numbers from a Cauchy
    # distribution.
> my.input <- "mean"
> switch(my.input,mean = mean(x),median = median(x))
[1] -0.5472605
> my.input <- "median"
> switch(my.input,mean = mean(x),median = median(x))
[1] -0.3508165
> my.input <- "variance"
> switch(my.input,mean = mean(x),median = median(x))
    Note
```

You can also include a single unnamed value, i.e. a <code $i>$ without the associated expr:casei=. This value will then be output instead of NULL when the value of the argument EXPR is not equal to any of the cases.

```
> switch(EXPR = "b", a=4, b=2:3, "Else: nothing")
[1] 2 3
> switch(EXPR = "QQ", a=4, b=2:3, "Else: nothing")
[1] "Else: nothing"
```

- Instructions if and else

The conditional instruction if can be used in the two following ways:

```
if (<cond>) <expr:true>
    or
if (<cond>) <expr:true> else <expr:false>
```

The argument <cond> must be a logical value, which therefore takes one of the values TRUE or FALSE. Note that <cond> is first transformed by as.logical (<cond>), so that real numbers are allowed (0 is the only number to be transformed into FALSE) as well as character strings "T" or "TRUE" and "F" or "FALSE". Also note that <cond> must be of length 1 . Otherwise, only the first element of <cond> will be taken into account, and R will display a warning.
In practice, of course, <cond> is often the result of an elaborate logical operation, computed with the logical operators we described above. Here is an example of how these instructions can be used. Make sure you understand them well.

```
> if (TRUE) 1+1
[1] 2
> x <- 2
> y <- -3
> if (x <= y) {
+ z <- y-x
+ print("x smaller than y")
+ } else {
+ z <- x-y
+ print("x larger than y")
+ z
+ }
[1] "x larger than y"
[1] 5
```

Tip
The function ifelse() is used to execute one or the other of two functions applied to a vector, depending on the values of a logical condition. For example:

```
> x <- c(3:-2)
```

> sqrt(ifelse(x >= 0, $\mathrm{x}, \mathrm{NA})$)
[1] 1.732051 1.414214 1.000000 0.000000 NA NA

- Preferred logical operators

Make sure you use logical operators well. For conditional instructions, we advise you to use:

- $\quad x \& \& y$ rather than $x \& y ;$
- $\quad \mathrm{x} \| \mathrm{y}$ rather than $\mathrm{x} \mid \mathrm{y}$.

This next example shows why. If you use the long form \&\&, the logical conditions after the if are evaluated from left to right, until a FALSE is found.

```
> as.logical(x <- 2) # as.logical(x, non-zero real number)
    # outputs TRUE.
[1] TRUE
> x
[1] 2
> rm(x) # Remove x.
> if (FALSE & as.logical(x <- 2)) 4*7 # <cond> is evaluated to
                                    # be FALSE. Both parts
                                    # of <cond> are
                                    # evaluated.
> x
[1] 2
> if (FALSE && (x <- 3)) 4*7 # If you use &&, only the first
                                    # part of <cond> is evaluated.
> x
[1] 2
```

When you use the long form \|, the logical conditions after if are evaluated from left to right until a TRUE is found. You should therefore use the long form, since it will make your code run faster.

- The function all. equal() for the if() instruction

When using the if() instruction, you should:

- use isTRUE (all.equal (x, y)) rather than $x==y$;
- use !isTRUE(all. equal (x, y)) rather than $x!=y$.

This point is illustrated in the following example, in which x and y are not exactly equal, because of machine precision:

```
> x <- 0.1
> y<- 0.1
> x==y
[1] TRUE
> x <- 0.2-0.1 # It seems that
> y<- 0.3-0.2 # x is equal to y.
> x == y # This is not the case, because the computer
    # has a limited precision. See section
    # 3.9.
[1] FALSE
> all.equal(x,y,tolerance=10^-6) # The function all.equal()
                                # solves this issue.
[1] TRUE
```


Tip

The function all. equal () takes an optional argument tolerance, used to fix the tolerance limit below which the difference between two values is taken to be zero.

3.7.2 Loop instructions

A loop is a control structure which allows a portion of code to be executed several times in a row, until an exit condition is satisfied, or until a pre-specified number of loops has been reached.

There are three loop instructions in R: for, while and repeat. In addition, the reserved words next and break give extra control on code execution. The instruction break immediately exits the current loop. The instruction next takes the program execution back to the beginning of the loop, so that the next iteration (if it exists) of the loop is then executed. For the current iteration, no instruction after next is executed.

- Instruction for

The syntax for this instruction is as follows:

```
for (i in vect) <Instructions>
```

Here are two examples:

```
> for (i in 1:3) print(i)
[1] 1
[1] 2
[1] 3
> x <- c(1,3,7,2)
> for (var in x) print(2*var)
[1] 2
[1] 6
[1] 14
[1] 4
```

The following list of instructions prints a decreasing counter:

$\mathrm{n}<-100$;

for (i in 1:n) \{ flush.console();cat(n-i," r ");Sys.sleep(0.1)\}

- Instruction while

The syntax for this instruction is as follows:

```
while(<condition>) <expression>
```

For example:

```
> x <- 2
> y <- 1
> while(x+y<7) x <- x+y
> x
[1] 6
```

- Instructions next and break

```
> for (i in 1:4) {
+ if (i == 3) break
+ for (j in 6:8) {
+ if (j==7) next
+ j <- i+j
}
+ }
> i
[1] 3
> j
[1] 10
```


- Instructions repeat and break

```
> i <- 0
> repeat {
+ i<-i+1
+ if (i==4) break
+ }
```


Warning

Whenever possible, it is better to avoid loops in R , since they often slow down the execution (as measured by the function system.time()). Indeed, most operations in R are vectorized, which means that they can operate on vectors, and these calculations are done in a compiled language, which is much faster.

```
> system.time(for (i in 1:1000000) sqrt(i))
    user system elapsed
    0.342 0.001 0.343
> system.time(sqrt(1:1000000))
    user system elapsed
    0.018 0.004 0.022
```

Moreover, functions such as apply(), tapply() and sapply() give a way to use loops in an implicit, and often very useful, manner.

SECTION 3.8

Creating functions

We saw in section 1.1.4, page 41, some brief notions on executing functions in R. The R language can also be used to create your own functions. We propose an overview in this section. The reader should linger on all the code given in this section, to ensure it is well understood.

See also

A more formal presentation of function writing is given in chapter 6 .

To illustrate simply the function creation process, we shall focus on the computation of the Body Mass Index (BMI), from the weight (in kg) and the height (in m), using the well-known formula

$$
B M I=\frac{W e i g h t}{H e i g h t^{2}} .
$$

This is easily programmed in \mathbf{R} as follows:

```
> BMI <- function(weight,height) {
+ bmi <- weight/height^2
+ names (bmi) <- "BMI"
+ return(bmi)
+ }
```


Warning

The function return() is optional in the code above, but you should take the habit of using it. Indeed, there are contexts where it is essential:

```
> f <- function(x) {
+ res <- vector("numeric",length(x))
+ for (i in 1:10) {
+ res[i] <- rnorm(1) + x[i]
+ }
+ # Forgot to include return(res)
+ }
> f(1:10) # Does not output anything!
```

We can now execute the function BMI () we just created:

```
> BMI (70, 1. 82)
    BMI
21.13271
> BMI (1.82,70) # Note that it is not possible to swap the
                        # arguments of a function,
            BMI
0.0003714286
> BMI (height=1.82,weight=70) # unless they are preceded by their
                                    # names.
        BMI
21.13271
```

This function only outputs a single value. The code below outputs a list of several variables.
> BMI <- function(weight, height) \{

+ bmi <- weight/height^2
+ res <- list (weight, height, bmi)
+ return (res)
$+\}$
The next instruction shows that the new function BMI() returns a list of unnamed elements.
$>\operatorname{BMI}(70,1.82)$
[[1]]
[1] 70
[2]]
[1] 1.82
[[3]]
[1] 21.13271

Do it yourself

Write a function called biroot () which calculates the roots of a polynomial of order 2, i.e. the values x which solve the equation $a x^{2}+b x+c=0$. Recall that they can be complex, and are given by

$$
x=\frac{-b \pm \sqrt{\Delta}}{2 a}
$$

with

$$
\Delta=b^{2}-4 a c .
$$

If $\Delta=0$, there is only one solution; return only that value. If $\Delta<0$, then the square root of Δ is the complex number z such that $z^{2}=\Delta$. (Hint: use the instruction as.complex(Delta)).
Compare the results of your function with those given by the function polyroot() (remember to use the online help for this function: ?polyroot).

To name the elements of the list, you can use the following code

```
> BMI <- function(weight,height) {
+ bmi <- weight/height^2
+ res <- list(Weight=weight,Height=height,BMI=bmi)
+ return(res)
+ }
which gives the following result:
```

```
> BMI (70,1.82)
```

\$Weight
[1] 70
\$Height
[1] 1.82
\$BMI
[1] 21.13271

Now assume we wish to calculate the BMI of several individuals, for example John and Peter:

```
> John <- c(74,1.90)
> Peter <- c(70,1.82)
> mydata <- rbind(John,Peter)
```

We might use the following code:

```
> for (i in 1:2) {
+ print(BMI (mydata[i,1],mydata[i,2]))
+ }
$Weight
John
    74
$Height
John
    1.9
$BMI
    John
20.49861
$Weight
Peter
    70
$Height
Peter
    1.82
$BMI
    Peter
21.13271
```

But the attentive reader will have noticed that many \mathbf{R} functions (including the division, multiplication and exponentiation operators) work very well with vectors. The following output is thus not surprising:

```
> BMI (c(70,74),c(1.82,1.90))
$Weight
[1] 70 74
```

```
$Height
[1] 1.82 1.90
$BMI
[1] 21.13271 20.49861
```

The following code illustrates the use of an argument with a default value, as well as the function stop () which can handle some input errors.

```
> BMI <- function(weight,height,height.unit="m") {
+ if (length(weight) != length(height))
+ stop("The vectors weight and height must have the same length.")
+ if (height.unit == "cm") height <- height/100
+ bmi <- weight/height`2
+ res <- list(Weight=weight,Height=height,BMI=bmi)
+ return(res)
+ }
```


Advanced users

Using the function stop() can lead to annoyances. For example, in a simulation study, one often has to call a function repeatedly. If in one of the calls, the function returns an error, the simulation is stopped. It is advisable to use the function try (). If the function encounters an error, the error message is stored in an object without stopping the simulation.

```
> set.seed(123)
> x <- rnorm(50)
> doit <- function(x) {
+ x <- sample(x,replace=TRUE)
+ if(length(unique (x)) > 30) mean(x)
+ else {stop("too few unique points")}
+ }
> res <- lapply(1:100, function(i) try(doit(x), TRUE))
> res[8:10]
[[1]]
[1] 0.2030573
[[2]]
[1] "Error in doit(x) : too few unique pointts"
attr(,"class")
[1] "try-error"
[[3]]
[1] 0.235046
```

It is possible to classify individuals into weight categories depending on their BMI. The correspondence between BMI and categories is given in table 3.4.

Table 3.4: Correspondence between BMI and weight categories.

severely underweight	underweight	normal weight	overweight	moderate obesity	severe obesity	morbid obesity
$[15 ; 16.5[$	$[16.5 ; 18.5[$	$[18.5 ; 25[$	$[25 ; 30[$	$[30 ; 35[$	$[35 ; 40[$	$[40 ; 41]$

The next function outputs a user's weight category given their BMI.

```
> weight.category <- function(bmi) {
+ if (bmi<16.5) category <- "severely underweight" else {
+ if (bmi<18.5) category <- "underweight" else {
+ if (bmi<25) category <- "normal weight" else {
            if (bmi<30) category <- "overweight" else {
            if (bmi<35) category <- "moderate obesity" else {
                if (bmi<40) category <- "severe obesity" else {
                    category <- "morbid obesity"}}}}}}
    cat (paste("Your BMI is: ",round(bmi,3),".\n
This corresponds to category: ",category,".\n",sep=""))
}
```

Here is an example of use:

```
> weight.category(BMI (70,1.82) $BMI)
Your BMI is: 21.133.
This corresponds to category: normal weight.
```

The code of the function weight. category () can be simplified with the function switch(), as can be seen below:

```
> weight.category <- function(bmi) {
+ intervals.BMI <- c(15,16.5,18.5,25,30,35,40,41)
+ code <- as.character(rank(c(bmi,intervals.BMI),
+ ties.method="max")[1])
category <- switch(code,"2"="severely underweight",
    "3"="underweight","4"="normal weight","5"="overweight","6"=
    "moderate obesity","7"="severe obesity","8"="morbid obesity")
    cat(paste("Your BMI is: ",round(bmi,3),".\n
    This corresponds to weight category: ",category,".\n",sep=""))
+ }
> weight.category(BMI (70,1.82) $BMI)
Your BMI is: 21.133.
This corresponds to weight category: normal weight.
```

However, this function outputs wrong results when used on a vector:

```
> weight.category(BMI (c (70,74),c(1.82,1.90)) $BMI)
Your BMI is: 21.133.
This corresponds to weight category: overweight.
    Your BMI is: 20.499.
This corresponds to weight category: overweight.
```

Our function can be improved so that it works on several individuals simultaneously. Note the use of the reserved word NULL and of the function is.null() which handles shrewdly the parameter names.

```
> weight.category <- function(bmi,names=NULL) {
+ intervals.BMI <- c(15,16.5,18.5,25,30,35,40,41)
+ n <- length(bmi)
+ if (is.null(names)) names <- paste("Subject number",1:n)
+ if (length(names) != n) stop(paste("The vector of 'names'
+ must be of length",n))
+ code <- vector("integer",length=n)
+ category <- vector("character",length=n)
+ for (i in 1:n) {
+ code[i] <- as.character(rank(c(bmi[i],intervals.BMI),
        ties.method="max")[1])
    category[i] <- switch(code[i],"2"="severely underweight"
    "3"="underweight","4"="normal weight","5"="overweight","6"=
"moderate obesity","7"="severe obesity","8"="morbid obesity")
+ cat(paste(names[i],":\nYour BMI is: ",round(bmi[i],3),".\n
+ This corresponds to weight category: ",category[i],".\n",sep=""))
}
+ }
```

Here is an example of use.

```
> weight.category(BMI (c(70,74),c(1.82,1.90)) $BMI)
Subject number 1:
Your BMI is: 21.133.
This corresponds to weight category: normal weight.
Subject number 2:
Your BMI is: 20.499.
This corresponds to weight category: normal weight.
```


Tip

In the previous function, we declared, directly with the correct length, the vectors code and corpulence thanks to the function vector(). However, it is also possible to handle a vector without a predefined dimension (ever because we do not know its length initially, or for another reason). This is illustrated on the next example, where we compute the first terms of the Fibonacci sequence, which is defined by:

$$
a_{1}=0, a_{2}=1, a_{i}=a_{i-1}+a_{i-2}, \forall i \geq 3
$$

```
> a <- c(0, 1)
> for(i in 3:10) a <- c(a, a[i-1]+a[i-2])
> a
    [1] }0
```

We could also use the function while() to display all the terms of the Fibonacci sequence until the first term greater than 1000.

```
> a <- c(0,1)
> i <- 3
> while(a[i-1]<1000) {
+ a <- c(a, a[i-1]+a[i-2])
+ i <- i+1
```

```
+ }
> a m
[12] 89 144 233
```

We could also have use the instruction break for a slightly different function.

```
> a <- c(0,1)
> i <- 3
> while(TRUE) { # Create un infinite loop.
+ a <- c(a, a[i-1]+a[i-2])
+ if (a[i]>1000) break; # Stops the loop.
+ i <- i+1
+ }
> a
[1] 
[12] 
```


Warning

The programming method presented in the previous hint is not necessarily optimal in terms of memory allocation, as we shall see in chapter 6.

SECTION 3.9

\dagger Fixed-point and floating point number representation

This (rather technical) note aims to help the \mathbf{R} user to identify and prevent some mistakes due to use of so-called floating point numbers.

3.9.1 Representing a number in a base

Given a base b (integer value, greater than or equal to 2), any real number $x \in \mathbb{R}$ can be written in fixed-point representation as follows:

$$
x=\sum_{i=+\infty}^{i=-\infty} m_{i} b^{i},
$$

where the coefficients m_{i} (also called the digits) belong to the set $\{0,1, \ldots, b-1\}$, $\forall i \in \mathbb{Z}$.

For example, the number $x=10.625$ can be written in decimal notation $(b=10)$ as:

$$
x=\mathbf{1} \times 10^{1}+\mathbf{0} \times 10^{0}+\mathbf{6} \times 10^{-1}+\mathbf{2} \times 10^{-2}+\mathbf{5} \times 10^{-3},
$$

hence the notation $\mathbf{1 0 . 6 2 5}$ which gives the coefficients of the representation (or digits). By noting that $10.625=8+2+0.5+0.125$, this same number can be written in binary notation ($b=2$; hence the only digits are 0 and 1) as:

$$
x=\mathbf{1} \times 2^{3}+\mathbf{0} \times 2^{2}+\mathbf{1} \times 2^{1}+\mathbf{0} \times 2^{0}+\mathbf{1} \times 2^{-1}+\mathbf{0} \times 2^{-2}+\mathbf{1} \times 2^{-3} .
$$

We thus have the representation of the number 10.625 in binary form $\mathbf{1 0 1 0 . 1 0 1}$, which makes explicit the coefficients of the binary representation.

Tip

The package associated with this book includes the functions dec2bin() and bin2dec () which can be used to switch from decimal to binary representation, and vice-versa.

```
> bin2dec(1010.101)
[1] 10.625
> dec2bin(10.625,3)
[1] "1010.101"
```


Note

A number with finite base 10 expansion (finite number of digits after the decimal separator) is called a decimal number. A number with finite base 2 expansion is called a dyadic number. Obviously, some numbers are neither decimal nor dyadic. Note that a dyadic number is always also a decimal number, but the converse is false. Thus a loss of information is always possible when switching from one representation to another. Furthermore, dyadic decimal fractions have the same number of digits as their binary equivalents whereas non-dyadic decimal values have infinite binary equivalents.

A computer is a machine built to work with binary numbers, because the two digits 0 and 1 are easily translated as the presence or absence of an electric current. Because fixed-point representations are often very costly in bits (a bit is a binary digit, i.e. 0 or 1), computers generally use floating point representations. These are described in the next subsection.

3.9.2 Floating point representations

3.9.2.1 Definitions

Given a base b (ex: $b=2$ for the binary system or $b=10$ for the decimal system, to cite only the two most classical systems), any real number $x \in \mathbb{R}$, can be written as:

$$
x=(-1)^{s} m b^{e}
$$

where

- $\quad s$ is called the sign bit (of x), and is worth 0 or 1 ;
- $\quad m$ is the significand or mantissa and can be written $m=m_{1} \cdot m_{2} m_{3} \cdots m_{\infty}$ where each $m_{i} \in\{0,1, \ldots, b-1\}$ is called a digit;
- $\quad e \in \mathbb{Z}$ is called the exponent.

This notation is called the floating point representation of x in base b. The integer m_{1} is the integer part of the significand, the other digits $m_{2} \cdots m_{\infty}$ are the fractional part of the significand. Note that we must impose a constraint, that the first digit be non-zero ($m_{1} \neq 0$), so as to insure that the representation is unique. Of course, this constraint cannot be applied for the particular case $x=0$.

Let us give a first example. In the decimal system, the number -0.6345 can be written in floating point representation by taking $s=1, m_{1}=6, m_{2}=3, m_{3}=4$, $m_{4}=5, m_{i}=0, \forall i>4, b=10$ and $e=-1$:

$$
-0.6345=(-1)^{1} 6.345 \times 10^{-1} .
$$

Note

This explains the name "floating point": the decimal point has been moved, to express the same number in a different way.

Actually, in a computer, any real number x is represented in a binary base, with bits (0 or 1), using the slightly different formula:

$$
\begin{equation*}
x=(-1)^{s}(1+f) 2^{(e-1023)} \tag{3.1}
\end{equation*}
$$

where s is an integer coded on a single bit (called sign bit), e is a non-negative integer coded on 11 bits (thus taking the values from 0 to $2^{11}-1=2047$), and $f \in[0 ; 1)$ is a number coded on 52 bits, thus written

$$
\begin{equation*}
f=\sum_{i=1}^{i=52} k_{i} 2^{-i} \tag{3.2}
\end{equation*}
$$

where the k_{i} 's take the values 0 or 1 . By convention, the value $e=0$ means that $x=0$, and the value $e=2047$ means that $x=+\operatorname{Inf}$ or $x=-\operatorname{Inf}$, depending on the value on s. The following two examples illustrate this:

```
> s <- 1; e <- 2047; f <- 0; x <- (-1)^s * 2^ (e-1023) * (1+f); x
[1] -Inf
> s <- 0; e <- 2047; f <- 0; x <- (-1)^s * 2^ (e-1023) * (1+f); x
[1] Inf
```


3.9.2.2 Limitations of this representation due to the significand

The vast majority of modern computers use the floating point representation. However, it is essential to note that because of physical limitations, this representation is not perfect. Indeed, the significand m can only have a limited (finite) number of digits, and the relative integer e is bounded, $e \in\left[e_{\min }, e_{\max }\right]$, since it is not possible to code an infinite number of integers on a physical machine made of a finite number of components.

Here is a simple example, which should help understand this limitation. The floating point representation in base 10 of the real number $1 / 3$ is written:

$$
1 / 3=(-1)^{0} \times 3.33333 \cdots 333 \cdots \times 10^{-1}
$$

It is of course not possible to store an infinite number of 3 s on a computer. A more striking example is the number $\pi=3.14159265358979 \cdots$ for which there is no pattern in the digits after the decimal point. But it is also true for numbers which appear simpler, such as 0.1 or 0.9 for example.

This is illustrated in the output below, for the number 0.9 , which can be written in floating point representation as $0.9=(-1)^{0} \times 2^{-1} \times(1+f)$ with $f=0.8$. However, since f is coded on "only" 52 bits (see (3.2)), the computer only keeps an approximation. The display function formatC() gives an idea of the value used by R.

```
> dec2bin(0.8,52)
[1] "0.1100110011001100110011001100110011001100110011001101"
> f <- 2^ (-1)+2^ (-2)+2^ (-5) +2^(-6)+2^(-9)+\mp@subsup{2}{}{\wedge}(-10)+\mp@subsup{2}{}{\wedge}(-13)+
+ 2^(-14)+2^(-17)+2^(-18)+2^(-21)+2^(-22)+2^ (-25)+2^(-26)+
+ 2^(-29)+2^(-30)+2^(-33)+2^(-34)+2^(-37)+\mp@subsup{2}{}{\wedge}(-38)+\mp@subsup{2}{}{\wedge}(-41)+
+ 2^}(-42)+\mp@subsup{2}{}{\wedge}(-45)+\mp@subsup{2}{}{\wedge}(-46)+\mp@subsup{2}{}{\wedge}(-49)+\mp@subsup{2}{}{\wedge}(-50)+\mp@subsup{2}{}{\wedge}(-52
> f # Careful: the display is in fact truncated.
[1] 0.8
> formatC(f,50) # Fractional part of the closest significand to
        # 0.8 that the computer can get on 52 bits.
[1] "0.80000000000000004440892098500626161694526672363281"
> formatC(0.8,50)
[1] "0.80000000000000004440892098500626161694526672363281"
```

We can now display the value stored and used by the computer instead of the valu 0.9 :

```
> formatC(0.9,50)
[1] "0.90000000000000002220446049250313080847263336181641"
> formatC((-1)^0 * 2^(-1) * (1+f),50)
[1] "0.90000000000000002220446049250313080847263336181641"
> formatC((-1)^0 * 2^(-1) * (1+0.8),50)
[1] "0.90000000000000002220446049250313080847263336181641"
```


3.9.2.3 Avoiding some numerical pitfalls

First, we shed light on a numerical oddity.
> identical(1.0-0.9,0.1)
[1] FALSE
> (1.0-0.9) == 0.1
[1] FALSE
We can now understand this output. Indeed, the numbers $1.0-0.9$ and 0.1 are represented in different ways, because even though 1 is perfectly represented, 0.1 and 0.9 are not.

```
> formatC(1.0,50)
[1] " 1"
> formatC(0.9,50)
[1] "0.90000000000000002220446049250313080847263336181641"
> formatC(1.0-0.9,50)
[1] "0.099999999999999977795539507496869191527366638183594"
> formatC(0.1,50)
[1] "0.1000000000000000055511151231257827021181583404541"
```

and we thus have:
> formatC(1.0 -
$+0.90000000000000002220446049250313080847263336181641,50)$
[1] "0.099999999999999977795539507496869191527366638183594"
> \# which is different from:
> formatC(0.1,50)
[1] "0.1000000000000000055511151231257827021181583404541"

Iip

It is better to use the function all. equal () to compare two numbers, because it includes a numerical tolerance argument.
> all.equal (1.0-0.9, 0.1,tol=10^(-6))
[1] TRUE

Warning

Do not use constructions such as while (x $!=0$) or if ($\mathrm{x}!=0$). Indeed, if x happens to take a value such as $1.0-0.9-0.1$ when your code runs, those two instructions will not behave as expected. You should use instead isTRUE (all.equal $(x, 0)$) and isTRUE (all.equal ($\mathrm{x}, 0$)).

We leave it to the reader to understand the output below.

```
> as.integer(100*(1-.34))
[1] }6
> floor(100*(1-.34))
[1] }6
> round(100*(1-.34))
[1] }6
> 100*(1-.34)-66
[1] -1.421085e-14
> floor(100*(1-.38))
[1] 62
> round(100*(1-.38))
[1] 62
> 100*(1-.38)-62
[1] 0
```


See also

You may find [7] useful in this context.

3.9.2.4 Limitations of this representation due to the exponent

- Smallest and largest numbers which can be represented.

Another problem due to the floating point notation is as follows. Since the exponent e of the representation

$$
\begin{equation*}
x=(-1)^{s}(1+f) 2^{(e-1023)} \tag{3.3}
\end{equation*}
$$

is necessarily bounded (since it is coded on 11 bits), there exist a smallest and largest real number which can be represented on a given computer. Trying to represent a number out of this range will lead to an underflow or overflow. R is rather well conceived and will return the value $-\operatorname{Inf}$ or $+\operatorname{Inf}$. The following R commands illustrate this point.

```
> .Machine$double.xmin # Smallest real number which can be coded:
[1] 2.225074e-308
> # which can also be found by:
> s <- 0; e <- 0; f <- sum(2^ (- (1:52)))
> x <- (-1)^s * 2^(e-1023) * (1+f); x
```


[1] 2.225074e-308

> .Machine\$double.xmax \# Largest real number which can be coded:
[1] 1.797693e+308
> \# which can also be found by:
$>s<-0 ; e<-2046 ; f<-\operatorname{sum}\left(2^{\wedge}(-(1: 52))\right)$
> $x=(-1)^{\wedge} s$ * $2^{\wedge}(e-1023)$ * (1+f); x
[1] 1.797693e+308

Tip

The package Brobdingnag allows handling much larger numbers.

- Gaps between two numbers.

One last warning may be useful: it is important to note that it is not possible to get some numbers between .Machine\$double.xmin and .Machine\$double.xmax (even integers).

For example, take the number 2^{150}, which is represented as:

$$
(-1)^{0}(1+0) 2^{(1173-1023)}
$$

The next number that the computer can code is given by the values $s=0, e=1173$ and $f=2^{-52}$ (smallest non-zero fractional part of the significand), i.e.:

$$
(-1)^{0}\left(1+2^{-52}\right) 2^{150}=2^{150}+2^{150-52}=2^{150}+2^{98} .
$$

There can thus be a huge "gap" (of length $2^{98} \approx 3.2 \mathrm{e}+29$ here) between two "successive" numbers!

This explains the following oddity:

```
> a <- 2^150; b <- a + 2^97; b == a
[1] TRUE
> a <- 2^150; b <- a + 2^98; b == a
[1] FALSE
```


Tip

More information on the computer's limitations in representing numbers are given by the instruction. Machine:

```
> noquote(unlist(format(.Machine)))
        double.eps double.neg.eps
        2.220446e-16 1.110223e-16
        double.xmin double.xmax
        2.225074e-308 1.797693e+308
        double.base double.digits
        2 53
    double.rounding double.guard
```

5	0
double.ulp.digits	double.neg.ulp.digits
-52	-53
double.exponent	double.min.exp
11	-1022
double.max.exp	integer.max
1024	2147483647
sizeof.long	sizeof.longlong
8	8
sizeof.longdouble	sizeof.pointer
16	8

See also
We refer the interested reader to the document What Every Computer Scientist Should Know About Floating-Point Arithmetic, available at the URL: http://biostatisticien.eu/springeR/FloatingPoint.pdf.

Memorandum

length(): length of a vector sort (): sort the elements of a vector
$\operatorname{rev}()$: rearrange the elements of a vector in reverse order
order (): return the vector of order ranks of the elements of its effective argument unique(): remove the duplicates from a vector $\operatorname{dim}()$: size of a matrix or data.frame
nrow(), ncol(): number of rows, columns
dimnames (): names of rows and columns
rownames (), colnames(): names of rows, of columns
rbind(), cbind(): merge rows, columns of a matrix
merge() : smart merge of columns
apply (): apply a function to the rows or columns of a matrix
lapply(), sapply(): apply a function to the elements of a list
$<,<=,>,>=,==,!=$: comparison logical operators
$!, \&, \& \&,|,| |:$ term-wise logical operators
any (x) : return TRUE if one of the x_{i} is true
all (x): return TRUE if all the x_{i} are true
if, else, switch: conditional instructions
for, while, repeat: loop instructions
" ["(): extraction operator for vectors and matrices
" [["(): extraction operator for lists
which(): indices of the values TRUE of a logical object
nchar(): number of characters in a string
paste(): concatenate two strings
substring(): extract sub-strings
strsplit(): split strings
grep(): search for a pattern in a string
sub(), gsub(): replace occurrences of a pattern in a string
Sys.time(): display the date
strptime(): extract dates from a string
as.POSIXIt () : convert to the POSIXlt format
difftime(): calculate the difference between two dates

3.1- What is the output of this instruction: $c(1,4) * c(2,3)$?
3.2- What is the output of this instruction: matrix ($1: 2$, ncol=2, nrow=2)?
3.3- How can you retrieve the names of rows and columns of a data.frame?
3.4- Give the instruction to merge these two tables:
$>\mathrm{X}$

	Gender	Weight
Jack	M	80
Julia	F	60
$>$	Y	
	Eyes Height	

```
Jack Blue 180
Julia Green 160
```

3.5- Give the instruction to calculate the product of all the elements (respectively: of all the elements of each column) of a numerical matrix X .
3.6- What is the output of this instruction: vec $<-\mathrm{c}(2,4,6,8,3)$; vec $[2]$; vec $[-2]$?
3.7- The height and weight of several men were measured. The measurements are stored in the vectors weight and height. Give the \mathbf{R} instruction to get the weight of the men whose height is greater than 180 cm .
3.8- What is the output of this instruction Mat<-matrix (1:12, nrow=4, byrow=TRUE); Mat[3,];Mat [2, 2:3]?
3.9- How could you replace the fourth component of the following list with $1: 10$? L<-list $(12, \mathrm{c}(34,67)$, Mat $, 1: 15, \operatorname{list}(10,11))$
3.10- What is the output of this instruction: L[[2]][2]?
3.11- Give the R instruction which outputs the weights and heights of all women in the following table (you can use the function attach()):
$>\mathrm{x}$

weight	height	gender
79	163	M
90	163	F
87	198	M
63	164	F
90	168	F
71	178	F
58	191	M
80	194	F
91	185	F
89	176	M

3.12- What is the output of this instruction: $(1: 3)[\operatorname{any}(c(T, F, T))]$? And this one: $(1: 3)[\operatorname{all}(c(T, F, T))]$?
3.13- What is the output of this instruction: $c(T, T, F) \mid c(F, T, F)$? And this one: $\mathrm{c}(\mathrm{T}, \mathrm{T}, \mathrm{F}) \mathrm{\|} \mathrm{c}(\mathrm{F}, \mathrm{T}, \mathrm{F})$?
3.14- What is the output of this instruction: nchar(c("abcd", "efgh"))?
3.15- What is the output of this instruction: paste(c("a", "b") , c("c", "d") , collapse="", sep="")?
3.16- What is the output of this instruction: strsplit (c("ab;cd"),";")?
3.17- What is the output of this instruction: substring("abcdef", $3, c(2,4)$)?
3.18- How could you transform the upper case into lower case in the following vector?
c("Jack", "Julia", "William")
3.19- Which function is used to retrieve a date from a character string?
3.20- Can you explain why the second number of the last output is not equal to 36.21313 ?

```
> logp <- function(x) log(max(x, exp(1)))
\(>x<--2.4\)
> delta <- 0.1
\(>(\operatorname{abs}(x))^{\wedge}(4+\) delta \() /(\operatorname{logp}(\operatorname{abs}(x)))^{\wedge} 2\)
```

```
[1] 36.21313
> x <- seq(from=-2.8,to=-2,length=3)
> x
[1] -2.8 -2.4 -2.0
> (abs (x))^(4+delta)/(logp(abs (x))) ^2
[1] 64.26795 34.15959 16.17594
```

Propose a solution to this problem.

Manipulating various data sets

A- Manipulating a few data sets presented at the beginning of the book

These files can be downloaded from the URL http://www.biostatisticien. eu/springeR/. Note that you can also append the file name at the end of this URL to download the file directly from R (e.g. http://www.biostatisticien.eu/ springeR/nutrien1.xls).

Data set NutriElderly:

The data file nutrition_elderly.xls, described earlier in this book, is in fact the merge of two initial files, entered by different operators. We propose to reconstruct the file for the following cases. You will only use R, and will not edit the file by hand.
3.1- The individuals are initially listed separately in two files (nutrien1.xls and nutrien2.xls). Note that the variable names are in upper case in the first file, and in lower case in the second.
3.2- Some individuals are listed in both files (nutrien3.xls and nutrien4.xls). The variable names are identical.
3.3- Same question as 3.2, but errors have slipped in and you will need to detect the corresponding individuals, for example those with a weight greater than 200 kg (nutrien5.xls and nutrien6.xls).
3.4- The variables are split between two files (nutrien7.xls and nutrien8.xls), which contain the same individuals.
3.5- Same question as 3.4 , but for one variable, too many values are missing. Remove that variable (nutrien9.xls and nutrien10.xls).
3.6- Same question as 3.4 , but for one individual, too many values are missing. Remove that individual (nutrien11.xls and nutrien12.xls).
3.7- In the file nutrition_elderly.xls, how many people are vegetarians (no meat, no fish)?

File Intima_Media_Thickness.xls:

3.1- Add a column BMI to the data.frame, with the BMI of each individual in the data file.
3.2- Retrieve the thickness of intima for the people with a BMI >30.
3.3- Extract the "athletic" women.
3.4- Extract the "non-obese" people aged 50 or other (obese=BMI>30).

File bmichild.xls:

3.1- Add a column BMI.
3.2- Extract the children with a BMI <15 and an age $<=3.5$ years.
3.3- How many such children are there?

File Birth_weight.xls:

3.1- Add a variable PTL1 (number of children born before term), with three modalities (where the third modality, coded 2, corresponds to " 2 or more" pre-term births).
3.2- Same question with FVT (number of visits to a physician), to add FVT1.
3.3- Sort the file by increasing weight at birth (BWT).
3.4- Extract the individuals whose mothers are black or white and smoke.

B- Handling missing values

Import into a data.frame the following file:
http://www.biostatisticien.eu/springeR/Infarction.xls
3.1- Which rows include missing values?
3.2- Which individuals have more than one missing value?
3.3- Which variables include missing values?
3.4- Give at least one solution to remove all rows of this data.frame which include at least one missing value. In addition to logical operators and the extracting function, you are only allowed to use:
a) the functions is.na(), prod(), apply() and as.logical();
b) the functions is.na(), apply() and any();
c) the functions is.na(), apply() and all();
d) the function complete.cases();
e) the function na.omit ().

C- Handling character strings

3.1- Import the file www. biostatisticien.eu/springeR/dept-pop.csv into a data.frame called dept.
3.2- Replace the first column with two new columns: one called numdep with the french département numbers, and another with the names.

D- Influenza epidemics in France since $1984{ }^{1}$

3.1- Import the file http://www.biostatisticien.eu/springeR/flu.csv into a data.frame called $f l u$. Make sure that you are handling missing values correctly.
3.2- Type names (flu). As you can see, flu\$Date includes dates in the format year (with century; for example: 2003) followed by the week number (two digits).
3.3- Determine the list of possible week numbers (hint: use the functions sort (), substring() and unique()).
3.4- First, you need to retrieve these dates in R in an object of class POSIXlt, for example with the function strptime(). Using Table 3.3, and this function, transform the first (oldest) date into the POSIX format.
3.5- The data are in fact updated every Monday, since the first week. Determine which is the oldest date (Day, Month, Year) for which observations exist (hint: use the calendar http://sentiweb.fr/calendrier.php).
3.6- You should notice that there is a difference with the answer to question 3.4. To solve this problem, try adding a " 1 " at the end of the first date, and transforming it again with the function strptime().
3.7- Display the ten first dates from the data files. Use the hint from the previous question to transform them with the function strptime(). Is the last date correct? If not, do you have an idea to solve this problem?
3.8- At this point, you should realize that the format of the dates in this file is not compatible with the POSIX format (which takes week numbers between 00 and 53). It is therefore not possible to directly use the function strptime() or as.POSIXlt () to transform these dates into an object type easy to handle by R. Type in the instruction:
date1 <- as.POSIXlt("Day,Month,Year",format="to be specified") where you will replace Day, Month and Year with the oldest date, and to be specified with the relevant date format.
3.9- Type in the instruction date 1 then date $1+7$. What do you notice?
3.10- Find a way to add seven days to date 1 (hint: how many seconds are there in a day?).
3.11- Now, create the vector dates containing all the dates in the POSIX format, sorted from most ancient to newest (hint: use the function nrow()).

[^0]3.12- Use the function substring() on the vector dates to replace the first column of the data.frame flu with dates in the format "year-month-day" (for example: "1992-12-07").
3.13- Use the vector dates and what you have learnt about extraction to select only the portion of the data.frame flu for dates between 15 September 1992 and 3 November 1993. Store this sub-table in an object called portion.
3.14- Calculate the number of cases of influenza over this period for each french region (hint: pay attention to missing values; use the argument na.rm). Store the results in a vector called flucases.

E- Combining tables or lists; other manipulations

3.1- Input into R the two following tables (check the row names).

$>$		
	$[, 1]$	$[, 2]$
1	1	4
2	2	5
6	3	6
$>$	b	
	$[, 1]$	$[, 2]$
3	1	5
4	2	6
5	3	7
7	4	8

3.2- Combine a and b into a new table called $a b$ containing:
> ab
$[, 1][, 2]$
$1 \quad 1 \quad 4$
25
3115
$\begin{array}{lll}5 & 3 & 7\end{array}$
$\begin{array}{lll}6 & 3 & 6\end{array}$
(hint: use rbind() and order()).
3.3- Concatenate the elements of list1 as columns of one matrix:
> list1 <- list()
> list1[[1]] <- matrix(runif(25), nr=5)
> list1[[2]] <- matrix(runif(30), nr=5)
> list1[[3]] <- matrix(runif(15), nr=5)
(hint: use the function unlist() or the function do.call()).
3.4- Concatenate the elements of list2 as rows of one matrix:

```
> list2 <- list()
> list2[[1]] <- matrix(runif(25),nc=5)
> list2[[2]] <- matrix(runif(35),nc=5)
> list2[[3]] <- matrix(runif(15),nc=5)
```

(hint: use the function unlist() or the function do.call()).
3.5- Automatically select the diseases which have tobacco as a risk factor.

> tmp		
	Disease	RiskFactors
1	Infarction tobacco, alcohol	
2	Hepatitis	alcohol
3	Lung cancer	tobacco

(hint: use the function grep()).

Creating functions

F- The French chevalier de Méré

The French chevalier de Méré was a keen gambler. He was particularly fond of two gambles. In the first one, he would frow a die four times and bet that a 6 would come out at least once. In the second one, he would throw two dice 24 times and bet that a double-6 would come out. He had noticed that the first gamble is "beneficial": there is more than a 50% chance that a 6 will come out at least once. He thought that the second gamble is also beneficial.

- Propose code for a function called fourthrows() which returns 1 if there is at least one 6 out of 4 throws of a die, and 0 otherwise. Do not use any loops .
- Propose code for a function called twentyfourthrows () which returns 1 if there is at least one double-6 out of 24 throws of two dice, and 0 otherwise. Do not use loops.
- Propose code for a function called meresix() to confirm the chevalier de Méré's intuition. It should use the first two functions and take a formal parameter nsim which gives the number of repetitions of the gamble.

Hint: use function sample().

Chapter 4
 R and its documentation

Prerequisites and goals of this chapter

- Chapter 1.
- This chapter presents the various ways to get help on the \mathbf{R} software.

SECTION 4.1
 Integrated help

4.1.1 The command help()

R includes an online help. It is very complete and very well structured for all functions and for the various symbols in the language. There are several ways to access the help files; the main method is help(). It is used in command line mode.

For example, type:
help (help)
There is an alias for the command help(): the question mark ?

```
?sum
?sd
?"+"
?"[["
```


Warning

Sometimes, this alias will not work. In those cases, you will need to use the function help() with quotation marks.

```
?function # Does not work.
help(function) # Returns an error.
help("function") # Correct call
```

Let us look at the help of the function mean().

```
?mean
(1) mean package:base R Documentation
(2) Arithmetic Mean
(3) Description:
Generic function for the (trimmed) arithmetic mean.
(4) Usage:
        mean (x, ...)
        ## Default S3 method:
        mean(x, trim = 0, na.rm = FALSE, ...)
(5) Arguments:
            x: An R object. Currently there are methods for
            numeric dataframes, numeric vectors and dates.
            A complex vector is allowed for 'trim = 0', only.
    trim: the fraction (0 to 0.5) of observations to be trim-
                med from each end of ' x' before the mean is computed
    na.rm: a logical value indicating whether 'NA' values
                should be stripped before the computation proceeds.
        ...: further arguments passed to or from other methods.
(6) Value:
        For a data frame, a named vector with the appropriate
        method being applied column by column.
        If 'trim' is zero (the default), the arithmetic mean of
        the values in 'x' is computed.
        If 'trim' is non-zero, a symmetrically trimmed mean is
        computed with a fraction of 'trim' observations deleted
        from each end before the mean is computed.
(7) References:
        Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
        _The New S Language_. Wadsworth & Brooks/Cole.
(8) See Also:
        'weighted.mean', 'mean.POSIXct'
(9) Examples:
        x <- c(0:10, 50)
        xm <- mean (x)
        c(xm, mean(x, trim = 0.10))
        mean(USArrests, trim = 0.2)
```

Here are the sections of this help file:
(1) The header of the file, with:
the name of the function: mean;

- the name of the package in which the function is included: base;
- the origin of the help file: R Documentation.

An explicit title for the function: Arithmetic Mean.
A brief description of what the function does: Description.
How to use the function; in particular, the compulsory and optional arguments: Usage.
(5) A description of the function's arguments: Arguments.
(6) Explanations on the output of the function: Value.
(7) References (statistical articles or books) related to the function's application domain: References.
(8) The See Also section, which lists similar or related functions.
(9) Examples of use: Examples.

Warning

Most help files follow this format. Make sure you understand and remember the structure of help files. You should also take the habit of checking the online help whenever you meet an unknown function, so as to understand its arguments and use.

Tip

Note that help files do not include graphs, for example those that could be produced with the code in the section Examples (9. This would be interesting, especially for all the graphical functions. One way to get them is the function example(). You can also browse the website R Graphical Manual: http: //bm2.genes.nig.ac.jp/RGM2/index.php which includes all R help files in HTML. In those files, when there are graphs, they are directly included in the section Examples.

4.1.2 Some complementary commands

In addition to the main command, help(), a few other complementary functions can be useful when looking for help on a given command. They are listed here:

- help.start (): this function opens a web browser with links to handbooks in HTML, help on functions included in all \mathbf{R} packages (also HTML), a FAQ
(Frequently Asked Questions), and a search engine of the help files. There are also other, more technical documents.

Linux

Under Linux, once you have entered the command help.start (), using the command help() will always result in the help being displayed in the web browser, rather than in the command line. To cancel this behaviour, use the instruction options (htmlhelp = FALSE). To change browser (for example firefox), use the instruction options(browser="firefox").

- help. search() or ??(): this function is useful when you do not know the name of a command. It returns a list of functions (and the package in which they are included) related to your request. Try: help. search("mean").
- $\quad \operatorname{apropos}():$ this instruction returns the names of functions which are a (potentially partial) match to the calling argument. For instance, apropos ("mean") returns the names of functions containing the word mean.

Advanced users

Note also that the function methods() returns all the methods (functions) associated with an object. For instance, try methods(summary).

- library(help=package): this command lists all functions included in a package. It gives the same results as the command help (package="package"). We advise you to try the following instructions, to list the main functions in R:

```
library(help=base)
library(help=utils)
library(help=datasets)
library(help=stats)
library(help=graphics)
library(help=grDevices)
```

The function library (lib.loc $=$. Library) returns the list of all packages (or libraries) installed on the system.

Conversely, the instruction find("function") indicates in which package a function is included.
> find("t.test")
[1] "package:stats"

- vignette(): vignettes are small PDF files which explain some notions in further detail. Type vignette() to get a list of vignettes, and for example vignette("xtableGallery") to open the PDF vignette of the package xtable.

All vignettes can also be read in a special vignette browser, from the menu "Help/Vignettes". In this browser, you can open PDF files as well as \mathbf{R} source code (as . R files), and consult directly the code of examples included in the vignette.

These three other functions might also be useful:

- data(): this command lists all datasets included in R.
- example(): this instruction lists examples of use of a function. For example, example(mean) executes the instructions included in the section Examples of the help file help(mean).
- demo(): this instruction is similar to example(), but is only available for a small number of functions. When it is available, it shows the range of possible uses of a function. For example, try demo(graphics).

- SECTION $4.2 \longrightarrow$ Help on the Web

The official R website (http://www.r-project.org/) includes a huge amount of information about this software. You should spend some time exploring it. The following sections list other sources of information.

4.2.1 Search engines

There are two main search engines for R :

- http://search.r-project.org/nmz.html

Tip

The command RSiteSearch() can be used to send a request on this website directly from \mathbf{R}. The information is then displayed in your browser.

- http://www.rseek.org/

There is also an R function finder available at the URL http://biostat.mc. vanderbilt.edu/s/finder/finder.html

4.2.2 Message boards

There are many message boards about R , where you can ask your questions. One message board with a lot of traffic is: http://r.789695.n4.nabble.com/.

4.2.3 Mailing lists

A mailing list is a specific kind of e-mail, which sends messages to a large number of subscribers.

There are several mailing lists about \mathbf{R}. The main ones are:

- https://stat.ethz.ch/mailman/listinfo/r-help
- http://blog.gmane.org/gmane.comp.lang.r.general
- http://www.r-project.org/mail.html
- R-announce: https://stat.ethz.ch/mailman/listinfo/r-announce

The website http://r-project.markmail.org can be used to search the archives of these lists.

You need to follow a few rules to post a message on these lists, as described here: http://www.r-project.org/posting-guide.html.

A list dedicated to Mac users: https://stat.ethz.ch/mailman/ listinfo/r-sig-mac.

4.2.4 Internet Relay Chat (IRC)

IRC (Internet relay chat) is a real-time messaging service. You can use it to chat with other Internet users on pre-defined themes. The IRC channel on the \mathbf{R} software is called (\#R), on the freenode server.

To access it, you can either use client-side software such as xchat (www. xchat. org), or use your browser, through websites such as http://java.freenode. net/.

To connect to this channel using xchat, type in these instructions:

```
/server irc.freenode.net
```

/join \#R

4.2.5 Wiki

A wiki is a website where pages can be freely edited by visitors. Wikis are used to aid collaborative writing with minimal constraints.

There is a wiki about R here: http://wiki.r-project.org/.
\square

4.3.1 Online

Literature about \mathbf{R} is available online in many forms:

- Task Views: lists of packages useful in a given domain, grouped by themes. A website describing Task Views is available at the URL http://cran. r-project.org/web/views/.
- Frequently Asked Questions (FAQ): Frequently Asked Questions about R are listed here: http://cran.r-project.org/faqs.html
- Specialized journals: two online journals deal with the \mathbf{R} software: the \mathbf{R} Journal, previously known as R News (http://journal.r-project.org), and the Journal of Statistical Software (http://www.jstatsoft.org).
- Handbooks: many handbooks are available as a PDF on the \mathbf{R} website. The one you are holding will soon be there: http://cran.r-project.org/ other-docs.html

4.3.2 Printed material

Many books have been published about R recently. We find the following to be the most interesting.

- Data Analysis and Graphics Using R: An Example-based Approach [26]
- The R Book [12]
- Statistics and Data with R [10]
- Software for Data Analysis: Programming with R [8]
- Lattice: Multivariate Data Visualization with R [36]
- \quad R for SAS and SPSS users [32]
- Introductory Statistics with R: An Applied Approach Through Examples [13]
- A First Course in Statistical Programming with R [6]
- A Handbook of Statistical Analyses Using R [15]
- A Beginner's Guide to R [42]
- R Cookbook [39]
- $\quad R$ in a Nutshell [1]
- The Art of R Programming [28]
- The R Inferno [7]

Memorandum

help(), ?(): get help on a function or a symbol help. search(): list of functions relevant to your request apropos(): list of function names which include the request
library (help=package): list of all functions in a package
data(): list of all datasets available in \mathbf{R}
example(): execute the Examples section of the corresponding help file
demo(): launch a small demonstration of the possible uses of a function vignette(): open a PDF file with details on a function
help.start (): open the HTML version of the R help files
RSiteSearch(): start a request on the official R website search engine

4.1- Which R instruction should you type to get help on the function mean()?
4.2- Explain the purpose of the command apropos().
4.3- Explain the purpose of the command example().
4.4- Explain the purpose of the command RSiteSearch().
4.5- How is a help file structured?
4.6- Which command would you use to get the list of functions available in the package stats?
4.7- Explain how to display a dataset available in \mathbf{R}.
\square Worksheet

Where to find information

4.1- Find the \mathbf{R} function which lists all combinations of k elements out of n.
4.2- Use this function to list all combinations of three elements out of $c(5,8,2,9)$.
4.3- Find the dataset available in R which gives the rates of violent crimes in the USA.
4.4- Describe the contents of this dataset.
4.5- Subscribe to the mailing list https://stat.ethz.ch/mailman/listinfo/ r-help.
4.6- Read the rules to follow before asking a question (http://www. r-project.org/posting-guide.html).
4.7- Find out how to unsubscribe from the mailing list.
4.8- Using the method of your choosing, join the IRC channel R and start a polite conversation with channel members.
4.9- Register on the message board http://r.789695.n4.nabble.com/.
4.10- Read the R FAQ for Windows. Try to understand the meaning of $T A B$ completion.
4.11- Use TAB completion to list all files in the current directory.

Chapter 5
 Drawing curves and plots

Prerequisites and goals of this chapter

- Reading previous chapters.
- This chapter describes the graphical possibilities of R, but does not go as far as expert graphical functions such as hist(), barplot(), and so on. These functions are described in Chapter 9. We show generic ways to make adjustments to most plots you can draw. Note that the excellent website http://addictedtor.free.fr/graphiques/ gives a broad overview of the graphical possibilities in R.

Graphics windows

5.1.1 Basic graphics windows; manipulation; saving

All plots created in \mathbf{R} are displayed in special windows, separate from the console. They are called " R graphics: Device device-number", where device-number is an integer giving the number of the window (or device).

To open a graphics window, use the command windows() or win. graph().
This command takes several arguments. Some are briefly described in the following table:

| width | Width of the graphics window, in inches.
 height
 pointsize
 xpinch, ypinch
 xpos, ypos |
| :--- | :--- | | eight of the graphics window, in inches. |
| :--- |
| Default font size. |
| Double. Pixels per inch, horizontally and vertically. |
| Integer. Position of the upper left corner of the window, in pixels. |

Linux

Under Linux, the command is X 11 () instead of windows().

Mac

On a Macintosh, the command is quartz().

When several graphics windows are open, only one is "active". This is the window in which all graphical events occur. Each window is associated with a device number; the console is number 1 .

Here are a few functions to manipulate graphics windows, using their device number.

dev.off(device-number)	lose window device-number (if no device number is specified, the current active window is closed).
graphics.off()	Close all open graphics windows. dev.list () dev.set (device-number) Return the device numbers of open graphics windows. dev.cur()
Activate window device-number. Return the device number of the active window (1 for the console).	

Note that once a plot has been drawn, it can be saved to a file with the command savePlot(), as follows:

```
savePlot(filename="Rplot",
    type=c("wmf", "png", "jpeg", "jpg", "bmp",
        "ps", "pdf"),device=dev.cur())
```

The argument filename is the name of the file under which the plot should be saved; type is the file type (Windows metafile, PNG, JPEG, BMP, PostScript or PDF) and device is the device number of the window with the plot to be saved (by default, the active window). Note that the available file types may depend on your operating system.

```
> hist(runif(100))
> savePlot(filename="mygraph.png",type="png")
```


Two other instructions can be used in this context:

- dev.copy2eps(file="mygraph.eps")
- dev.copy2pdf(file="mygraph.pdf")
which respectively create Postscript and PDF files.

There are other functions to save your plots under useful formats: postscript(), pdf(), pictex(), xfig(), bitmap(), bmp(), jpeg(), png(), tiff(). However, they are used in a slightly different way: first, type the name of one of these instructions, then draw your plot, and finish by calling dev.off(). Note that using these commands does not display the plot on the screen.

```
> pdf(file="mygraph.pdf")
> hist(runif(100))
> g <- dev.off()
```


5.1.2 Splitting the graphics window: layout()

If you want to draw several plots in the same window, \mathbf{R} offers the possibility of splitting that window in as many boxes as needed.

A first possibility is the function par() with the argument mfrow (read the warning in Section 5.7 about the function par()). For instance, the following example splits the graphics window into three rows and two columns. Every time you call the drawing of a function, one of the small boxes is filled, row by row (the command mfcol is used to fill column by column), as shown in the following figure:
> par (mfrow=c $(3,2))$

Fig. 5.1: Effect of argument mfrow of function $\operatorname{par}()$. Numbers have been added to gain a better understanding of where future plots will be drawn.

The function layout () is used to get a more sophisticated split than with the function par(). The following example shows how this splitting is specified in an intuitive way thanks to the argument mat, to draw five separate plots.

```
> mat <- matrix(c(2,3,0,1,0,0,0,4,0,0,0,5),4,3,byrow=TRUE)
> mat
    [,1] [,2] [,3]
[1,] 2 3 0
[2,] 1 0
[3,] 0 4 0
[4,] 0}0
```

> layout (mat)

Fig. 5.2: Potential of the function layout ().

To display the previous figure in R , use the instruction layout. show (5).

Every time you call the drawing of a function, the plots are displayed in order in the numbered boxes, in increasing order of the box numbers.

Also, note that with the argument widths, you can specify the respective relative widths of the columns of mat. The same can be done for the heights of rows with the argument heights.

```
> layout(mat,widths=c(1,5,14), heights=c (1, 2, 4, 1))
```

> layout.show(5)

Fig. 5.3: The function layout () and its arguments widths and heights.

SECTION 5.2
 Low level drawing functions

5.2.1 The functions plot() and points()

The function plot () is the generic function to draw plots. It takes as input argument the coordinates of the points to draw.

Warning
You can also use the function plot() on an R object for which a graphical method is defined. Examples are given in chapters 12 and 13.

Here are the most useful arguments of this function.

Argument	Description
x	Vector of x coordinates of points to draw.
y	Vector of y coordinates of points to draw.
type	Specify the type of plotting: "p" for points, "l" for lines, " l " for both, " c " for
empty points joined by lines, "o" for overplotted points and lines, " h " for vertical	
lines, "s" for stair steps and "n" to plot nothing (but to display the window, with	
main	axes).
Specify the main title.	
slab	Specify the subtitle.
ylab	Specify the label of the x axis.
xlim	Specify the label of the y axis.
ylim	Vector of length 2. Specify the lower and upper bound for the x axis.
log	Character string which contains "x" (respectively "y", "xy" or "yx") if the x axis (respectively the y axis, both) is to be logarithmic.

> plot (1:4,c(2,3,4,1),type="b",main="Main title",

+ sub="Subtitle",xlab="Label for x ",ylab="Label for y ")

Fig. 5.4: The function plot().

Note that successive calls of the function plot() create a new plot every time, which replaces the previous one (unless the graphics window has been split, as explained above). The function points can remediate this issue by overlaying the new plot on top of the old one. It takes the same arguments as plot().
> points $(1: 4, \mathrm{c}(4,2,1,3)$, type="1")

Fig. 5.5: The function points().

The function approx () prodvides a linear or constantwise interpolation between points.

5.2.2 The functions segments(), lines() and abline()

The functions segments() and lines() are used to join points with line segments, added on to a pre-existing plot.
$>\operatorname{plot}(0,0, " n ")$
$>$ segments $(x 0=0, y 0=0, x 1=1, y 1=1)$
$>\operatorname{lines}(x=c(1,0), y=c(0,1))$

Fig. 5.6: The functions segments() and lines().

The function abline() is used to draw a straight line of equation $y=a+b x$ (specified by the arguments a and b), or a horizontal (argument h) or vertical (argument v) line.
> plot (0,0,"n");abline(h=0,v=0);abline(a=1,b=1)

Fig. 5.7: The function abline().

Reproduce this plot.

5.2.3 The function arrows()

This function is used to draw arrows between pairs of points. It takes an argument length to indicate the size of the arrow head.
$>x<-r u n i f(12) ; ~ y<-r u n i f(12)$
> i <- order (x,y); x <- x[i]; y <- y[i]
$>$ plot (x, y)
> s <- seq(length (x)-1)
> arrows(x[s], y[s], $x[s+1], y[s+1]$, length=0.1)

Fig. 5.8: The function arrows ().

5.2.4 The function polygon()

As the name suggests, this function is used to draw polygons, and to fill in a polygon with a specified colour.

Enter the following command in the \mathbf{R} console:

```
example(polygon)
```


Tip

The command polygon(locator (10,"l")) is used to draw a ten-edge polygon by clicking in the graphics window on the points where the polygon vertices should be.

5.2.5 The function curve()

This function is used to draw a curve in a Cartesian coordinate system, on the interval specified by the bounds from and to.
$>$ curve ($x^{\wedge} 3-3 * x$, from $=-2$, to $=2$)

Fig. 5.9: The function curve().

Note that the argument add=TRUE can be used to indicate that the curve should be overlaid on a pre-existing plot.

Do it yourself

Use the following instruction to draw the density histogram of 10,000 random values from a normal distribution:
hist (rnorm(10000), prob=TRUE, breaks=100)
Use the function curve() to overlay on top of this histogram the density function of a $\mathcal{N}(0,1)$ distribution, given by the function dnorm().

5.2.6 The function box()

This function is used to add a box around the current plot. The argument bty manages the type of box; the argument lty manages the type of line used to draw the box. Note that by default, the function plot() adds a box, unless it is given the argument axes=FALSE.
> plot(runif(7), type $=$ " h ", axes $=$ FALSE)
> box(lty = "1373")

Index

Fig. 5.10: The function box ().

$\left\lceil^{\text {SECTION } 5.3}\right.$ Managing colours

5.3.1 The function colors()

This function returns the names of the 657 colours known to \mathbf{R}.

Tip
If you want to get the different shades of orange, you can use the instruction

```
> colors() [grep("orange",colors())]
```

[1] "darkorange" "darkorange1" "darkorange2" "darkorange3"

```
[5] "darkorange4" "orange" "orange1" "orange2"
[9] "orange3" "orange4" "orangered" "orangered1"
[13] "orangered2" "orangered3" "orangered4"
```

These colours can be used in your plots, for example with the argument col of the function plot ().
> plot(1:10,runif(10),type="1", col="orangered")

Fig. 5.11: The argument col of function plot().

See also

Note that you can also change the colour of the other elements of the plot, such as the axes or the title. To this end, refer to Section 5.7, page 174, which deals with the function par().

5.3.2 Hexadecimal colour coding

R gives the possibility of using hexadecimal colour coding, for example with the argument col of the function plot(). Each colour is coded as its decomposition into three base colours: red, green and blue. Each component can take a value between 0 and 255 (0 : complete absence of the colour; 255: saturation of the colour).

Hexadecimal coding of these 256 values gives codes between 00 and $F F$.
Here are few examples of colours:

```
Black: #000000
White: #FFFFFF
Almond green: #82C46B
Lemon yellow: #F7FF3C
Peacock blue: #048B9A
Midnight blue: #10076B
```

Note that you can use the function rgb () to get the hexadecimal code of a colour from its decomposition into red, green and blue.

```
> rgb(red=26,green=204,blue=76,maxColorValue = 255)
[1] "#1ACC4C"
> rgb(red=0.1,green=0.8,blue=0.3)
[1] "#1ACC4D"
```

The function col2rgb() does the reverse operation:

```
> col2rgb("#1ACC4C")
    [,1]
red 26
green }20
blue }7
```

You can even get transparency, with the argument alpha of the function rgb() :
$>$ curve (sin (x), lwd=30, col=rgb(0.8,0.5,0.2),xlim=c ($-10,10$))
$>$ curve (cos $(x), l w d=30, \operatorname{col}=r g b(0.1,0.8,0.3, a l p h a=0.2)$, add=T)

Fig. 5.12: The argument alpha of function rgb().

If your graphics card allows it, R can thus handle up to 256^{3} colours, or over 16 million colours. The next example uses the function rainbow() and should give you an idea of this range.
> pie(rep (1, 200), labels = "", col = rainbow (200), border = NA)

Fig. 5.13: An example using function rainbow ().

You can also add to R the package RColorBrewer. This package can be used to automatically create ideal colour palettes for beautiful presentations: shades of a colour, complementary or diverging colours.

```
> require("RColorBrewer")
```

> display.brewer.all()

Fig. 5.14: The function display.brewer.all() from package RColorBrewer.

5.3.3 The function image()

This function creates and displays a grid of coloured or grey-scale rectangles. The rectangles are also called pixels (picture elements). It can be used to display 3D or spatial data, i.e. images.

```
> X <- matrix(1:12,nrow=3)
> X
\begin{tabular}{rrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & 1 & 4 & 7 & 10 \\
{\([2]\),} & 2 & 5 & 8 & 11 \\
{\([3]\),} & 3 & 6 & 9 & 12
\end{tabular}
```

```
> colours <- c("orange","orangered","red","lightblue",
+ "blue", "white","lightgrey","grey",
"darkgrey", "yellow", "green", "purple")
> image(X,col=colours)
> text(rep (c(0,0.5,1),4),rep(c(0,0.3,0.7,1), each=3),1:12, cex=2)
```


Fig. 5.15: The function image().

The numbers in the boxes were added using the function text () which is introduced later on.

Warning

Beware of how the coloured rectangles are organized: left to right and bottom to top. It is therefore an anticlockwise 90 degrees rotation of the display of the contents of the matrix X .

You can get a display coherent with how the data are organized in the matrix X , as follows:
> image (as.matrix(rev(as.data.frame(t(X)))), col=colours)
$>\operatorname{text}(\mathrm{rep}(\mathrm{c}(0,0.33,0.67,1)$,each=3),rep(c(1,0.5,0),4),1:12,cex=2)

Fig. 5.16: The function image() with a coherent display of the data.

Do it yourself

Install and load the package caTools. Use the function read.gif() of this package to read the file http://www.biostatisticien.eu/springeR/ R.gif. Use the function image() to display it in R. Use the colours given by read.gif() and display the image in the correct orientation.

- SECTION $5.4 \longrightarrow$ Adding text

5.4.1 The function text()

This function is used to add text to a plot. A very interesting feature is that it can also be used to add mathematical formulae. In addition to the string itself, you need to specify the x and y coordinates of the center of the string. To display a mathematical expression, use the function expression(). The bquote() function can also be useful.
> plot(1:10, 1:10, xlab=bquote(x[i]), ylab=bquote(y[i]))
> text(3,6,"some text")
$>$ text (4,9, expression (widehat (beta) $==\left(X^{\wedge} T * X\right) \wedge\{-1\} * X^{\wedge} T$ * y))
> p <- 4; text(8,4,bquote (beta[.(p)])) \# Combining "math" and
\# numerical variables.

Fig. 5.17: The function text().

Tip

Use the command demo(plotmath) to see the various possibilities of adding mathematical expressions to a plot. This will also show the relevant commands.

Do it yourself

Plot a point at the coordinates (1,1). Then use the function text () to add the text "ABC", also at the coordinates $(1,1)$. Observe the effect of the argument pos, which takes the values 1 (below), 2 (left), 3 (above) or 4 (right).

5.4.2 The function mtext()

This function is used to add text in the margins of the graphics window. It can also be used to add mathematical formulae.

It takes an argument side (1=bottom, 2=left, 3=top or $4=$ right) to specify which margin the text should be added in.

```
> plot(1:10,1:10)
> mtext("bottom",side=1)
> mtext("left",side=2)
> mtext("top",side=3)
> mtext(expression(x^2+3*y+hat (beta)),side=4)
```


Fig. 5.18: The function mtext ().

- SECTION 5.5
 Titles, axes and captions

5.5.1 The function title()

This function is used to add titles to a plot: a main title above the plot with the argument main, a subtitle below the plot with the argument sub, a label for the x axis with the argument xlab , and a label for the y axis with the argument $y l a b$. Note that these arguments can also be specified directly when calling graphical functions such as plot().
> plot.new()
> box()
> title(main = "Main title", sub = "Subtitle",

+ xlab = "x label", ylab = "y label")

Fig. 5.19: The function title().

Fig. 5.20: Plot title on several lines.

5.5.2 The function axis()

This function adds an axis to a pre-existing plot. You can specify on which side to draw the axis, the position of ticks, and several other arguments.

Note

In general, you will only need the function axis when you wish to control the details of the axes. To this end, you can first draw a plot (for example with the function $\operatorname{plot}()$) without the axes, with the argument axes=FALSE.

Here are a few of the main arguments of the function axis().

```
Argument|Description
    side Specify on which side to draw the axis: side=1 (below), side=2 (left), side=3
        (above), side=4 (right).
    at Specify where to draw the ticks
labels Either a boolean to specify whether the ticks should be annotated, or a character
        string specifying the annotation at the ticks.
    tick Boolean specifying whether the ticks should be drawn.
    col Colour of the axis.
```

Other arguments are available and are described in the online help.

```
> plot.new()
> lines (x=c(0, 1), y=c(0,1),col="red")
> axis(side=1, at=c(0,0.5,1), labels=c("a", "b", "c"), col="blue")
```


Fig. 5.21: The function axis().

5.5.3 The function legend()

This function is used to add a caption to a pre-existing plot.
Here are a few of its arguments:

```
Argument Description
\(x, y\) Specify the coordinates of the position of the caption on the plot
legend Vector of character strings or expressions to display in the caption.
fill Vector of colours to fill the background of the caption box.
lty, lwd Integer. Line type or line width for lines in the legend. You must specify one of these arguments to get lines in the legend.
col Vector of colours of points or lines in the legend.
```

> plot (1:4,1:4, col=1:4)
> legend(x=3,y=2.5, legend=c("a","b","c","d"),fill=1:4)

Fig. 5.22: The function legend () with squares.
> plot (1:4,1:4, col=1:4,type="b")
> legend ($x=3, y=2.5$, legend=c("a", "b", "c", "d"), col=1:4,lty=1)

Fig. 5.23: The function legend() with line segments.

Many other arguments are available and are described in the online help.
\square

Interacting with the plot

5.6.1 The function locator()

It is used to place a point on a plot, or to get its coordinates with a click of the mouse. It can also be useful to add text (or a caption) at a specific location, thanks to the mouse.

Do it yourself

Enter the following instructions, then click anywhere on the plot you get.

```
plot(1,1)
```

text(locator(1), labels="Here") \# Click on the graphics window.

5.6.2 The function identify()

It is used to identify and mark points already present on a plot. The following practical should help you understand this function.

Enter the following instructions, then click next to points on the plot. Use a right-click to exit the interactive mode.
> plot(swiss[,1:2])
> $\mathrm{x}<-$ identify(swiss[,1:2], labels=rownames(swiss))
> x

SECTION 5.7

\dagger Fine-tuning graphical parameters: par()

The function par () takes many arguments to fine-tune your plots. Use this function to set (or query) general graphical parameters.

Here is how to use this instruction:

- \quad par (arg-name) outputs the default value of the parameter arg-name of the function par();
- par (arg-name=val) changes the value of the parameter arg-name to the value val;
- $\quad \operatorname{par}()$ returns the list of all graphical parameters currently in use, as well as the current values.

Warning

Before changing the values of parameters of the function par(), you should save the old values. That way, you can restore them later if needed.

Before we present the detailed use of this function, it is worth noting that the graphics window (also called device region) includes the figure region, which in turn includes the plot region. Figure 5.24 illustrates this.

Here is an (almost complete) list of the various parameters of the function par (), along with a short description. We have organized them in groups to make it easier to find relevant parameters.

- Managing the graphics window

Table 5.1: Parameters to manage the graphics window.

Name	Description
ask	Boolean. If TRUE, the user is prompted to press ENTER before a new plot is drawn. Use devAskNewPage() instead.
din*	Dimensions c (width, height) of the graphics window, in inches (stands for device region inches).
fig	A numeric vector, of the form $\mathrm{c}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2)$ giving the normalized device coordinates of the figure region, in which the plot will be drawn.
fin	A numeric vector of the form c (width, height) giving the size of the figure region, in inches (stands for figure region inches).
mai	A numeric vector of the form c (bottom, left, top, right) giving the size of the margins, in inches.
mar	A numeric vector of the form c(bottom, left, top, right) giving the number of margin lines on the four sides of the plot. The default value is $\mathrm{c}(5,4,4,2)+0.1$.
mex	mex is an expansion factor for the size of the font used to describe the coordinates in the plot margins. Note that this does not change the font size, but rather specifies, as a multiple of csi, the font size to convert between mar and mai, and between oma and omi. Its value is 1 when the device is opened, and is reinitialized when the layout is changed (cex is also reinitialized).
mfcol, mfrow	A vector of the form $\mathrm{c}(\mathrm{nl}, \mathrm{nc})$. The successive plots (or multi-figures) will be drawn in a matrix of size nl-by-nc in the graphics window, filled respectively by -columns- (mfcol) or by -rows- (mfrow). Consider the alternatives: layout() and split.screen().
mfg	A numeric vector of the form $c(i, j)$ where i and j indicate the cell of the figures matrix in which the next plot should be drawn. The figures matrix must have been pre-defined with one of the parameters mfcol or mfrow.
mgp	The margin line (in units of mex) for the axis titles, labels and lines. The default value is c ($3,1,0$).
new	Boolean, by default FALSE. If set to TRUE, the next high-level graphical command (in fact plot.new()) will not erase the old plot and will overlay the new plot.
oma	A vector of the form c(bottom, left, top, right) giving the size of the external margins (units: lines of text).
omd	A vector of the form $\mathrm{c}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2)$ giving the region inside the external margins, in NDC (= normalized device coordinates), i.e. as a proportion (in $[0,1]$) of the graphics window.
omi	A vector of the form c (bottom, left, top, right) giving the size of the outer margins, in inches.
pin	The dimensions of the plot region, in inches c (width, height).
plt	A vector of the form $\mathrm{c}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2)$ giving the coordinates of the plot region as fractions of the current figure region.
pty	A character specifying the plot region type: "s" generates a square plot region and "m" generates the maximal plot region.
usr	A vector of the form $\mathrm{c}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2)$ giving the extreme values of the user coordinates of the plot region. If a \log scale is used (i.e. par("xlog") is TRUE), then the limits in x are $10^{\operatorname{par}(" u s r ") ~}$ [1:2]. The same goes for the limits in y.
xpd	A boolean or NA. If FALSE, all plots are attached to the plot region. If TRUE, all plots are attached to the figure region. If NA, all plots are attached to the plot window. See also clip().

The following plot should help you better understand some of these parameters.

Fig. 5.24: Figure illustrating the fine management of graphical parameters.

- Managing colours

Table 5.2: Parameters to manage colours.

Name	Description
bg	Background colour of device region.
col	Colour of plot.
col. axis	Colour of axis annotations.
col.lab	Colour of x and y labels.
$\mathrm{col} . \mathrm{main}$	Colour of main title.
$\mathrm{col.sub}$	Colour of subtitles.
fg	Colour of foreground (axes and box around the plot). Sets col to the same value.

See how these parameters can be put in use:

```
> par(bg="lightgray",col.axis="darkgreen",col.lab="darkred",
+ col.main="purple",col.sub="black",fg="blue")
> curve(cos(x),xlab="xlab in darkred",main="Title in purple",
    xlim=c(-10,10),sub="sub in black")
> curve(sin(x) , col="blue", add=T)
```


Fig. 5.25: Managing the colours of a plot.

- Managing text

Table 5.3: Managing text displayed on a plot.

Name	Description
adj	The value of adj determines how character strings are adjusted in text(), mtext() and title(). A value of 0 leads to left-adjusted text; 0.5 to centred text and 1 to right-adjusted text. Any value in $[0,1]$ is allowed, and some values outside this interval sometimes also work. Note that the argument adj to the function text () also allows adj $=\mathrm{c}(\mathrm{x}, \mathrm{y})$ for different adjustments in x and in y. Note that for text (), the text is adjusted relatively to a point, whereas for mtext () and title(), it is adjusted relatively to the plot region or graphical window.
ann	If set to FALSE, high-level graphical functions will not add annotations to plots they produce (axes and main title). By default, annotations are added.
cex	A numeric value giving the character expansion coefficient for text and symbols on the plot, relatively to a reference value.
cex.axis	Character expansion coefficient for axes annotations..
cex.lab	Expansion for x and y labels.
cex.main	Expansion for main title.
cex.sub	Expansion for subtitles.
cin*	Size of characters in inches c (width, height).
cra*	Size of characters in pixels c (width, height).
crt	Numeric value specifying (in degrees) how various characters must be rotated. Must be a multiple of 90 . Compare with srt which rotates character strings.
csi*	Height of characters in inches. Identical to par("cin") [2].
cxy*	Size of the characters c(width, height) in units expressed relatively to the user coordinates. $\operatorname{par}(" c x y$ ") is equal to $\operatorname{par}($ "cin")/par("pin") times a scaling factor in the user coordinates. Note that c(strwidth(ch), strheight (ch)) for a given character string ch is usually much more accurate.
family	Name of a font family. Maximal size is 200 bytes. Each plot device puts this name in relation with a description of the font specific to the device. The default value is "", which means that the default font is used (see the device help file for further details). Other oft-used values are serif, sans and mono; Hershey fonts are also available. This can be specified in the function text ().
font	An integer specifying the font to use for text. In general, 1 corresponds to ordinary text, 2 to bold, 3 to italics and 4 to bold italics. 5 should be symbol font (Adobe encoding).
font.axis	Font for axis annotations.
font.lab	Font for labels of x and y axes.
font.main	Font for main title.
font.sub	Font for subtitles.
ps	Integer. Size of text, in points (but not of symbols).
srt	Character string rotation, in degrees. See the comment on crt. Only supported by text ().

Here is an example of use of the arguments adj and srt:

```
> par(mfrow = c(1, 3))
>vals <- c(0, 0.5, 1)
> for (adj in vals) {
+ par(adj = adj)
+ plot(0, main = paste("adj =", adj), col.lab = "red",
+ col.main = "red",type = "n")
+ text(1, 0, "abc", col = "red", cex = 2)
+ abline(h = 0, lty = 2)
+ abline(v = 1, lty = 2)
+ }
> abline(v=0.8,h=-0.5, lty=2)
> text(0.8, -0.5, "abc", col = "red", cex = 2,adj=c(0,1))
> abline (h=0.5,v=0.5,lty=2)
```

> text (0.8,0.5,"ABC", col="red", cex=2,adj=c(0.5,0.5),srt=120)

Fig. 5.26: Example of use of the arguments adj and srt.

This second example shows how to use different fonts:

```
> par(cex.axis=1.5)
> plot(1:5,y=rep(1,5),type="n",font.axis=2,font.lab=3,xlab=
+ "xlab in italics",ylab="",font.main=4,main="Title in bold italics",
+ font.sub=5,sub="Subtitle in symbol font")
> text(2,1.2,"Normal text")
> par(ps=30)
> text(3,1,"A Hershey font",family="HersheyScript")
> par(ps=14)
```

+ family="HersheyGothicEnglish")

Title in bold italics

Fig. 5.27: Using different fonts on a plot.
demo (Hershey)

- Managing axes

Table 5.4: Parameters to manage axes.

Name	Description
bty	Character string to specify the type of box around the plot (the axes). If bty is one of "o" (default value), " 1 ", "7", " c ", "u", or "]" the box looks like the corresponding character. A value of " n " hides the box.
lab	Numeric vector of the form $\mathrm{c}(\mathrm{x}, \mathrm{y}$, len) modifying how the axes are annotated. The values of x and y (approximately) specify the number of ticks on the x and y axes. len specifies the size of the labels. The default value is $c(5,5,7)$. Note that this only affects the values of the arguments xaxp and yaxp when the coordinates system is put in place, and is not used when the axes are drawn. len is not implemented yet.
las	Number in the set $\{0,1,2,3\}$. Style of the axis labels. $0=$ always parallel to the axis (default), $1=$ always horizontal, $2=$ always orthogonal to the axis, $3=$ always vertical. Note that the argument srt of par(), which manages the rotation of character strings, does no affect axis labels.
tck	Length of tick marks on axes, as a fraction of the minimum of the height and width of the drawing region. If tck $>=0.5$, then it is interpreted as a fraction of the relevant side, and if $\mathrm{tck}=1$ then a grid is drawn. The default (tck $=N A$) sets tcl $=-0.5$.
tcl	Length of the tick marks as a fraction of the height of a line of text. The default value is $-\mathbf{0} .5$. Entering tcl $=$ NA sets tck $=-0.01$.
xaxp	A vector of the form $\mathrm{C}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{n})$ giving the coordinates of the extreme ticks and the number of intervals between ticks, when par("xlog") is FALSE. Otherwise, when the scale is logarithmic, the three values have different meanings. See the online help for details. See also axTicks().
xaxs	Style for the intervals on the x axis. Possible values: "r", "i", "e", "s", "d". The style is usually controlled by the data range, or by xlim if it is specified. The style " r " (regular) first enlarges the data range by 4% on both sides, then finds an axis with pretty labels which fits in the range. The style " i " (internal) only finds an axis with pretty labels which fits the original data range. The style " s " (standard) finds an axis with pretty labels in which the original data range is included. The style "e" (extended) is similar to the style "s", but it also leaves space to draw symbols inside the bounding box. The style " d " (direct) specifies that the current axes must be used for subsequent plots. As of writing, only the styles " r " and " i " are implemented.
xaxt	A character to specify the type of x axis. A value of " n " implies that an axis is created, but not drawn. The standard value is "s".
xlog	Boolean (see log in plot.default()). If TRUE, a logarithmic scale is used (for example, after plot(*, $\log =$ "x")). For a new graphics window, the default is FALSE, i.e. a linear scale.
yaxp	A vector of the form $\mathrm{c}(\mathrm{y} 1, \mathrm{y} 2, \mathrm{n})$ giving the coordinates of the extreme tick marks and the number of intervals between these ticks, except for the logarithmic scale. See xaxp above.
yaxs	Style for the intervals on the y axis. See xaxs above.
yaxt	Character to specify the type of y axis. A value of " n " implies that the axis is created, but not drawn.
ylog	Boolean; see xlog above.

A few of these parameters are used in the following example:

```
> # Enlarge the bottom margin to leave space for the x
    # labels.
> par(mar = c(7, 4, 4, 2) + 0.1)
> # Define a box style, ten ticks in }x\mathrm{ and }y\mathrm{ ,
    # horizontal labels, and graduations of length 1 (which gives
    # a grid)
> par(bty="7", col="blue", lab=c(10,10,1), las=1,tck=1)
> # Create a plot without the }x\mathrm{ axis and without
    # x labels
> plot(1 : 8, xaxt = "n", xlab = "")
> # Add the x axis with ticks only.
> axis(1, labels = FALSE)
> # Create the label vector.
> labels <- paste("Label", 1:8, sep = " ")
> # Add the x labels to the default ticks.
> text(1:8, par("usr")[3] - 0.25, srt = 45, adj = 1,
+
    labels = labels, xpd = TRUE)
> # Add a subtitle at the bottom, on the sixth margin line (out
```

\# of 7).
> mtext (1, text $=$ "Labels for the x axis", line $=6$)

Labels for the X axis

Fig. 5.28: Labels on a plot.

- Lines and symbols

Table 5.5: Parameters for lines and symbols.

Name	Description
lend	End-of-line style. Can be specified with an integer or a character string: 0 or "round" means that a semi-circle is added at the end of a line; 1 or "butt" means that lines end straight; 2 or "square" means that a small square is added at the end of a line.
lheight	Line height multiplier. When a text extends over several lines, the height of the space between lines is found by multiplying the height of characters both by the current character expansion factor and by the line height multiplier. The default value is 1. Used in text () and strheight ().
ljoin	Line join style. Can be specified with an integer or a character string: 0 or "round" means a round join (default); 1 or "mitre" means a straight join; 2 or "bevel" means a canted join.
lmitre	Controls when straight joins are automatically converted to pointy joins. Must be greater than 1 and the default value is 10. Does not work on some peripherals.
lty	Line type. Can be specified by an integer (0=blank, 1=solid, 2=dashes, 3=dots, 4=dots and dashes, 5=long dashes, $6=$ two dashes), or by one of the character strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash" or "twodash". Note that "blank" uses invisible lines (so does not draw them). You can also give a character string (of length no more than 8) giving the length of the solid and empty segments. See the section Line type specification of the online help.
lwd	Line width in the plot (positive number), defaults to 1.
pch	Either an integer specifying a symbol or a character to replace small circles in point plots.

The following plot should help you better understand the arguments lend and ljoin.

Fig. 5.29: The arguments lend and ljoin.

The figure below shows the different symbols you can obtain with the argument pch. The type of points in a plot is controlled with the argument pch. Points 0 to 20
are of the same colour, controlled with the argument col. Points 21 to 25 also have a filling colour, controlled with the argument bg of the function points().

Values of the argument pch : points (... pch = *, cex = 2)

Fig. 5.30: The argument pch.

The following figure shows how to use the arguments lty and lwd:

```
> plot(1,1,type="n")
> for (i in 0:6) abline(v=0.6+i*0.1,lty=i,lwd=i)
> abline(v=1.3,lty="92",lwd=10)
```


Fig. 5.31: The arguments lty and lwd.

SECTION 5.8

\dagger Advanced plots: rgl, lattice and ggplot2

There are other \mathbf{R} packages to manage plots in a more advanced way. Space does not allow us to describe these packages in much detail. We shall simply give a few striking examples, in the hope that the advanced reader will want to find out more.

- Package rgl

This package is used to create pretty 3D plots, with interactive viewpoint navigation using the mouse. Try the following commands to get an idea:

```
require(rgl)
demo(rgl)
example(rgl)
```

- Package lattice

An entire book is dedicated to this package: [36]. The following example shows that in the package lattice, plots can be considered as objects (as in objectoriented programming), which some readers might find pleasing. For example, suppose that you have used the following commands to draw a graph, and that you realize you made a mistake in the title.

```
x <- 1:100
y<- sin(x)
plot(x,y,type="l",main="Cosine plot")
```

The way to resolve this issue would be to redraw the entire figure, this time with the correct title.

With the package lattice, you can avoid this hassle.

```
require(lattice)
xyplot (y ~
```

The following instruction can be used to change the title without redrawing the plot!

```
update(trellis.last.object(),main="Sine plot")
```

- Package ggplot2

We shall only mention the package ggplot2, which makes explicit the conceptual links between plots and statistical analyses. You can visite the website of this package at http://had.co.nz/ggplot2 and the website of the book devoted to it at http://had.co.nz/ggplot2/book.

Memorandum

```
dev.off(): close the active graphics window
savePlot(): save the contents of the active graphics window to a file
layout(): split the graphics window into boxes
plot(): draw points, and optionally lines between them
points(): add points to a pre-existing plot, and optionally lines between them
segments(), lines(), abline(): add lines to a plot
arrows(): add an arrow to a plot
polygon(): draw a polygon
curve(): draw a curve, specified by its equation
box(): add a box around the active plot
colors(): return the list of colour names known to R
text(): add text or mathematical symbols to a plot
mtext(): add text to the margins of a plot
title(): manage the titles of a plot
axis(): add an axis to a plot
legend(): add a caption to a plot
locator(): detect the coordinates of a point on a plot with a click of the mouse
identify(): identify a pre-existing point on a plot
par(): advanced management of all graphical parameters
```


5.1- What is the command windows() used for? And the command dev.off()?
5.2- Suppose you drew a plot with the command curve $(\cos (x))$. Which R instruction would you use to save this plot as a PDF in a file called myplot.pdf?
5.3- Give a detailed explanation of the effect of the instruction $\operatorname{par}(\operatorname{mfrow}=\mathrm{c}(3,2))$.
5.4- What is the function layout () used for?
5.5- Which command would you use to add a scatter plot to a pre-existing plot?
5.6- Which argument of the function plot() would you use to get points with dashes between them?
5.7- Name a function which draws a straight line.
5.8- What is the function curve() used for?
5.9- Which argument would you use to manage the colours in a plot?
5.10- Which function would you use to display an image? Give an instruction to display an image, the values of which are given in a matrix X , so that the output is coherent with the way X is displayed in the console.
5.11- Which function would you use to add text to a plot?
5.12- Which function would you use to find the coordinates of a point in a plot with a click of the mouse?
5.13- Give a detailed explanation of the effect of the instruction par (ask=TRUE).
5.14- Which argument of the function par() would you use to specify the type of line drawn by the function curve()?
5.15- Which argument of the function par () would you use to display other symbols instead of small circles in a scatter plot?
5.16- Give a list of instructions to display the following plot. The central axis system must be displayed in red. The cosine curve must be displayed in blue.

Sine and cosine plots

\square

Creating various plots

A- Complex numbers

5.1- Reproduce the plot on complex numbers in Chapter 1 (page 46).

B- Flag of Canada

5.1- Install the package caTools.
5.2- Use the function read.gif() to read the image http://www. biostatisticien.eu/springeR/canada.gif
5.3- Display the image with the function image().
5.4- Re-draw this flag in another window, using the functions plot(), rect() and polygon() (hint: use the function locator()).

C- Frequency tables

The following table represents scores of burning sensation for sixteen subjects in a study to test a new hydrogel bandage. The first column gives the subject number. The next columns give the score of burning sensation (on a scale from 1 to 4) for weeks 1 (W1) to 7 (W7).

Nr	W1	W2	W3	W4	W5	W6	W7
1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	2
3	1	1	1	1	1	2	3
4	1	1	1	1	1	3	4
5	1	1	1	1	2	3	3
6	1	1	1	1	1	1	1
7	1	1	1	3	4	2	2
8	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1
10	1	1	1	1	1	1	4
11	1	1	1	1	1	1	1
12	1	1	1	1	1	1	1
13	1	2	1	3	2	3	4
14	1	1	1	2	2	4	4
15	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1

We shall propose an interesting way to display these data.
5.1- For week W7, calculate the vector $\left(f_{1}, 1-f_{1}, f_{2}, 1-f_{2}, f_{3}, 1-f_{3}, f_{4}, 1-f_{4}\right)$ where f_{i} is the frequency of modality $i(1 \leq i \leq 4)$ observed in week W7 over the sixteen subjects. (Hint: use the functions tabulate(), cbind(), t() and as.vector()).
5.2- Now, use the function apply () to do the same calculation for all other weeks. Store the result in a matrix.
5.3- Use the function barplot() and the argument col=c("black", "white") on this matrix. The plot you get gives an overview of the evolution of the variable Burning sensation over time.
5.4- Change the previous plot so that the bars representing frequencies are in red. Week numbers should be in blue, and at the top of the plot instead of the bottom. Modality numbers should be on the left, in blue. Add a title to the plot.

D- Anatomic images of the brain

Data acquired during Magnetic Resonance Imaging (MRI) of the brain are usually stored as a binary file with extension *.img. We shall see how to read and display such data.
5.1- Import the file http://www.biostatisticien.eu/springeR/anat.img, which contains the image of a single brain section of 256×256 pixels, using the function readBin(). These data can be treated as a sequence of 256×256 byte pairs (raw). Store these data in an object called bytes.
5.2- When the data were recorded, each pair of bytes was in fact written in reverse (for example, the pair 0256 was recorded as 56 02). You therefore need to permute each byte pair. Store the result of this operation in x.
5.3- This sequence of byte pairs now needs to be transformed into numeric values which can be displayed graphically. With two bytes (such as 0256), you can use the instruction as.numeric ("0x0256") to get the corresponding decimal value (in this case, the result is 598). Transform x into decimal values and store the result in an object called values (hint: use the functions matrix (), apply() and paste()).
5.4- Recreate the matrix of size 256×256 containing the observations stored in values. Call this matrix X.
5.5- Use the function image() on X. Use a colour gradient of shades of grey with about one hundred shades, using the function gray ().
5.6- Note that the R package AnalyzeFMRI does exactly that. After downloading the two files http://www.biostatisticien.eu/springeR/anat.img and http://www.biostatisticien.eu/springeR/anat.hdr, and after installing package AnalyzeFMRI, you could have got the exact same result by typing:
require (AnalyzeFMRI)
Y <- f.read.volume("/path/to/anat.img") \# Replace path.
image (X, col=gray (0:1000 / 1000))

E- Drawing the map of a region of France

The package maps includes maps of various countries. We shall use it to draw the borders of a French département.
5.1- Install and load the packages maps and mapdata.
5.2- Draw the map of France: map ("france").
5.3- Get the data on borders of French regions:
france <- map("france", plot=FALSE)
5.4- Display the contents of the object france and make sure you understand how it is organized. For example, note that latitude and longitude data are stored in france\$x/france\$y for each département in france\$names (until the next NA).
5.5- Create a vector indNA containing the indices of missing values.
5.6- Create an object containing the name of the département of your choice (for example depname <- "Gard").
5.7- Create an object called inddept containing the département index depname in the vector france\$names.
5.8- Draw the map of your département.
5.9- Add a point for a place on the map. You can get the coordinates (latitude and longitude) of a place on the website http://www.gpsvisualizer.com/ geocode.

F- Representation of the geoid in France

A geoid can be seen as a gravitation equipotential surface, going through the average sea level datum.
5.1- Import the file http://www.biostatisticien.eu/springeR/raf98.gra in a matrix, using the function scan(). First, read the associated file http: //www.biostatisticien.eu/springeR/geoidformat.txt which gives a description of the file format.
5.2- Try to reproduce the plot available at http://www.biostatisticien.eu/springeR/geoid.png. Do not try to superpose the map of France yet (hint: use the functions scan(), layout (), par(), image(), axis(), contour(), legend() and rainbow()).

Chapter 6

Programming in R

Prerequisites and goals of this chapter

- Read all previous chapters first. A neophyte user can skim through this chapter on first reading. Indeed, it is well known that programming in a language requires a more advanced level than using a language.
- The aim of this chapter is to give the user the opportunity to develop new functions; in R, this corresponds to extending the language. The user can thus complete his comprehension of how \mathbf{R} works.
$[$ PECTION 6.1 Preamble

The strength of the \mathbf{R} system is that it includes a real programming language. We shall see that it offers very original programming concepts. The concept of objects is very present in \mathbf{R}. Object-oriented programming as used in \mathbf{R} is transparent for the user, in the sense that you do not need to understand the theory in order to use it. The same cannot be said for the developer who wishes to respect the spirit of \mathbf{R}.

Practical problem

As an example, this chapter will tackle the resolution of the following practical problem. Suppose that some users, beginners in R, wish to discover programming in R by developing a few functions relative to the well-known least-squares methods, ${ }^{1}$ in the context of simple linear regression. He soon realizes that two specific tasks are of interest to him: first, output a summary with estimations and the coefficient

[^1]of linear correlation; second, draw a scatter plot with the regression line. With his experience from previous chapters, this user finds it easy to produce these results from the command line. However, he would like to avoid having to type in several lines of commands every time he wishes to see the result of these two tasks, and so would like to develop two functions, easier to apply in a daily use of R. To this end, he will have the help of a more advanced user who can advise him every time he encounters a difficulty.

This practical problem should help the reader understand the use of the notions presented in this chapter

$\Gamma^{\text {SECTION } 6.2}$ Developing functions

First of all, let us introduce some basic theoretical elements to explain how to create a function in R.

6.2.1 Quick start: declaring, creating and calling functions

Declaring a function is done with the following general form:
function(<list of arguments>) <body of the function>
where

- <list of arguments> is a list of named (formal) arguments;
- <body of the function> represents, as the name suggests, the contents of the code to execute when the function is called.

Here is an example of function declaration:

```
> function(name) cat("Hello",name,"!")
function(name) cat("Hello",name,"!")
```

For \mathbf{R}, a function is a specific object. Creating a function thus corresponds to affecting the object " R function" to a variable, the name of which corresponds to the function itself. For example, to create the function hello(), you can proceed as follows:

```
> hello <- function(name) cat("Hello",name,"!")
> hello
function(name) cat("Hello",name,"!")
```

For this function to be executed, the user needs to call the function, followed by the effective arguments listed in brackets. Recall that an effective argument is the value affected to a formal argument. We will use the terms calling argument and input argument as synonyms of effective argument.

```
> hello("Peter")
Hello Peter !
```


6.2.2 Basic concepts on functions

6.2.2.1 Body of a function

The body of a function can be a simple R instruction, or a sequence of R instructions. In the latter case, the instructions must be enclosed between the characters $\{$ and $\}$ to delimit the beginning and end of the body of the function. Several R instructions can be written on the same line as long as they are separated by the character;. When the body of the function includes several \mathbf{R} instructions written on the same line, do not forget to enclose them between characters $\{$ and $\}$. Recall that on a line, any code written after the character \# is not interpreted by \mathbf{R} and is taken to be a comment.

```
> hello <- function(name) {
+ # Convert the name to upper case.
+ name <- toupper(name)
+ cat("Hello",name,"!")
+ }
> hello("Peter")
Hello PETER !
```


6.2.2.2 List of formal and effective arguments

In this section, we describe how to declare the list of formal arguments when defining a function, and how to input the list of effective arguments when calling a function.

Declaring a function

When declaring a function, all arguments are identified by a unique name. Each argument can be associated with a default value. To specify a default value, use the character = followed by the default value, as when declaring a list object (list). When the function is called with no effective argument for that argument, the default value will be used. We have used this functionality many times in previous chapters, but we now know how to include it when developing new functions. Here is an example:

```
> hello <- function(name="Peter") cat("Hello",name,"!")
> hello()
Hello Peter !
```

It seems useful to explain the difference between calling the name of the function hello and calling the function followed by brackets: hello(). The first form will
display the contents of the function, as with any other \mathbf{R} object, whereas the second form will call the function (in this case, with no argument specified). To execute a function, you always have to add brackets, and list the effective arguments if necessary.

Naming effective arguments

In \mathbf{R}, an effective argument can be entered by adding the name of the formal argument. Of course, this is of little interest when the function only depends on a single formal argument. Let us add to our function hello() the possibility of choosing a language, and see a few calls of this function.

```
> hello <- function(name="Peter",language="eng") {
    cat(switch(language,fr="Bonjour",sp="Hola",eng="Hello"), name,"!")
+ }
> hello()
Hello Peter !
> hello(name="Ben")
Hello Ben !
> hello(language="fr")
Bonjour Peter !
```

This functionality, combined with the ability to specify default values ${ }^{2}$, allows the developer to define a function with an important list of formal arguments corresponding to call options. Users can then call this function without needing to input all effective arguments. For example, they can affect a value to the last formal argument without having to type in all the other effective arguments. This way, a single function can be used for what would have otherwise required several functions. This is a true specificity ${ }^{3}$ of \mathbf{R}, which allows an innovative programming mode. For example, read the help file on the functionalities of the function seq() with the various arguments by, length. out and along.with.

Partial naming of effective arguments

In the same context, a second functionality of \mathbf{R} is that it allows calling a function without typing in the complete name of a formal argument. Consider the following calls of the function hello():

```
> hello(lang="eng")
Hello Peter !
> hello(l="eng")
Hello Peter !
> hello(l="e")
    Peter !
```

The rule for determining the formal argument corresponding to a partial name is: in the ordered list of formal arguments of the function, the selected formal argument

[^2]is the first formal argument for which there is a match between the first letters of the argument name and the partial name given by the user.

List of supplementary arguments ". . ."

You can give a list of supplementary arguments with the syntax . . . When calling the function, all "named" arguments which are not in the list of formal arguments are grouped in the structure In the body of the function, the user can then use the syntax . . as if copy-pasting the list of supplementary named arguments. This begs for an example.
> test.3points <- function(a="foo",...) print(list(a=a,...))
> test.3points("bar", b="foo")
\$a
[1] "bar"
\$b
[1] "foo"
Generally speaking, a rule of thumb for using the list of supplementary arguments ... in the body of a function is that it should be used as an argument of one or several internal function calls.

Advanced users

When . . . is included in a list of arguments and is not in last position, "partial naming of arguments" will not work for all arguments after Indeed, a partial formal argument name is then considered as a formal argument in the supplementary list.

```
> test.3points <- function(aa="foo",...,bb="bar") {
+ print(list(aa=aa,...,bb=bb))}
> test.3points(a="bar",b="foo")
$aa
[1] "bar"
$b
[1] "foo"
$bb
[1] "bar"
```

Note that the value of the formal argument aa has been modified, but that bb did not change its value. The formal argument b was created. To change the value of the second formal argument bb, you need to use the complete name.

```
> test.3points(a="bar",bb="foo")
$aa
[1] "bar"
$bb
[1] "foo"
```

A keen user of partial names might be surprised by the following output when using the function paste(..., sep $="$ ", collapse = NULL) if
he had taken the liberty of using the partial name (col) of the formal argument collapse:

```
> paste(c("foo","bar"),col=", ")
```

[1] "foo, " "bar, "
Since partial naming is ineffectual, col is considered as a second vector to paste, and the default options of the function paste() are used (i.e. sep=" " and collapse=NULL). To get the desired output, you need to use the complete name of the formal argument collapse.
> paste(c("foo","bar"), collapse=", ")
[1] "foo, bar"

Tip

Generally speaking, when you call a function, you need to specify the value of all formal arguments for which no default value is defined. If you do not, an error occurs. There are however two exceptions. The first corresponds to the case where the argument is not used in the body of the function; this of course useless and is probably due to a programming mistake. The second exception is when the developer allowed for this case in the body of the program, with the function missing().

```
> hello <- function(name) {
+ if(missing("name")) name <- "Peter"
+ cat("Hello",name,"!")
+ }
> hello()
Hello Peter !
```


6.2.2.3 Object returned by a function

The function hello() above does not return any object. It simply produces a display on the screen.

```
> res <- hello()
Hello Peter !
> res
NULL
```

In previous chapters, we have often used \mathbf{R} functions and saved the result as a variable (for example $\mathrm{x}<-\mathrm{c}(1,5,3)$, where the result of the base function c () is affected to the variable x). Since we are now interested in developing functions, let us examine how to create a function which returns an object (a result that is not ephemeral).

A general rule to return an object is to use the function return(). This instruction halts the execution of the code of the body of the function and returns the object between brackets. Here is an example:

```
> hello <- function(name="Peter") {
+ return(paste("Hello",name,"!",collapse=" "))}
> hello()
[1] "Hello Peter !"
> message <- hello()
> message
[1] "Hello Peter !"
```

The first call of the function returns the string of characters object without affecting it to a variable. The result is thus displayed on the screen, as if the user had entered in the command line the object returned by the function. The second call does not produce any display: the result of the function is redirected to the variable message, as the last instruction above shows.

Note

It is possible to return an object without using the function return(). The rule is then that the returned object is the last object manipulated in the last instruction of the body of the function (i.e. just before exiting the function). In the previous example, we could therefore have omitted the function return()

```
> hello <- function(name="Peter") {
+ paste("Hello",name,"!",collapse=" ")}
> hello()
[1] "Hello Peter !"
```

However, we discourage this practice because it does not always work, as shown below where we would expect that the function returns 10 :

```
> function.without.return <- function() {
+ for (i in 1:10) x <- i}
> function.without.return()
```

Can you tell whether the following function returns an object? If yes, what is the content of this object?

```
> hello <- function(name="Peter") {
+ msg <- paste("Hello",name,"!",collapse=" ")}
```

What do you think when you see the output below?

```
> hello()
```

There is no display, so it seems that no object is returned. But are you certain when you see the following example?

```
> message <- hello()
> message
[1] "Hello Peter !"
```

The last manipulated object is indeed the variable msg. Affecting the output to the variable message does store the contents of the variable msg from the body of the function. R can sometimes be unsettling, but you will agree that this kind of usage is not rational and a developer would probably never find it useful.

Tip

If you wish to get the same behaviour as in the last example, i.e. that the function does not display anything when called but does return an object, it is more direct to use the function invisible() - the name of this function is clear enough.
> hello <- function(name="Peter")

+ invisible(paste("Hello", name,"!", collapse=" "))
> hello()
> message <- hello()
> message
[1] "Hello Peter !"

6.2.2.4 Variable scope in the body of a function

The notion of variable scope is very important for a language which allows to develop functions. The main point is that variables defined inside the body of a function have a local scope during function execution. This means that a variable inside the body of a function is physically different from another variable with the same name, but defined in the workspace of your \mathbf{R} session. Generally speaking, local scope means that a variable only exists inside the body of the function. After the execution of the function, the variable is thus automatically deleted from the memory of the computer. We are now going to modify our function hello() by inserting controls of the contents of variables.

```
> message <- "hello Pierre !"
> message # Workspace initialization.
[1] "hello Pierre !"
> hello <- function(name="Peter",message="hello") {
+ print (message)
+ message <- paste (message, name,"!",collapse=" ")
+ print (message)
+ invisible(message)
+ }
> hello()
[1] "hello"
[1] "hello Peter !"
> message # Workspace has not been modified!
[1] "hello Pierre !"
> message <- hello()
[1] "hello"
[1] "hello Peter !"
```

```
> message # Workspace has been modified!
[1] "hello Peter !"
> message <- hello(message="Welcome")
[1] "Welcome"
[1] "Welcome Peter !"
> message # Workspace has been modified again!
[1] "Welcome Peter !"
```

A quick comment on the arguments of the function: contrary to what you might think, the variables name and message are not directly evaluated (initialized to the calling value or to the default value) before the execution of the body of the function. They are only initialized when they are first used in the body of the function. Recall that the function missing() is used to test whether a formal argument has been defined when calling the function. The only way for this functionality to be operational is by not evaluating the list of formal arguments at the beginning of the body of the function. Similarly, at the beginning of the body of the function, it is possible to get the effective call (with the completed list of arguments) by using the function match.call().

```
> test. call <- function(aa="bar",... ,bb="foo") {
    print(match.call())}
+ test.call(a="foo",b="bar")
```


Advanced users

The last function creation may not seem very useful, but once you are an advanced R developer, you might find a use to the result of the function match. call(). We shall not give details, but only a taste of what can be done in R. We shall modify the last function so that it returns the arguments split into two lists: one (called function) of effective arguments associated with formal arguments and one (called misc) of supplementary effective arguments. Note how partial naming of arguments is managed.

```
> test.call <- function(aa="bar",....,bb="foo") {
+ args <- as.list(match.call()) [-1]
+ in <- names(args) %in% names(list(...))
+ list(function=args[!in],misc=args[in])
+ }
+ test.call(a="foo",b="bar")
```

A few lines of code are enough to get the result: introspection is easy in \mathbf{R}, and has many other features in the same context. We are not trying to get you to delve straight away into this kind of development, but wish to point out the possibilities of the language.

6.2.3 Application to the practical problem

After these theoretical explanations, our beginner user tries the following function codes for simple linear regression.

```
mysummary.reg1<- function(y,x ) {
    aEst<- cov(x,y)/var(x)
    bEst<- mean(y)-aEst*mean(x)
    return(list(aEst=aEst, bEst=bEst, cor=cor(x,y)))
}
mydisplay.reg1<- function(y,x) {
        aEst<- cov(x,y)/var(x)
        bEst<- mean(y)-aEst*mean(x)
        plot(x,y)
        abline(a=bEst,b=aEst)
}
```


Note

Note that in old versions of R, you could write return(aEst=aEst, bEst=bEst, cor=cor (x,y)) but that this usage will be deprecated in future versions.

After loading these functions with a copy-paste or with the command source(), the user tests an uninteresting example.

```
> y <- rnorm(10);x <- 1:10
> mysummary.reg1(y,x)
$aEst
[1] -0.1019453
$bEst
[1] 0.7822879
$cor
[1] -0.4198245
```

```
> mydisplay.reg1(y,x)
```


Fig. 6.1: Result of the call of the function mydisplay.reg1().

We shall see later on how these functions can be enriched.

6.2.4 Operators

Calling a function under the form <function>(<list of call arguments>) is not always easy. An example is the function seq(). Of these two equivalent forms, which one do you prefer?

```
> seq(1,3)
[1] 1 2 3
> 1:3
[1] 1 2 3
```

You probably prefer the second form, since it is more synthetic (no brackets) and is thus easier to manipulate, for example when using indices (of vectors, matrices...). This form corresponds to an operator. R uses operators internally.

There are two forms of operators:

- unary operator (one argument) : <operator> <argument1>
- binary operator (two arguments) : <argument1> <operator> <argument2>
where <operator> is the operator, and <argument1> and <argument2> are the effective arguments of the operator. Here is a partial list of operators used internally by R:
$+,-1 *, 1, \uparrow, \% \frac{\%}{\circ} / \%, \&, 1,!,==,!=,<,<=,>=,>$.
A priori, these operators cannot be modified by the user. ${ }^{4}$ It is however possible to define extra operators. They are of the form \%<operator>\% and some are already available in the base system, for example \%in\% and \%o\% (seen in Chapter 3).

Tip

To display the source of the function (the operator) \%in\%, use the instruction: get (\%in\%). You can see that it uses the function match() which you may find useful.

Suppose we wish a more synthetic way to concatenate strings of characters, which is normally done with the function paste().

```
> "%+%" <- function(ch1,ch2) paste(ch1,ch2,sep="")
> name <- "Peter"
> "The life of " %+% name %+% " is beautiful!"
[1] "The life of Peter is beautiful!"
> # This is a simplification of:
> paste("The life of ", name ," is beautiful!",sep="")
[1] "The life of Peter is beautiful!"
```

Note that since the name of the function is not alphanumeric, it has to be put between quotation marks. It is of course up to you whether you prefer one or the other form. We are not trying to diminish the usefulness of the function paste(), which is a much richer function than the simple operator $\%+\%$ we have created (the creation actually used the function paste()). We are rather trying to show the flexibility of \mathbf{R} which allows, with a simple function definition, a simplification of the calling syntax.

Tip

You can use operators to define operations on sets, such as those presented on page 96 . For example, the union between two sets A and B can be defined as:
> "\%union\%" <- function(A, B) union(A, B)
$>A$ \%union\% B
[1] 4662713

[^3]
6.2.5 R seen as a functional language

R is a functional language in the sense that almost any code execution in R is done by calling functions, possibly scattered with control structures. In fact, you may be surprised to learn that the following features of \mathbf{R} are also controlled by functions. We have seen that simply calling an R object results in the display of its contents. In fact, in such an instruction, R calls (without notifying the user) the function print () with effective argument the name of the object. Because this function is often used in R, it has a particular status; we shall discuss this further later on. All affectation operations (i.e. instructions with <-) are handled by functions whose names include (no surprise here) the distinctive sign $<^{-5}$. Developing and maintaining the \mathbf{R} system can be summarized as the construction of a range of functions. First, the basic functions, included in the basic installation of R. Usually, they cannot be modified by the user ${ }^{6}$ and even when they can be, we strongly advise against it, lest your system become unusable. Second, functions developed directly in \mathbf{R}^{7} by any user. Many functions are made available by the community of \mathbf{R} developers through a system of packages (more on this later).

[^4]
6.3.1 How the internal object-oriented mechanism works

6.3.1.1 Class of an object and declaring an object

What matters in R is specifying the class of an object with the function "class<-" (). Recall that the function class() is used to check the class of an object.

[^5]```
> obj <- 1:10
> class(obj)
[1] "integer"
> class(obj) <- "Myclass"
> class(obj)
[1] "MyClass"
> class(obj) <- "OtherClass"
> obj
 [1] 1
attr(,"class")
[1] "OtherClass"
```

The object obj of class integer is now an object of class OtherClass. The last display of the object obj indicates the class of the object, where attr stands for attribute. We shall come back to the notion of attributes at the end of this chapter. For now, it is enough to understand the meaning of the display attr (, "class") which is literally the "class attribute".

## Advanced users

That said, the above is not quite true: the object obj has kept the characteristic of also being of the integer class, as the following output shows:

```
> obj*2
[1]
attr(,"class")
[1] "OtherClass"
```

Indeed, all the elements of the vector obj have been multiplied by 2 . We hope that in future versions of $\mathbf{R}$, the output of the function class() applied to such an object will be similar to [1] "OtherClass" "integer", which would better show the true nature of the object.

There are two ways of knowing whether an object is of a given class:

```
> class(obj)=="MyClass"
[1] FALSE
> inherits(obj,"MyClass")
[1] FALSE
```

The function inherits() should be preferred, as we shall see when we consider polymorphic objects with several classes.

## Tip

To see the class of the function function(), you can use this instruction:
> class(function() \{\})
[1] "function"

### 6.3.1.2 Declaring objects and using methods

The mechanism for object-oriented programming is rather simple and original in $\mathbf{R}$, compared to many other languages. To illustrate this mechanism, examine the most used example in R: the display of an object with the function print(). Examine the following R outputs:

```
> vect <- 1:10
> class(vect)
[1] "integer"
> vect
 [1] 1}1
> print(vect)
 [1]
```

No surprises so far, although it is worth pointing out that simply entering an $\mathbf{R}$ object in the command line implicitly calls the function print () with the given object as effective argument. The next example confirms this: it displays an object of the class formula, characterized by the tilde symbol ( $\sim$ ). In this example, we save in the variable form the formula expressing the relationship between y and x . Note that the objects y and x do not need to exist, since no evaluation is done when a formula is defined ${ }^{8}$.

```
> form <- y }\mp@subsup{\textrm{y}}{}{~
> class(form)
[1] "formula"
> form
y ~ x
> print(form)
y ~ x
```

Note that the function print () works differently for different classes of objects. For the variable form (of class "formula"), print() returned $y \sim x$, which is the instruction to the right of the affectation arrow. For the variable vect, calling print () returns [1] $12 \begin{array}{lllllllll} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$ when we might have expected 1:10. Here is the code of the function print ():
> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>
The body of this function indicates that the function UseMethod() must be executed. This function is a generic function in R. Like an airport traffic control tower, it is used to redirect the object, according to its class, to the correct function call. In the last example, this corresponds to calling the display function associated with the class formula, of the form print. formula(). In the object-oriented programming vernacular, such functions, of the general type <method>.<class>, are called methods. This explains the name of the function UseMethod() in the body of the

[^6]generic function print().
Here is what happens in the backstage to simply display the object form :

```
> form # Calls the function print(),
 # which calls the function print.formula().
y ~
> print.formula(form)
y x
```


## Advanced users

To check how easy it is to change the general behaviour of $R$ by changing one function, we are going to redefine the display function for the class formula. We are simply going to keep the standard display and add the string of characters "formula:".

```
print.formula <- function(obj,...) {
+ cat(paste("formula:",paste(sapply(obj[c(2,1,3)],
+ as.character),collapse="")))
+ invisible(obj)
+ }
> y }\mp@subsup{}{}{~}
formula: y x
```

If you are a beginner in $R$, you should not try to understand the details of the $R$ code leading to this result. Although the code seems simple, understanding it requires notions which we cannot go into in this book. Once again, the aim is rather to reveal the introspective power of $\mathbf{R}$, since even its base elements can be manipulated.

To restore the initial behaviour of $\mathbf{R}$ for displaying formulae, you will have guessed that it suffices to delete the new function print. formula() with the command line instruction rm(print.formula). We shall not delete it yet, because we need this behaviour later on.

If you have understood the way the function print () works, you might expect that there exists a function print.integer (). We can check this:

```
> vect
 [1] 1 1 2 0
> print.integer(vect)
Error in eval(substitute(expr), envir, enclos) :
 could not find function "print.integer"
```

The function print.integer() does not exist. In fact, when there is no method associated with a class, $\mathbf{R}$ executes the default method, which is of general form <method>.default; in this case, print.default(). Here is the output of this function for our two examples:

```
> print.default(vect)
 [1]
```

```
> print.default(form)
y ~ x
attr(,"class")
[1] "formula"
attr(,".Environment")
<environment: R_GlobalEnv>
> # Compare with:
> form
formula: y x
```

We now have a complete explanation of what happens behind the scenes. We also see that the display of a formula does not use the default method, as the last output suggests.

## Tip

Also note that the function print. default() is used to display all base objects (or structures) of R.

In summary, to define a new family of methods, denoted here by <method> (name of the family of methods you wish to create), which can be applied to any type of object, you need to:

- first declare the generic function in the following form:

```
 <method> <- function(obj,...) UseMethod("<method>")
```

- then create a method <method> for a class <class>:
<method>.<class> <- function(obj,<list of arguments>) <body of the method>
where <list of arguments>and <body of the method> are respectively an optional list of formal arguments and the contents of this method, which is nothing else than a function when called in its long version.


## Note

Note that when declaring a family of methods, you can dissociate the name of the generic function and the argument of the function UseMethod() corresponding to the name of the method to call. Thus, it is easy to define an alias, called <alias>, of the last family of methods by simply defining a new generic function:
<alias> <- function(obj,...) UseMethod("<method>")

As a result, the two command line calls <method>(<object>) and <alias> (<object>) for an object <object> of class <class> are equivalent to <method>.<class> (<object>). A rather surprising application is that a method can be translated like this. In the next example, the French voir is used as an alias of print:

```
> voir <- function(obj,...) UseMethod("print")
> voir(vect)
```

```
[1] 11 2 [lllllllll
> voir(form)
formula: y }\mp@subsup{}{}{~
> rm(print.formula) # Remove our method to return
 # to the normal mode.
> voir(form)
y ~ x
> form
y ~ x
```


### 6.3.2 Back to the practical problem

The user realizes that he has repeated the execution of the estimations of $a$ and $b$ twice when creating the functions mydisplay.reg1() and mysummary.reg1() introduced in section 6.2.3 (lines 2 and 3, and lines 8 and 9). He asks advice from a more advanced user, who suggests using the concept of object-oriented programming. He proposes to create a function ${ }^{9}$ to return an object of class reg1, so that it can be reused thereafter as first calling argument for any method of the said class.

```
reglin <- function(y,x) {
 aEst <- cov(x,y)/var(x)
 bEst <- mean(y)-aEst*mean(x)
 reg <- list(y=y,x=x, aEst=aEst,bEst=bEst)
 class(reg) <- "reg1"
 return(reg)
```

7 \}

They now define the method mydisplay.reg1() which can be used on any object of class reg1.

```
mydisplay.reg1 <- function(reg) {
 plot(regy,regx)
 abline(a=reg$bEst,b=reg$aEst)
}
mysummary.reg1 <- function(reg) return(reg)
```

5

They try a few tests.

```
> reg <- reglin \((y, x)\)
\(>\) mysummary (reg)
Error in eval(substitute(expr), envir, enclos) :
```

[^7]```
    could not find function "mysummary"
> mydisplay(reg)
Error in eval(substitute(expr), envir, enclos) :
    could not find function "mydisplay"
```

The user did not expect such errors, so he checks that the function is well defined

```
> mysummary.reg1 (reg)
$y
    [1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
    [6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
$x
    [1] 1
$aEst
[1] -0.1019453
$bEst
[1] 0.7822879
attr(,"class")
[1] "reg1"
```

The advanced user points out the mistake: the generic functions mysummary and mydisplay have not been declared and are not standard, unlike a few others such as print() and summary ().

```
1 mysummary <- function(x,...) UseMethod("mysummary")
2 mydisplay <- function(x,...) UseMethod("mydisplay")
```

The previous instructions now work:

```
> mysummary(reg)
$y
    [1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
    [6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
$x
    [1] 1
$aEst
[1] -0.1019453
$bEst
[1] 0.7822879
attr(,"class")
[1] "reg1"
> mydisplay(reg)
```

The last output produces the same plot as Figure 6.1 and is not shown here. Since the method print.reg1() has not been defined, you may wonder what would happen when we simply enter the name of the object.

```
> reg
$y
    [1] 1.8920106 0.3978771 -0.3970281 -0.2799578 0.7851185
    [6] -0.2103208 0.1921150 -0.2647256 -0.5013911 0.6021898
$x
    [1] 1
$aEst
[1] -0.1019453
```

```
$bEst
[1] 0.7822879
attr(,"class")
[1] "reg1"
```

We already knew that the method print. default () is called in such cases.

6.3.3 Information about methods

To get information about methods, \mathbf{R} has the function methods():

```
> methods("formula") # Or more directly methods(formula).
[1] formula.character* formula.data.frame* formula.default*
[4] formula.formula* formula.glm* formula.lm*
[7] formula.nls* formula.terms*
    Non-visible functions are asterisked
> methods(class="formula")
    [1] [.formula* aggregate.formula*
    [3] alias.formula* all.equal.formula
    [5] ansari.test.formula* bartlett.test.formula*
    [7] boxplot.formula* cdplot.formula*
    [9] cor.test.formula* deriv.formula
[11] deriv3.formula fligner.test.formula*
[13] formula.formula* friedman.test.formula*
[15] ftable.formula* getInitial.formula*
[17] kruskal.test.formula* lines.formula*
[19] mood.test.formula* mosaicplot.formula*
[21] pairs.formula* plot.formula*
[23] points.formula* ppr.formula*
[25] prcomp.formula* princomp.formula*
[27] print.formula quade.test.formula*
[29] selfStart.formula* spineplot.formula*
[31] stripchart.formula* t.test.formula*
[33] terms.formula update.formula
[35] var.test.formula* wilcox.test.formula*
Non-visible functions are asterisked
```


Warning

Do not confuse the two uses. The first instruction outputs all methods (of the form <method>. <class>) associated with the generic function formula. The second instruction gives all methods for the class formula.

Here are a few examples to better understand the distinction between the two uses of the function methods().

```
> class(y }\mp@subsup{\textrm{m}}{}{\textrm{x}}
[1] "formula"
```



```
    # object of class formula.
```

```
y~x+z
> update.formula
function (old, new,...)
{
    tmp <-.Internal (update.formula (as.formula (old),
                                    as.formula (new)))
    out <- formula(terms.formula(tmp, simplify = TRUE))
    return(out)
}
<environment: namespace:stats>
> form <- "Y~ x"
> class(form)
[1] "character"
> formula(form)
y ~ x
> formula.character
Error: object "formula.character" not found
```


Tip

Functions followed with an asterisk can be executed, but the body of the function cannot be visualized. You can hover use the function getAnywhere().

```
> getAnywhere(formula.character)
A single object matching 'formula.character' was found
It was found in the following places
    registered S3 method for formula from namespace stats
    namespace:stats
with value
function (x, env = parent.frame(), ...)
{
    ff <- formula(eval(parse(text = x) [[1L]]))
    environment(ff) <- env
    ff
}
<environment: namespace:stats>
```


6.3.4 Inheriting classes

In the context of our practical problem, the advanced user informs the beginner user that \mathbf{R} already has a set of functions to manage linear models. Indeed, the function $\operatorname{lm}()$ is dedicated to this kind of treatment (as we shall see in Chapter 12). However, he adds that to his knowledge, no functions exist to perform the specific treatment they propose. The two users work together to develop an extension; they want to avoid "reinventing the wheel" and make the most of existing functions in R.

In object-oriented programming, the notion of class inheritance seems appropriate for this kind of extension. Inheritance expresses the fact that an object of a certain class can also behave like all objects of supplementary classes. Such a mechanism is available in R, by associating a sequence of classes with an object. Thus, when a method is applied to an object which has a hierarchy of classes, the first class is solicited first. If the method exists for this class, it is executed. Otherwise, \mathbf{R} tests whether there is an executable method in the class hierarchy. If there is, that method is executed; otherwise, the default method is executed, as long as it is defined. Finally, if none of the above apply, an execution error is generated. Let us illustrate this notion with the problem of our two users. First, we need to declare the constructor function of the new class lm1, which inherits directly from the existing class lm.

```
lm1<- function(...) {
    obj <- lm(...)
    if(ncol(model.frame(obj))>2) stop("more than one
            independent variable")
    class(obj) <- c("lm1",class(obj)) # Or c("lm1","lm")
    obj
}
```

Apply this to the same variables as before.

```
> reg <- lm1 (y }\mp@subsup{\textrm{x}}{}{~
> reg
Call:
lm(formula = ..1)
Coefficients:
(Intercept) x
        0.7823 -0.1019
```

We can see inheritance in action. No method print.lm1() is defined, and yet the object is not displayed as with print.default(). This is because R already knows the method print. $\operatorname{lm}()$ and the object reg inherits methods from the class lm . There are several ways of checking that this object is indeed inheriting from this class; the simplest is visualizing the contents of the class attribute with the function class(). A developer might prefer the more direct function inherits().

```
> class(reg)
[1] "lm1" "lm"
> inherits(reg,"lm")
[1] TRUE
> print.lm(reg)
Call:
lm(formula = ..1)
Coefficients:
(Intercept) x
        0.7823 -0.1019
```

Line 4 (which we shall not comment) in function $\operatorname{lm} 1$ () tests whether the formula is a simple regression model formula. See what happens in this next example:

```
> lm1 (y }\mp@subsup{\textrm{N}}{}{\textrm{x}}+\operatorname{log}(\textrm{x})
Error in lm1 (y ~ x + log(x)) : more than one
                independent variable
```

We continue developing functions in the same spirit as

```
plot. \(1 \mathrm{~m} 1<-\mathrm{function}(\mathrm{obj}, . .\).\() \{\)
    plot (formula (obj),...)
    abline (obj)
4 \}
```

```
> summary(reg)
Call:
lm(formula = ..1)
Residuals:
    Min 1Q Median 3Q Max
-0.8735 -0.3772 -0.2060 0.4153 1.2117
Coefficients:
    Estimate Std. Error t value Pr(>/t|)
(Intercept) 0.78229 0.48348 1.618 0.144
x -0.10195 0.07792 -1.308 0.227
Residual standard error: 0.7077 on 8 degrees of freedom
Multiple R-squared: 0.1763, Adjusted R-squared: 0.07328
F-statistic: 1.712 on 1 and 8 DF, p-value: 0.2271
> plot(reg,main="An example of simple regression")
```


In the call of summary () above, the method summary. $\operatorname{lm} 1()$ has not been developed; hence the standard method summary. 1 m() is executed. Indeed, the object reg of class $\operatorname{lm} 1$ then inherits from the class 1 m for all standard methods proposed by \mathbf{R} to manage linear models. For the call of the method plot (), the freshly created method plot. 1 m 1 is invoked.

Note

Note that \mathbf{R} has a standard method plot. 1 m() which creates a set of plots for a more detailed analysis of the results (see Chapter 12). We have intentionally changed the default behaviour of \mathbf{R} for simple linear regression, but can still access this method by calling it explicitly (plot.lm(reg)).

Advanced users

Object-oriented programming is extremely simple in its conception. There are many object-oriented programming languages. An important difference is that the vast majority offer an encapsulation of object fields and methods; one of the points of this encapsulation is that the fields of an object can be modified within a method. This is not directly possible in \mathbf{R} because of the strict local scope of variables inside the code of an R function. The users can however adopt this kind of programming if they want to. Any method <method>. <class> () which needs to modify the fields of an object <object> (of class <class>) must then return the object itself. The user of the generic function $<$ method $>$ () can then affect the result to the initial object, as follows:
<object> <- <method>(<object>). However, this risks to slow down execution, all the more if the contents of the object fields are large. This is because the object is completely duplicated. We hope that \mathbf{R} developers will one day offer a more elegant standard functionality (analogous to what the majority of object-oriented programming languages offer), whereby only the relevant fields (of which there are usually few) are modified inside the body of the method. When you become an advanced user (as we hope), you will notice that the notion of pointers (which is very common in programming) is not directly offered to R developers (see however the function tracemem() as well as 7.8.2.2, page 294).

${ }^{\text {SECTION } 6.4} \dagger$ Going further in R programming

Before you start programming in a language, it is good to know the spirit in which it was conceived. In this section, we shall explore structures of the R language which you do not need to know when you start using R, but which you will find very useful when you decide to go deeper in your use of \mathbf{R}. These elements make \mathbf{R} an original and powerful tool. We advise beginner users to skim through this section without trying to master the concepts. All the information in this section is second-level, in the sense that a very powerful use of R is possible without it.

6.4.1 Rattributes

An R object includes primary information, conveyed by the basic structures presented in this book. There is another level of information, which we call secondary information. It is attached to an object with attributes and can be accessed with the function attributes().

```
> mat <- matrix(1:10,nrow=2)
> mat
    [,1] [,2] [,3] [,4] [,5]
[1,] 1
[2,] 
> class(mat)
[1] "matrix"
> attributes(mat)
$dim
[1] 2 5
```

We shall comment on this output later. For now, let us insist again on the fact that this mechanism is supposed to be transparent for the user, who usually cares more about the contents of the R object. For day-to-day use, we advise you not to change attributes directly. This stand is justified by the existence of many functions to manipulate attributes indirectly. However, a developer who wishes to learn more about the internal workings of \mathbf{R} will discover a few supplementary characteristics which usually enlighten the behaviour of the object. We have already indirectly manipulated the attribute class with the functions class() and "class<-"(). We shall also manipulate the three other main attributes: dim, names and dimnames. These are used a lot in the internal management of \mathbf{R}. The next example is only interesting to present how to handle attributes. The complementary function $\operatorname{attr}()$ is used to manipulate a single attribute at a time, whereas the function attributes() returns all attributes as an R list.

```
> vect <- 1:10
> attr(vect,"test") # Returns NULL, because vect has no
    # attribute test.
NULL
> attributes(vect) # NULL because vect has no attributes.
NULL
> # Affecting an attribute "attrib1" containing the character
    # string "TEST1".
> attr(vect,"attrib1") <- "TEST1"
> attr(vect,"attrib1")
[1] "TEST1"
> # Affecting an attribute "attrib2" containing the vector c(1,3)
> attributes (vect) $attrib2 <- c(1,3)
> attributes(vect)
$attrib1
[1] "TEST1"
$attrib2
[1] 1 3
> attr(vect,"attrib2")
```

```
[1] 1 3
> # Modifying attribute "attrib1" and deleting attribute
    # "attrib2"
> attributes(vect)$attrib1 <- 3:1
> attr(vect,"attrib2") <- NULL
> attributes(vect)
$attrib1
[1] 3 2 1
> # Deleting all attributes at once
> attributes(vect) <- NULL
> attributes(vect)
NULL
```

The attribute access mechanism is simple to use. This example has shown how to change attributes using the functions "attr<-" () and "attributes<-" (). The value of an attribute can be any R object. Affecting NULL to an attribute deletes it.

6.4.1.1 Attribute class

In the previous section on object-oriented programming, we have manipulated the attribute class using the functions class() and "class<-"(). This shows that you do not need to know how to manipulate attributes directly. We return to the example we used, to show that manipulating this attribute is equivalent to using the utility functions class() and "class<-"().

```
> form <- y }\mp@subsup{}{}{~}
> attributes(form)
$class
[1] "formula"
$.Environment
<environment: R_GlobalEnv>
> class(form)
[1] "formula"
> obj <- 1:10
> attr(obj,"class") # No class attribute.
NULL
> class(obj) # And yet!
[1] "integer"
> attr(obj,"class") <- "MyClass" # Equivalent to class(obj) <-
                                    # "MyClass".
> class(obj)
[1] "MyClass"
```

There is nothing left to say about this attribute, even though it plays a central role in object-oriented programming in \mathbf{R}.

6.4.1.2 Attribute dim

The attribute dim plays an important role in the behaviour of matrix and array objects. Here is an example with a matrix:

```
> mat <- matrix(1:12,nrow=2)
> mat
    [,1] [,2] [,3] [,4] [,5] [, 5] [ 4 0
[2,] 
> attr(mat,"dim")
[1] 2 6
> attributes(mat)
$dim
[1] 2 6
> attr(mat,"dim") <- c(3,4) # Changing shape: 3 rows and 4
                                # columns.
> mat
\begin{tabular}{rrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & 1 & 4 & 7 & 10
\end{tabular}
[2,] 2 5 8 11
[3,] 3
> attributes(mat)$dim <- c(2,6) # Back to the initial shape.
> mat
\begin{tabular}{rrrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} & {\([, 6]\)} \\
{\([1]\),} & 1 & 3 & 5 & 7 & 9 & 11
\end{tabular}
```

In this example, changing the attribute dim allowed us to change the shape of the matrix. We have already mentioned that attribute management is meant to be transparent for the user, so you might expect there to exist similar functions with more user-friendly names. For this example, we could have used the functions $\operatorname{dim}()$ and "dim<-" () :

```
> dim(mat)
[1] 2 6
> dim(mat) <- c(1,12) # Changing shape: 1 row and 12 columns.
> mat
[1, [,1] [r,2] [, 3] [,4] [,5] [,6] [,7] [, 8] [,9] [,10] [,11]
    [,12]
[1,] 12
> dim(mat) <- c(2,6) # Back to the initial shape.
```

To really understand how \mathbf{R} represents objects such as matrices and arrays, let us analyse the following output:

```
> mat
[1,] [,1] [,2] [, 3] [,4] [,5] [, 6]
[2,] 2
> class(mat)
[1] "matrix"
> dim(mat) <- NULL # Or attributes(mat) $dim<-NULL or
                                    # attributes(mat) <- NULL.
> mat
    [1] 11 2 1 3 [llllllllllll
> is.vector(mat)
[1] TRUE
```

```
> class (mat)
[1] "integer"
\(>\operatorname{dim}(\) mat \()<-c(2,2,3)\)
> mat
, , 1
    [,1] [,2]
\([1] \quad 1 \quad\),
\([2] \quad 2 \quad\),
, , 2
    \([, 1][, 2]\)
\([1] \quad 5 \quad\),
\([2] \quad 6 \quad\),
, , 3
\([1\),\(] [, 1] 2]\)
[2,] 1012
> is.vector (mat)
[1] FALSE
> class (mat)
[1] "array"
```

When we delete the attribute dim, the object mat becomes a simple vector. When we affect a vector of three integers to this attribute, the object mat becomes an array of dimension 3. The different behaviours of vectors, matrices and arrays thus stem from the value of the attribute dim.

Warning

Although the display is the same, a vector and a single-index array are treated differently by R, as shown by these few lines of code:

```
> dim(mat) <- 12
> mat
    [1] 11 1. 2 3 4
> is.vector(mat)
[1] FALSE
> class(mat)
[1] "array"
> identical(mat,1:12)
[1] FALSE
> dim(mat) <- NULL
> mat
[1] 11 2 < 3
> is.vector(mat)
[1] TRUE
> class(mat)
[1] "integer"
> identical(mat,1:12)
[1] TRUE
```

It looks like we have said everything about the attribute dim, but there is one last application worth noting. The only difference between a vector and a list is that
the elements of a vector must all have the same type. Matrices and arrays usually contain elements of the same nature as well; this constraint is very important for matrix operations. But as storage structures, you could imagine extending the matrix and array concepts to lists, by affecting the dim attribute, as is done with vectors. The documentation files for the matrix() and array() instructions show that this is the case, since the first calling argument of these functions can be a list instead of a vector. The next example applies this to a matrix; the same could be done with an array, as long as the number of elements in the list agrees with the dimension.

```
> lmat <- matrix(list(7,1:2,1:3,1:4,1:5,1:6),nrow=2)
> lmat # Returns the structure and not the contents, which
    # are too difficult to display.
    [,1] [,2] [,3]
[1,] 7 Integer,3 Integer,5
[2,] Integer,2 Integer,4 Integer,6
> dim(lmat)
[1] 2 3
> is.list(lmat)
[1] TRUE
> lmat[1,2] # Extract the element at row 1 and column 2.
[[1]]
[1] 1 2 3
> lmat[,-2] # Extract the submatrix with the second column
    # removed.
        [,1] [,2]
[1,] 7 Integer,5
[2,] Integer,2 Integer,6
> dim(lmat) <- NULL
> lmat # This is just a list now.
[[1]]
[1] 7
[2]]
[1] 1 2
[[3]]
[1] 1 2 3
[[4]]
[1] 1 2 3 4
[[5]]
[1] 1 2 3 4 5
[[6]]
[1] 1 2 3 4 5 6
> is.list(lmat)
[1] TRUE
```


6.4.1.3 Attributes names and dimnames

The attribute names plays an important role in naming elements of a list.

```
> li <- list(1:3,letters[1:3])
> li
[[1]]
[1] 1 2 3
```

```
[[2]]
[1] "a" "b" "c"
> attributes(li)
NULL
> attributes(li)$names <- c("numbers","letters")
> li
$numbers
[1] 1 2 3
$letters
[1] "a" "b" "c"
```

The first and fourth instructions are thus equivalent to the following, more common declaration:
> li <- list (numbers=1:3, letters=letters[1:3]))
It is a less useful and lesser known fact that this attribute can also be used on any type of vector.

```
> vect <- 1:3
> attr(vect,"names") <- letters[1:3]
> vect
a b c
123
> # Or directly
> vect2 <- c(a=1,b=2,c=3)
> vect2
a b c
123
```

You do not need to manipulate the attribute names directly. Accessing and changing its value can be done explicitly:

```
> names(li)
[1] "numbers" "letters"
> names(li) <- c("num","lett")
> li
$num
[1] 1 2 3
$lett
[1] "a" "b" "c"
> names (vect)
[1] "a" "b" "c"
> names(vect) <- toupper(names (vect))
> vect
A B C
123
```

For objects with several indices, such as matrices and arrays, index name management is done internally by modifying the attribute dimnames, as shown in this quick example.

```
> mat <- matrix(1:6,nr=2)
> mat
    [,1] [,2] [,3]
[1,] 1 3 5
```

```
[2,] 2 4 6
> attributes(mat) # Can be modified as an attribute.
$dim
[1] 2 3
> rownames (mat) # Row names.
NULL
> colnames(mat) # Column names.
NULL
> dimnames (mat) # Row and column names as a list.
NULL
> colnames(mat) <- paste("V",1:3,sep="")
> rownames (mat) <- c("a","b")
> mat
V1 V2 V3
a 1 3 5
b 2 4 6
```

For an array with more than two dimensions, the functions rownames and colnames are meaningless. You can either modify the attribute dimnames directly, or use the function "dimnames<-" ().

Note

Data frames have a special status. They are defined as lists and are usually manipulated as matrices. The attributes for row and column names are row.names and names (instead of col.names) :

```
> df <- data.frame (a=1,b=1:2)
> df
    a b
11 1
212
> attributes(df)
$names
[1] "a" "b"
$row.names
[1] 1 2
$class
[1] "data.frame"
> names(df) # As a list.
[1] "a" "b"
> dimnames(df) # As an array: list of two vectors.
[[1]]
[1] "1" "2"
[[2]]
[1] "a" "b"
> rownames(df) # As a matrix: accessing the row names.
[1] "1" "2"
> colnames(df) # As a matrix: accessing the column names.
[1] "a" "b"
```

The last four lines give calls to access these attributes without manipulating them directly. Corresponding forms exist to change their values. Note that the attribute class gives the class of the object.

6.4.2 Other R objects

It could be said that one of the specificities of R is that the vast majority of quantities manipulated by R are allocated to variables and can thus be reused later on. There are a few exceptions, mostly control structures. R objects are of different types, called classes. We have already encountered object classes used to store common data. There are three other object types we chose to explore as well. Surprisingly, formulae and environments are also objects in \mathbf{R}; we shall also introduce \mathbf{R} expressions, which are objects in which R code can be stored to be executed at a later time.

6.4.2.1 R expressions

So far, we have said nothing on structures used to described the syntactic bases of R. Following its philosophy of managing as many components as possible, R can manipulate an R expression and split it into a sequence of atomic entities (such as call, name...). We only mention these capacities, without going into the details. We shall focus on \mathbf{R} expressions which are truly of interest to an \mathbf{R} developer. It is difficult to give a rigorous definition of \mathbf{R} expressions. We propose the following definition, inspired by command line use of \mathbf{R}. An \mathbf{R} expression can be seen as \mathbf{R} code entered in sequence as command lines until it is executed by the R interpreter. (i.e. until the character > is displayed, inviting a new command). This expression can spread over several lines. The function expression() is used to declare an R expression when it is used with a single calling argument. It is however possible to give a sequence of expressions, each expression corresponding to one effective argument in the call of a function. An expression object is not evaluated by the \mathbf{R} interpreter but can be saved to be evaluated later, as many times as needed. Evaluating an \mathbf{R} expression is done with the function eval (). All of this is illustrated in this example:

```
> expression(v<-"value")
# The expression v<-"value"
# is not evaluated.
expression(v <- "value")
> v
Error in eval(substitute(expr), envir, enclos) : object 'v' not found
> expression(v<-"value") -> expr # Saved in the object expr.
> expr
expression(v <- "value")
> eval(expr) # Evaluating expr.
>v # Here is the expected
# result.
```

```
[1] "value"
> expression(v<-"value2",v) -> expr # Equivalent to 2 lines of
    # unevaluated commands.
> expr
expression(v <- "value2", v)
> eval(expr) # The second instruction
    # displays the contents of
    # v.
[1] "value2"
```

A developer will find it useful to convert a character string describing \mathbf{R} code into an \mathbf{R} expression to be evaluated at another time. The function parse() is used to this effect:

```
> parse(text='v<-"value"') -> expr
> expr
expression(v<-"value")
attr(,"srcfile")
<text>
> eval (expr)
> v
[1] "value"
```

The formal argument text is used here to read a character string, but the first use of the function is to read a file containing R code; the name of the file is given as the first effective argument.

Here is an example using the functions eval() and parse():

```
> for (i in 1:3) eval(parse(text=paste("a",i," <- i",sep="")))
> a2
[1] 2
```

We are now going to manipulate the function expression() to describe some of the internal behaviour of R. This will help understand why R is said to be a functional language (i.e. which makes an intensive use of functions). It is surprising how true this is. This first point shows that upon execution, affectation is considered as an operator (a function with two arguments). The first argument corresponds to the variable, the second to the contents.

```
> foo <- "foo"
> foo
[1] "foo"
> "<-"(foo,"foo2") # Equivalent to: foo <- "foo2"
> foo
[1] "foo2"
> expression("<-"(foo,"foo2")) # as shown by the output of this
# expression.
expression(foo <- "foo2")
```

We continue our exploration with brackets. One of the uses of brackets is to order execution priorities in an \mathbf{R} expression. Again, \mathbf{R} treats them as a function.

```
> 30*(10+20)
[1] 900
> 30*"(" (10+20) # This is what is executed behind the scenes.
[1] 900
> expression(30*(10+20))
expression(30 * (10 + 20))
> expression(30*"("(10+20))
expression(30 * (10 + 20))
```

The same is true for the notion of expression blocks. An expression block is defined as a sequence of \mathbf{R} expressions, grouped between curly bracket delimiters "\{" and "\}".

```
> {
```

+ print("line1")
+ print("line2")
+ \}
[1] "line1"
[1] "line2"
> "\{"(print("line1"), print("line2"))
[1] "line1"
[1] "line2"
> expression(\{
+ print ("line1") \# This comment is not interpreted.
$+$
+ \# Neither is this comment.
+ print("line2")
+ \})
expression (\{
print("line1")
print("line2")
\})
> expression("\{"(print("line1"),print("line2")))
expression(\{
print("line1")
print("line2")
\})

Note that comments and spaces are ignored by the \mathbf{R} interpreter. When we describe the syntax of R instructions, we shall follow the convention of denoting R expressions by <expr . . .> (where . . . can be any string of characters). Note that to make your code easier to read, you can add as many carriage returns as you wish in a block without any effect on its execution.

6.4.2.2 R formulae

The formula object is one of the specificities of \mathbf{R}. It is mainly used to establish a relationship between two parts, separated with a tilde \sim. Both parts must be R ex-
pressions. Keeping in mind what we have learnt about the function expression(), we can see how \mathbf{R} converts a formula into a "~"() function upon execution.

```
\(>y^{\sim} \mathrm{x}\)
\(y\) x
> "~" \((y, x)\) \# Equivalent expression,
\(y\) ~ \(x\)
\(>\) expression("~" \((y, x))\) \# as this expression proves.
expression ( \(y^{\sim}\) x)
```

For developers, expressions can be used to offer a more user-friendly interface, since they are closer to the usual form. For example, the R formula $y \sim x$ can express that y and x are linked, or that y is a function of x . Generally speaking, the developer bears the responsibility of interpreting the formula to perform the necessary tasks. This is very advanced; we refer the interested reader to the \mathbf{R} documentation files. Here are a few examples with no particular meaning, but which will help become familiar with this new object:

```
\(>y^{\sim} x\)
\(y \sim x\)
\(>y^{\sim}(x+y: z) * t \mid v\)
\(y^{\sim}(x+y: z) * t \mid v\)
\(>y^{1+y} 2\left|w^{\sim}(x+y: z) * t\right| v\)
\(y^{1}+y^{2} / w^{\sim}(x+y: z) * t / v\)
```

It is worth pointing out that even if the quantities mentioned in the formulae above are not existing R objects, no error is thrown. However, remember that a syntax error results in an error message:

```
\(\left.>y^{\sim} \mathrm{x}+\mathrm{y}\right)\) *t|v
Error : ')' not expected in " \(y^{\sim} x+y\) )"
```

We now focus on usage of formulae in the \mathbf{R} system. Since formulae are not common objects, the user may not realize that they are saved like any other R object.

```
> form <- y }\mp@subsup{\textrm{V}}{}{~
> form
y ~ x
```

The two main uses are for plots and for statistics.
For plots, this is an alternative to what we introduced in Chapter 5.

```
> x <- runif(10)
> y <- runif(10)
> plot (x,y)
>plot (y }\mp@subsup{y}{}{~}\textrm{x}
```

The resulting plot is not shown here, since the only interest is in showing that the instructions with or without the formula are equivalent. Note that the variables x and y are inverted between the two forms. The version with the formula $\operatorname{plot}(y \sim x)$ expresses more literally the action we want: plot y as a function of x . This version, which we find elegant, is of course also available for the complementary functions points() and lines().

In a statistical context, a function relative to the specific treatment of a statistical model takes as input argument a formula establishing the relationship between the variables of the model (the formula is often the first argument). The most simple example is the linear model; here is an example ${ }^{10}$:

```
> lm(y }x\mathrm{ x) # x and y must be defined (and they are in this
    # case!)
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
        0.46290 -0.06904
> lm(form) # Recall that: form <- y }\mp@subsup{\textrm{y}}{}{~
Call:
lm(formula = form)
Coefficients:
(Intercept) x
        0.46290 -0.06904
```

Besides the pleasant syntax, the formula object also offers a very efficient interface with the user to describe the model. This is confirmed by the fact that, unlike for plots, there is no other way of describing the relationship between the variables in the model. You might think that the syntax $\operatorname{lm}(y, x)$ could have been used. But then how would you write as a list of input arguments the formula $y \sim(x+z) * t$, which is perfectly valid (see Chapter 13)?

For operations on formulae, you can use the function update() which modifies a formula, using another one.

```
\(>\) update \(\left(y^{\sim} \mathrm{x}, \mathrm{.}^{\sim} .+\mathrm{z}\right) \quad\) \# Change \(\mathrm{y}^{\sim} \mathrm{x}\) into \(\mathrm{y}^{\sim} \mathrm{x}+\mathrm{z}\).
\(y\) ~ \(x+z\)
\(>\) form <- \(\mathrm{y}^{\sim} \mathrm{x} \quad\) \# The same procedure with a saved model.
> form2 <- update (form, .~.+z)
> form2
\(y\) ~ \(x+z\)
> update (form2, \({ }^{\sim}\).-x) \# You can also delete a variable.
\(y \sim z\)
```

These examples show the syntax of the function update(). The first formal argument is the formula you wish to modify; the second formal argument gives the operations to perform on the formula, using a specific syntax. All that remains to be done is to analyse the syntax of the second formula. Any dot "." before the tilde character " \sim " is replaced with the left expression of the initial formula (before the tilde). Similarly, any dot "." after the tilde is replaced with the right expression of the initial formula (after the tilde).

[^8]
6.4.2.3 The R environment

The notion of environment is necessary in any programming language. It can be seen as a storage space of \mathbf{R} objects. When you open your \mathbf{R} session, a first environment .GlobalEnv is created by R. It is called the workspace and all objects manipulated with the command line during this session are stored there. Although we only wish to give an overview of this concept, it is worth mentioning that the notion of function depends intrinsically on the notion of environment. Here is a glimpse of this fact. When you create a new object in the body of a function, \mathbf{R} takes care of declaring it internally in an environment specific to this function, to store the contents of the object. The reason for this is that if the object has the same name as an object of the environment .GlobalEnv, this last object will not be overwritten with the value defined in the body of the function. To better understand what an environment is, note that the value of an object defined in the environment. GlobalEnv can be accessed in the body of the function. However, its value cannot be modified by an affectation with the same object name. The reason why you can access an object which was defined in another environment than the one associated with the function is that a parent environment is specified when declaring a new environment. It is allowed that an environment have no parent, as is the case with the initial environment .GlobalEnv. When an object is not directly available in the environment of a function, R searches for the object in the parent environment. If it is still not available, there are two possibilities: either there exists a "grandparent" environment, and the search continues, or there is no such environment and an error is thrown indicating that the object could not be found. This exploration process is repeated recursively until the object is found. Most environment declarations are done internally and invisibly by R. We shall return to this notion when we give more details on developing functions. A very surprising feature is that an environment is considered as an R object. A new environment can thus be declared to execute a specific block of code without changing the workspace .GlobalEnv. The function local (), which takes as first argument the code to execute and as second argument the environment for the execution, is very useful to this end:

```
> a <- 12; b <- 13
> space <- new.env() # By default, the parent is the environment
                                    # from which new.env is called.
> local({
+ a <- b+2
+a
+ },space)
[1] 15
> a # The value of a has not changed in .GlobalEnv.
[1] 12
> space$a # Value of a in the environment space.
[1] 15
```

The function's name is well chosen: the value of a in the workspace .GlobalEnv has been preserved. As stated in the comment, the parent of space (generated by
new.env()) is . GlobalEnv, but the parent could have been specified by giving a value to the formal argument parent. Here are two examples of parent declaration

```
> space2 <- new.env(parent=emptyenv())
> local(a<-b+2,space2) # Error!!!
Error in eval(expr, envir, enclos) : could not find function "<-"
> space2$a # Unsurprisingly, the object a does not exist!
NULL
```

The environment space 2 is useless, since its parent environment is an empty environment (i.e. no parent; declared with the function emptyenv()). The execution error in the local code is because even the affectation function <- cannot be accessed: the empty environment knows absolutely nothing about R; in particular, it does not know the basic functions. The function globalenv() returns the global environment. GlobalEnv which is always first in the access list of R environments.

```
> space3 <- new.env(parent=parent.env(globalenv()))
> local(a<-b+2,space3) # Error, because .GlobalEnv cannot be
    # accessed!
Error in eval(expr, envir, enclos) : object 'b' not found
> local(a<-15,space3)
> a
[1] 12
> space3$a
[1] 15
```

Environments are rather convenient: they are used like a list.

```
> space3$b <- b-1
> b
[1] 13
> space3$b
[1] 12
```

For further details, we refer the reader to the online help, which is rather complete, but aimed at advanced users.

SECTION 6.5
 \dagger Interfacing R and C/C++ or Fortran

You may be wondering why you should consider writing parts of your code in $\mathrm{C} / \mathrm{C}++$ or Fortran. There are several reasons, such as:

- to use from R a pre-existing routine, formerly coded in $\mathrm{C} / \mathrm{C}++$ or Fortran;
- to speed up the runtime of your R code;
- to use the graphical capabilities of \mathbf{R} or some \mathbf{R} functions on numerical output from C/C++ or Fortran code.

Tip

The last version of \mathbf{R} includes a byte compiler which speeds up some computations. You can also use the R version distributed by the company Revolution Analytics (http://www.revolutionanalytics. com). It has been optimized to speed up some computations, for example by relying on a multi-core architecture when available.

See also

We assume that the reader already has some notions of $\mathrm{C} / \mathrm{C}++$ and/orFortran programming. If that is not the case, the books [22] and [38] for C and $\mathrm{C}++$, and [9] for Fortran may be of use.

In this section, we do not claim exhaustivity. We shall only present a few simple examples which illustrate the points made above. Along the way, we shall provide some basics which we hope will allow you to get by on your own afterwards.

Warning

Before you start, you need to install $\mathrm{C} / \mathrm{C}++$ and Fortran compilers, since Microsoft Windows does not have any by default. The free software Rtools, containing several tools from the Linux world, has been created to this end. You can download it from http://cran.r-project.org/bin/windows/Rtools. Choose Full installation to build 32 or 64 bit R 2.14.2+ if you have a 64 bit processor. Tick the appropriate box when installing Rtools, so that the variable PATH is correctly configured. You also need to change the system environment variable Path so that it contains the path to the R installation folder (one way to find the path is to right-click on the R icon of the Desktop, then choose properties). This will allow you to call R from an MS-DOS command window, as we shall mention later on. To do this, right-click on the Windows Desktop, select New/Shortcut, then enter the following instruction in the window that opens: control.exe sysdm.cpl, System, 3
Once this shortcut has been created on the Desktop, double-click on it, and in the window that opens, click on Environment Variables... Change the value on the system variable Path to add at the beginning (using ; as separator) the path to the folder containing the R executable (which should look like $C: \backslash$ Program Files $\backslash R \backslash R-2.15 .1 \backslash$ bin $\backslash i 386$ or $C: \backslash$ Program Files $\backslash R \backslash R-2.15 .1 \backslash$ bin $\backslash x 64$) and the path to the folders of Rtools (which should look like $C: \backslash$ Rtools \backslash bin and $\mathrm{C}: \backslash$ Rtools $\backslash \mathrm{gcc}-4 \cdot 6.3 \backslash \mathrm{bin}$), if they are not already present.

6.5.1 Creating and running a $C / C++$ or Fortran function

The next example shows how to speed up a program by using C/C++ or Fortran. The \mathbf{R} function combn() is able to handle all combinations of a given number of elements taken from a given vector. For example, this instruction generates all combinations of size 3 from the vector 1:5.
$>\operatorname{combn}(5,3)$

$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	$[, 10]$
1	1	1	1	1	1	2	2	2	3
2	2	2	3	3	4	3	3	4	4
3	4	5	4	5	5	4	5	5	5

If we attempt to get all choose (n, m) combinations (for example 1,313,400 combinations if $n=200$ and $m=3$) from a vector of larger size n, the computation time can increase drastically.

```
> system.time(x <- combn(200,3))
    user system elapsed
14.959 0.227 15.188
```

The command system.time() shows that the above computation takes several seconds on the computer used to write this book (if your computer is faster, take a value greater than 200).

Tip

The function permn() of package combinat can be used to generate all permuations of the elements of a vector.

A simplified version of the original \mathbf{R} function combn() is given below:

```
> combnR <- function(n,m) {
+ a <- 1:m ; e <- 0 ; h <- m
+ combmat <- matrix(0,nrow=m,ncol=choose(n,m))
+ combmat[,1] <- 1:m
+ i <- 2
+ nmmp1 <- n - m + 1
+ mp1 <- m + 1
+ while (a[1] != nmmp1) {
+ if (e<n-h) {
+ h <- 1 ; e <- a[m] ; a[m-h+1] <- e + 1
+ combmat[,i] <- a
+ i <- i + 1
} else {
+ h<- h + 1 ; e <- a[mp1-h]
+ a[(m-h+1):m]<-e + 1:h
+ combmat[,i] <- a
+ i <- i + 1
+ }}
+ return(combmat)
+ }
```

We now propose two functions coded in C/C++, and another two coded in Fortran, to make the same computation in much shorter time.

- Creating the $\mathrm{C} / \mathrm{C}++$ function.

C++ code for function combnC, downloadable from http://biostatisticien. eu/springeR/combn.cpp:

```
\#include <math.h>
extern "C" \{
void combnC(int *combmat, int \(* \mathrm{n}\), int \(* \mathrm{~m})\) \{
    int i, j, e, h, nmmp1, mp1;
    int *a;
    a=new int[m[0]];
    for \((i=1 ; i<=m[0] ; i=i+1)\) a \([i-1]=i\);
    \(\mathrm{e}=0\);
    \(\mathrm{h}=\mathrm{m}[0]\);
    for \((\mathrm{i}=1 ; \mathrm{i}<=*(\mathrm{~m}+0) ; \mathrm{i}=\mathrm{i}+1)\) combmat \([\mathrm{i}-1]=\mathrm{i}\);
    \(\mathrm{i}=2\);
    \(\mathrm{nmmp} 1=\mathrm{n}[0]-\mathrm{m}[0]+1\);
    \(\mathrm{mpl}=\mathrm{m}[0]+1\);
    while (a[0] != nmmp1) \{
        if \((\mathrm{e}<\mathrm{n}[0]-\mathrm{h})\) \{
        \(\mathrm{h}=1\);
        \(\mathrm{e}=\mathrm{a}[\mathrm{m}[0]-1]\);
        \(\mathrm{a}[\mathrm{m}[0]-\mathrm{h}]=\mathrm{e}+1\);
    for \((\mathrm{j}=1 ; \mathrm{j}<=\mathrm{m}[0] ; \mathrm{j}=\mathrm{j}+1) \operatorname{combmat}[(\mathrm{i}-1) * \mathrm{~m}[0]+\mathrm{j}-1]=\mathrm{a}[\mathrm{j}-1]\);
        \(\mathrm{i}=\mathrm{i}+1\);
        \} else \{
        \(\mathrm{h}=\mathrm{h}+1\);
        \(\mathrm{e}=\mathrm{a}[\mathrm{mp} 1-\mathrm{h}-1]\);
        for ( \(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{h} ; \mathrm{j}=\mathrm{j}+1\) ) a[m[0]-h+j-1]=e+j;
    for \((\mathrm{j}=1 ; \mathrm{j}<=\mathrm{m}[0] ; \mathrm{j}=\mathrm{j}+1)\) combmat \([(\mathrm{i}-1) * \mathrm{~m}[0]+\mathrm{j}-1]=\mathrm{a}[\mathrm{j}-1]\);
        \(\mathrm{i}=\mathrm{i}+1 ;\}\}\)
    delete [] a ;
\}\}
```

Code for the main function, downloadable from http://biostatisticien. eu/springeR/main.cpp:

```
#include <iostream>
using namespace std;
extern "C" {
int main() {
    void combnC(int *combmat, int *n, int *m);
```

```
6 int *n, *m, * combmat, j;
double Cnm;
n=new int[1];
    m=new int[1];
    n[0]=5;
    m[0]=3;
    Cnm=10;
    combmat=new int[(int)Cnm*m[0]];
    combnC(combmat,n,m);
    for ( j=1;j <=Cnm*m[0];j++) cout << combmat[j-1] <<" ";
}}
```

Note that all indices start at zero in $\mathrm{C} / \mathrm{C}++$, unlike R where they start at 1 .

- Creating the Fortran function.

Fortran code for the subroutine combnF, downloadable from http://biostatisticien. eu/springeR/combn.f90:

```
SUBROUTINE combnF (combmat, \(\mathrm{n}, \mathrm{m}\) )
integer, intent (in) : : n,m
integer \(::\) i, j,e,h,nmmp1,mp1
integer, dimension (m) : : a
integer, dimension (*), intent (out): : combmat
do \(\quad i=1, m\)
a (i) \(=1\)
end do
\(\mathrm{e}=0\)
\(\mathrm{h}=\mathrm{m}\)
do \(\quad i=1, m\)
combmat (i)=i
end do
\(\mathrm{i}=2\)
\(\mathrm{nmmp} 1=\mathrm{n}-\mathrm{m}+1\)
\(\mathrm{mp} 1=\mathrm{m}+1\)
do while (a (1) .ne. nmmp1)
if (e \(<n-h\) ) then
\(\mathrm{h}=1\)
\(\mathrm{e}=\mathrm{a}(\mathrm{m})\)
\(a(m-h+1)=e+1\)
do \(\quad j=1, m\)
combmat \(((i-1) * m+j)=a(j)\)
end do
\(\mathrm{i}=\mathrm{i}+1\)
```

```
else
\(\mathrm{h}=\mathrm{h}+1\)
\(\mathrm{e}=\mathrm{a}(\mathrm{mpl}-\mathrm{h})\)
do \(40 \mathrm{j}=1, \mathrm{~h}\)
\(a(m-h+j)=e+j\)
40 continue
do \(\mathrm{j}=1, \mathrm{~m}\)
combmat \(((i-1) * m+j)=a(j)\)
end do
\(i=i+1\)
endif
enddo
END SUBROUTINE combnF
```

Code for the main function, downloadable from http://biostatisticien. eu/springeR/main.f90:

```
PROGRAM main
integer :: n,m,Cnm,j,k
integer, allocatable, dimension(:) :: combmat
n=5
m=3
Cnm=10
k=Cnm*m
allocate (combmat(k))
CALL combnF (combmat,n,m)
write (*,*) (combmat(j ) , j=1,k)
deallocate (combmat)
end PROGRAM main
```

- Compiling and running the $\mathrm{C} / \mathrm{C}++$ or Fortran function.

In order to use the C++ or Fortran code given above, it needs to be compiled, i.e. transformed into an executable file. To do this, simply open an MS-DOS terminal window, for example from the Windows menu Start/Run (or with the keyboard combination [WINDOWS+R]) and type the instruction cmd followed by ENTER. In this black window, type the two instructions below.

Warning

You may need to move to the directory where your files were saved, using the MS-DOS command cd (for change directory). For example, if you created your files on the Windows Desktop, use:
cd Desktop

Note that under MS-DOS, the command dir is used to list the contents of the current directory.

```
:: To compile C/C++ code:
g++ -o mycombn.exe combn.cpp main.cpp
:: To combile Fortran code:
gfortran -o mycombn.exe combn.f90 main.f90
:: To run the function:
mycombn.exe
```

The first instruction compiles our C++ or Fortran code to produce the executable file mycombn.exe. The second instruction launches this executable file and displays, though with no formatting, the result of the computation.

Tip

The function system() is used to execute a DOS command outside of R. For example, in R, type:
> system("mycombn.exe")
$\begin{array}{lllllllllllllllllllllllllllllll}1 & 2 & 3 & 1 & 2 & 4 & 1 & 2 & 5 & 1 & 3 & 4 & 1 & 3 & 5 & 1 & 4 & 5 & 2 & 3 & 4 & 2 & 3 & 5 & 2 & 4 & 5 & 3 & 4 & 5\end{array}$
Note that you must of course first change the current \mathbf{R} directory, using function setwd() for example, to change to the directory containing the file mycombn.exe.

Tip

The compilation flag -Wall is used to display all compilation warnings or errors (if there are any!):

```
g++ -o mycombn.exe combn.cpp main.cpp -Wall
```

We shall now produce the $\binom{200}{3}=1313400$ sub-vectors made of all possible combinations of three elements in vector 1:200. For the C/C++ version, modify lines 11, 13 and 16 of the code of function main given page 231. These lines become:

```
n[0]=200;
Cnm=1313400;
// for (j=1;j<=Cnm*m[0];j++) cout << combmat[j-1] << " ";
```

For the Fortran version, modify lines 4,6 and 10 of the code of function main given page 233. These lines become:

```
n=200
Cnm=1313400
!write(*,*) (combmat(j) ,j=1,k)
```

We commented out the last line (using // in C/C++ and ! in Fortran) so that a call of mycombn. exe no longer displays the (now very large) result of the computation, which would take a lot of time. But the calculation is made. We our thus coherent with the previous computation done in R , for which the result was not displayed but stored in variable x. After saving your changes, recompile and run your code:

```
:: To compile C/C++ code:
g++ -o mycombn.exe combn.cpp main.cpp
:: To compile Fortran code:
gfortran -o mycombn.exe combn.f90 main.f90
:: Execute the function:
mycombn.exe
```

You can see that the calculation (without displaying the result) is done very quickly.

6.5.2 Calling C/C++ (or Fortran) from R

We shall now see how to call the C++ code from file combn.cpp (or rather a compiled version of this code) directly from R, without using a main function. To this end, we create an R wrapper containing a call of the $C++$ function.

R can only call C/C++ or Fortran functions which do not return any output. All C/C++ functions must thus be of type void and all Fortran routines must be subroutines. The results will go in the arguments of the calling function.

Download the file http://biostatisticien.eu/springeR/combn.R, which includes the code given below:

```
combnRC \(<-\) function ( \(\mathrm{n}, \mathrm{m}\) ) \{
    combmat <- matrix ( 0 , nrow=m, ncol=choose ( \(\mathrm{n}, \mathrm{m}\) ) )
    lib <- paste ("combn", Platform\$dynlib.ext, sep="")
    dyn.load (lib)
    out \(<-. C(\) "combnC", res=as.integer (combmat) ,
```

```
6
    combmat <- matrix (out$res, nrow=m,byrow=F)
    dyn.unload(lib)
    return(combmat)
0 }
```


Note

To call the Fortran code, replace line 5 by

```
out <- .Fortran("combnF",res=as.integer(combmat),
```

The functions dyn.load() and dyn.unload() allow respectively to load and unload from R's memory the ressources from a DLL (Dynamic Link Library) file. A DLL includes functions which can be called during the execution of a program, without being included in its executable. Here, it is the file combn.dll (which includes only one function), which will be created further on.

The functions .C() and .Fortran() (which output a list) are used to send values from R to a $\mathrm{C} / \mathrm{C}++$ or Fortran function respectively. Use the instructions as.integer(), as.double() or as.character() in R to declare objects made of integer values, decimal (numeric) values, or character strings, so that they are "received" correctly by the arguments of the C/C++ or Fortran function.

For a $\mathrm{C} / \mathrm{C}++$ function, all arguments must be pointers; for example integer pointers (int *), real pointers (double *) or character pointer pointers (char **). Table 6.1 gives the equivalent types in $\mathrm{R}, \mathrm{C} / \mathrm{C}++$ and Fortran.

Table 6.1: Conventions on argument types. Type ?. Fortran for further detail.

R	C/C++	Fortran
integer	int *	INTEGER
numeric	double *	DOUBLE PRECISION
numeric	float *	REAL
complex	Rcomplex $*$	DOUBLE COMPLEX
logical	int ${ }^{*}$	integer
character	char $* *$	CHARACTER*255
list	SEXP *	not allowed
other type	SEXP	not allowed

Warning

Unlike R , where it is very easy to get the length of vector x with the instruction length (x), in $\mathrm{C} / \mathrm{C}++$ it is not possible to know the length of x . It can sometimes be useful to give to the function .C() both the vector x and its length, for example as follows for some hypothetical function functionC:

```
x <- c(1.2,0.7,3,2,4,1,0.9)
.C("functionC",as.double(x), as.integer(length(x)))
```

The arguments of the C/C++ function functionC are: double $* x$ and int *n. The same remark applies to Fortran functions.

Note

The C/C++ function combnC returns void: it does not have any direct output. However, the value of its arguments, which are pointers, can be modified during execution. It is then possible to access directly (thanks to their address) to the value of these pointers. This is how \mathbf{R} works, using the function. C() (in a transparent way for the user).
You may have noted at line 5 of the code of function combnRC() above, that we used res= when calling function .C(). This allows us to use out $\$$ res directly, instead of out [[1]]. You can use another name than res, and for any argument of function .C(). For example, we could have used val=as.integer (m), which we did not do because that value was not modified by combnC, and is thus already known (as m). A similar remark applies to Fortran functions.

We shall now create the file combn.dll, which will be called by R. To this end, type the following instructions in an MS-DOS window:

```
:: In C/C++:
g++ -c combn.cpp -o combn.o
g++ -shared -o combn.dll combn.o
:: In Fortran:
gfortran -c combn.f90 -o combn.o
g++ -shared -o combn.dll combn.o
```


Tip

Equivalently (or almost equivalently, since optimization arguments could be used by the compiler, which might by the way hinder debugging), this dynamical library could be created (after deleting if necessary the files combn.o and combn.dll) with one instruction:

R CMD SHLIB combn.cpp -o combn.dll

The first instruction creates the object file combn. o, which contains the machine code for the function included in file combn. cpp. The second instruction creates the dymanic library combn.dll. At this step, the compiler informs us of any errors to correct in the programm (with the corresponding line number).

Tip

Note that it is possible to include several object files in the same library, which will then contain several functions. For example, if we had a file choose o containing the machine code for a function which calculates binomial coefficients, we could include both functions in a DLL as follows:

```
g++ -shared -o combn.dll combn.o choose.o
```


Linux

Under Linux, DLL files usually have a . so extension (for shared object). You should thus replace all occurrences of extension .dll by extension .so.

Mac

Under MacOS, DLL files usually have a .dylib extension (for dynamic library). You should thus replace all occurrences of extension. dll by extension .dylib. Also note that under MacOS, you must replace g++ -shared with g++ -dynamic.

In R, after changing to the correct directory, we can now execute the following instructions:

There is an important speed-up thanks to this new \mathbf{R} function using code written in $\mathrm{C} / \mathrm{C}++$.

Code in \mathbf{R} alone, and then in hybrid $\mathrm{R}-\mathrm{C} / \mathrm{C}++$ (or R -Fortran), the functions $\operatorname{ar} 1 \operatorname{simR}()$ and $\operatorname{ar} 1 \operatorname{simRC}()-\operatorname{ar} 1 \operatorname{sim} C($ or $\operatorname{ar} 1 \operatorname{simRF}()-\operatorname{ar} 1 \operatorname{simF})$. These functions take three input arguments: $n \in \mathbb{N}, \phi \in(-1,1)$ and $M \in \mathbb{N}$. They do the following computations.

For $m=1, \ldots, M$:
a) simulate random vector $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{\top}$ with distribution $\mathcal{N}_{n}\left(\mathbf{0} ; \boldsymbol{I}_{n}\right)$;
b) create vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$, with $x_{1}=\epsilon_{1}$, and such that for all $t=2, \ldots, n$, we have $x_{t}=\phi x_{t-1}+\epsilon_{t}$;
c) calculate the conditionnal least squares estimator $\hat{\phi}_{m}$ of ϕ :

$$
\hat{\phi}_{m}=\frac{\sum_{t=2}^{n} x_{t-1} x_{t}}{\sum_{t=2}^{n} x_{t-1}^{2}} .
$$

The functions you create should output the value $\overline{\hat{\phi}}=\frac{1}{M} \sum_{m=1}^{M} \hat{\phi}_{m}-\phi$, thus allowing a numerical evaluation of the bias of estimator $\hat{\phi}$ of ϕ.

Compare the speed of execution of the pure \mathbf{R} version with the version calling C/C++ (or Fortran) code. To this end, plot the values (M, time $_{M}$) for $M=1000,2000, \ldots, 100000$. Take $n=1000$ and $\phi=0.75$.

Note: The function arima. sim() performs parts a) and b) above, and function arima() performs part c). Do not use these two pre-existing functions for this exercise: they are very fast because they are coded in C, but are not limited to the previous computations.

Tip

To ease code development, a good editor is always useful. An editor should at least include indentation and syntactical colouring. You may wish to use the following free software:

- an R code editor such as RStudio, Tinn-R or Emacs;
- a source code editor for C/C++ and Fortran such as Emacs or Code::Blocks (available at http://www. codeblocks.org).

Tip

The package rbenchmark can be used to easily calculate the expected gain in computation time by using an $\mathrm{R}-\mathrm{C} / \mathrm{C}++$ or R -Fortran function rather than a pure R function. For example, try to verify the results we got in the previous practical using the following code:

```
n <- 1000
phi <- 0.75
M <- 2000
dyn.load("ar1sim.dll")
benchmark(Rcode=ar1simR(n,phi,M),
    Ccode=.C("ar1simC", as.integer(n), phi,
                                    as.integer ( M ) , res=0.0) \$res,
    replications=1000)
```


Tip

Fortran and \mathbf{R} store matrices (tables) in the same way: the rows of a given column are stored sequentially in memory. In C/C++, the opposite holds; columns of a given line are stored sequentially. Be careful when sending a matrix from R to $C / C++$. For example, the element with index $[i, j]$ in an R matrix corresponds to the element with index $[(j-1)$ *number-of-rows + (i-1)] in C/C++ (in C/C++, indices start at 0).

6.5.3 Calling external $C / C++$ or Fortran libraries

It is possible to use a function from an external library thanks to the \mathbf{R} functions .C() (for C/C++ libraries) and .Fortran() (for Fortran libraries).

Here is an amusing application of this approach, which locks the Windows session:

```
# Select file C:/windows/system32/user32.dll:
dyn.load(file.choose())
.C("LockWorkStation")
```

It is also possible to call an external library directly from your C/C++ or Fortran code. Here are some scientific libraries which we find interesting:

- the C API (Application Programming Interface) in R;
- the $\mathrm{C}++$ library newmat;
- the Fortran libraries BLAS and LAPACK.

See also

Other libraries exist; some are free of charge, or even open-source, such as:

- \quad in C/C++:
- http://www.gnu.org/software/gsl/
- http://www.math.uiowa.edu/~dstewart/meschach/
- http://www.nrbook.com/a/bookcpdf.php
- in Fortran:
- http://calgo.acm.org/
- http://www.nrbook.com/a/bookfpdf.php
- http://www.nrbook.com/a/bookf90pdf.php
- http://math-atlas.sourceforge.net/
others are not free:
- \quad in $\mathrm{C} / \mathrm{C}++$
- http://www.nag.co.uk/numeric/CL/CLdescription.as
- http://www.vni.com/products/imsl/c/imslc.php
- in Fortran:
- http://www.nag.co.uk/numeric/RunderWindows.asp
- http://www.nag.co.uk/numeric/fl/FLdescription.asp
- http://www.nag.co.uk/numeric/fn/FNdescription.asp
- http://www.vni.com/products/imsl/fortran/overview. php

6.5.3.1 The R API

The \mathbf{R} API is a library created by the \mathbf{R} developers. It can be used from a $\mathbf{C} / \mathrm{C}++$ program without even using \mathbf{R} (it is then called Standalone \mathbf{R} API). It can also be used in $C / C++$ code which will itself be called from R, as introduced in the previous section. This allows the use of existing routines without having to rewrite them. To use this library, you must include in your C/C++ source code the two header files R.h and Rmath.h, which are necessary to declare or define some mathematical functions and constants.

See also

The documentation for this library, which include the list of functions and constants contained in it, is available at http://cran.r-project.org/doc/ manuals/R-exts.html\#The-R-API.
You may also find interesting to consult the contents of the directory nmath/ in the R sources; it is available at http://svn.r-project.org/R/trunk/ src/nmath.

We present below C/C++ code available at http://biostatisticien.eu/ springeR/integ. cpp which allows to compute the integral

$$
\int_{\epsilon_{1}}^{\pi} \Phi\left(t+\epsilon_{2}\right) d t
$$

where ϵ_{1} and ϵ_{2} are realisations of two independent random variables (respectively normal and uniform) and where $\Phi(\cdot)$ is the cumulative distribution function of the $\mathcal{N}(0,1)$ distribution. The only point of this example is to illustrate the use of the R API to simulate random variables, calculate a probability and perform numerical integration.

```
#include <R.h>
#include <Rmath.h>
extern "C" {
    typedef void integr_fn(double *x, int n, void *ex);
    void f(double *t, int n, void *ex);
    void testintegral(double *res) {
        // R API numerical integration function
        void Rdqags(integr_fn f,void *ex,double *a,
            double *b,double *epsabs,
            double *epsrel,double *result,
            double *abserr,int *neval,
            int *ier,int * limit, int *lenw,
            int *last, int *iwork, double *work);
            GetRNGstate(); // Read the R generator seed
            double *a, *b, *epsabs,*epsrel,*result,
            *ex, *abserr, *work;
        int *last, *limit, *lenw, *ier, * neval, *iwork;
            ex = new double[1]; a = new double[1];
            b = new double[1]; epsabs = new double[1];
```

```
26 epsrel = new double[1]; result = new double[1];
27 abserr = new double[1]; neval = new int[1];
ier = new int[1]; limit = new int[1];
    lenw = new int[1]; last = new int[1];
    limit[0] = 100;
    lenw[0] = 4 * limit[0];
    iwork = new int[limit[0]];
    work = new double[lenw[0]];
    a[0] = rnorm (0.0,1.0); // eps1 from N(0,1)
    b[0] = M_PI; // The constant \pi (3.141593...)
    ex[0] = runif(0.0,1.0); // eps2 from Unif(0,1)
    // Calculate the integral
    Rdqags(f, ex, a, b, epsabs, epsrel,
                result, abserr, neval, ier,
                limit, lenw, last,
        iwork, work);
    // The result is stored in res[0]
    res[0] = result[0];
    PutRNGstate(); // Write the generator seed
    // Free up some memory
    delete[] ex, a, b, epsabs, epsrel, result, abserr,
        neval, ier, limit, lenw, last, iwork, work;
    }
    // Define the function to integrate
    void f(double *t, int n, void *ex) {
        int i;
        double eps2;
        eps2 = ((double*)ex)[0];
        for (i=0;i<n;i++) {
        t[i] = pnorm(t[i]+eps2,0.0,1.0,1,0);}
    }
}
```

The instructions to compile this function in order to get a DLL file are:

```
g++ -c integ.cpp -o integ.o -I"C:\Program Files\R\R-2.15.1\include"
g++ -shared -o integ.dll integ.o
    -L"C:\Program Files\R\R-2.15.1\bin\i386" -lR
```


Warning

Note that we had to indicate the paths to the folders containing the files R.h, Rmath.h and R.dll. Modify these as needed depending on your system configuration. In MS-DOS, the symbol ^ indicates an incomplete line.

Linux

```
g++ -c integ.cpp -o integ.o -I"/usr/lib/R/include" -fPIC
g++ -shared -o integ.so integ.o -I"/usr/lib/R/include" \
    -L"/usr/lib" -lR
```

Now, to perform the calculation in R , use the following instructions:

```
> dyn.load(paste("integ",.Platform$dynlib.ext,sep=""))
> # i.e. dyn.load("integ.dll") under Windows.
> .C("testintegral",val=0.0) $val
[1] 3.707762
```

Of course, the result of this computation varies, depending on the realisations of ϵ_{1} and ϵ_{2}.

6.5.3.2 The newmat library

The newmat library is used to manipulate various types of matrices and to perform classical operations such as: multiplication, transposition, inversion, eigenvalue computation, decompositions, etc.

See also

The complete documentation for this library is available at: http://www. robertnz.net/nm11.htm

The code below, available at http://biostatisticien.eu/springeR/inv. cpp, is $C / C++$ code using this library to invert a matrix and can be called from \mathbf{R}.

```
1 #define WANT_STREAM
#define WANTMATH
#include "newmatap.h"
#include "newmatio.h"
# #ifdef use_namespace
6 using namespace NEWMAT;
#endif
extern "C" {
    void invC(double *values, int * nrow) {
```

```
    int i, j;
    Matrix M(nrow[0], nrow[0]);
    M << values;
    M << M.i (); // Calcul de l'inverse de M
        for (i=1;i<=nrow[0];i++) {
            for( j=1; j <=nrow [0]; j + +) {
                values[nrow[0]*(i-1)+j-1] = M(i,j );
                }
    }
    M. Release ();
        return;
    }
```

\}

ip

Download file http://www.robertnz.net/ftp/newmat11.zip and unzip it in C : /newmat. Then type the following instructions in an MSDOS window:
cd \backslash
cd newmat
g++ -02 -c *.cpp
ar cr newmat.a *.o
ranlib newmat.a
cp newmat.a newmat. dll
After a few minutes, the libraries newmat.a and newmat. dll are created in folder C: \newmat.

You now need to create the library inv. dll (ou inv. so under Linux) using the following instructions:

```
cd folder containing file inv.cpp
g++ -IC:\newmat -o inv.o -c inv.cpp
R CMD SHLIB inv.cpp -IC:\newmat C:/newmat/newmat.a
```

```
Linux
    g++ -I/usr/include/R -I/usr/local/include -Inewmat -fpic
        -c inv.cpp -o inv.o
    R CMD SHLIB inv.cpp -Inewmat newmat/newmat.a
```

You can then use the $\mathrm{C} / \mathrm{C}++$ above from R as follows. First save the following code in a file called inv.R:

```
> inv <- function(M) {
+ n <- nrow(M)
+ return(matrix(.C("invC",Minv=as.vector(M),n)$Minv,nrow=n,ncol=n))
+ }
```

Then execute the instructions:

```
> dyn.load(paste("inv",.Platform$dynlib.ext,sep=""))
> A <- matrix(rnorm(9), nrow=3)
> solve(A) # The R function solve() inverts a matrix.
    [,1] [,2] [,3]
[1,] -0.09893572 0.04676191 1.155500
[2,] -0.47035376 1.10728717 -2.979609
[3,] 0.03415044 -1.07683806 1.456918
> inv(A)
[,1] [,2] [,3]
[1,] -0.09893572 0.04676191 1.155500
[2,] -0.47035376 1.10728717 -2.979609
[3,] 0.03415044 -1.07683806 1.456918
```

The two functions solve() and inv() thus give the same result for matrix inversion. As you can see, the speed-up for this operation is substantial.

```
> benchmark(Rcode=solve (A),Ccode=inv(A),replications=10000)
    test replications elapsed relative user.self sys.self
2 Ccode 10000 0.255 1.000000 0.256 0.000
1 Rcode 10000 1.378 5.403922 1.351 0.025
    user.child sys.child
2 0 0
1 0
```


6.5.3.3 The BLAS and LAPACK packages

The BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACKage) packages are Fortran packages which perform many matrix operations. We shall see how to use them on a simple example.

First download the archiver software 7-zip available at http://www.7-zip. org/download.html. Use this software (twice) to unzip (in two steps) the file http://www.netlib.org/lapack/lapack.tgz. All files and subfolders (BLAS, CMAKE, etc.) should be placed directly in a folder called C: \lapack. For example, this folder will contain at its root a file called make.inc. example, which you must rename to make.inc after changing the line SHELL $=/ \mathrm{bin} / \mathrm{sh}$ to SHELL $=\mathrm{sh}$. Then type the following instructions in an MS-DOS window:

```
cd C:\lapack
make lapacklib blaslib
```

After several minutes, the static packages librefblas.a and liblapack.a are created.

Abstract

See also The documentation for these packages can be read at http://www. netlib.org/lapack/lug. It is also useful to read the source code of all BLAS and LAPACK routines you wish to use, as they contain a detailed description of the arguments the routines take.

Here is the Fortran code, also available at http://biostatisticien.eu/ springeR/inv.f90, for a subroutine which computes the inverse of a matrix. It uses the subroutines external DGETRF and DGETRI from the Lapack package.

```
! Returns the inverse of a matrix calculated by finding
! the LU decomposition. Depends on LAPACK.
subroutine invF(A, Ainv,m)
    double precision, dimension(m,m), intent(in) :: A
    double precision, dimension(size(A,1), size(A,2)), &
                                    intent(inout) :: Ainv
    ! work array for LAPACK
    double precision, dimension(size(A,1)) :: work
    integer, dimension(size(A,1)) :: ipiv ! pivot indices
    integer :: n, info, m
    ! External procedures defined in LAPACK
    external DGETRF
    external DGETRI
    ! Store A in Ainv to prevent it from
    ! being overwritten by LAPACK
    Ainv = A
    n = size(A,1)
    ! DGETRF computes an LU factorization of
    ! a general M-by-N matrix A using partial
    ! pivoting with row interchanges.
    call DGETRF(n, n, Ainv, n, ipiv, info)
    if (info /= 0) then
        stop 'Matrix is numerically singular!'
    end if
    ! DGETRI computes the inverse of a matrix using
    ! the LU factorization computed by DGETRF.
    call DGETRI(n, Ainv, n, ipiv, work, n, info)
```

```
35 if (info /= 0) then
        stop 'Matrix inversion failed!'
    end if
end subroutine invF
```

To compile this code, execute the following instructions from an MS-DOS window:

```
cd %HOMEPATH%/Desktop # To be changed to suit your needs.
gfortran -c inv.f90 -o inv.o -I"C:/lapack"
gfortran -shared -o inv.dll inv.o -I"C:/lapack" ^
C:/lapack/liblapack.a C:/lapack/librefblas.a
```


Linux

Under Linux, use the following instructions:

```
gfortran -c inv.f90 -o inv.o -fPIC
gfortran -shared -o inv.so inv.o /usr/lib64/liblapack.so.3
```

After creating the file inv.dll (or inv.so under Linux) with the previous instructions, you can start R and type the following instructions:
> dyn.load(paste("inv",.Platform\$dynlib.ext,sep=""))
> A <- matrix(rnorm(4), nrow=2)
$>B<-$ matrix (0, nrow=2, ncol=2)
> .Fortran("invF", A, res=B, 2L) \$res
[,1] [,2]
[1,] -1.1812737 1.9822527
[2,] -0.1681507-0.7224351
> solve(A)
[,1] [,2]
[1,] -1.1812737 1.9822527
[2,] -0.1681507-0.7224351

6.5.3.4 Mixing C/C++ and Fortran packages

It is possible to call C/C++ functions from Fortran code, thanks to the instruction F77_SUB (name). We illustrate this point in the next example, which generates two independant observations: one from a $\mathcal{N}(0,1)$ distribution and the other from the uniform distribution. The Fortran code below uses the C functions GetRNGstate, PutRNGstate, rnorm and runif from the R API, which we have already used in section 6.5.3.1. Save it in a file called random.f.

```
1 SUBROUTINE random(x,y)
real*8 normrnd, unifrnd, x, y
CALL rndstart()
x = normrnd()
```

```
y y unifrnd()
6 CALL rndend()
RETURN
8 END
```

Then create the file random. c containing:

```
#include <R.h>
# include <Rmath.h>
void F77_SUB(rndstart)(void) {GetRNGstate();}
4 void F77_SUB(rndend)(void) {PutRNGstate ();}
5 double F77_SUB(normrnd)(void) { return rnorm(0,1);}
6 double F77_SUB(unifrnd)(void) {return runif(0, 1);}
```

To create your DLL file, compile using the instructions:
gfortran -c random.f -o randomf.o
gcc -c random.c -o randomc.o -I"C:\Program Files \backslash R \backslash R-2.15.1 1 include"
gfortran -shared randomf.o randomc.o -o random.dll
-L"C:\Program Files $\backslash \mathrm{R} \backslash \mathrm{R}-2.15 .1 \backslash$ bin $\backslash i 386$ " -lR

Linux

Under Linux, use
gfortran -c random.f -o randomf.o -fPIC
gcc -c random.c -o randomc.o -I"/usr/lib/R/include" -fPIC gfortran -shared randomf.o randomc.o -o random.so

You can now call your code from R using the instructions:

```
> dyn.load(paste("random",.Platform$dynlib.ext,sep=""))
> .Fortran("random", as.double(1), as.double(1))
[[1]]
[1] 1.542474
[2]]
[1] 0.59143
```

It is also possible to call Fortran functions from $\mathrm{C} / \mathrm{C}++$ code, using the following instructions:

F77_NAME (name) to declare a Fortran routine in C
F77_CALL(name) to call a Fortran routine from C
F77_COMDECL (name) to declare a COMMON FORTRAN block in C F77_COM (name) to access a COMMON FORTRAN block from C

Here is a small example (with Fortran77 for a change). Save the code below in a file called combnCF.cpp:

```
#include <R.h>
#include <Rmath.h>
extern "C" {
void combnCF(int *combmat, int *n, int *m) {
// Caution! No upper case in the name of the subroutine
void F77_NAME(combnf)(int *combmat, int *n, int *m);
F77_CALL(combnf)(combmat,n,m);
    }
9}
```

Then type the following instructions in an MS-DOS command window to create the package which will be called from R :

```
g++ -c combnCF.cpp -o combnCF.o -I"C:\Program Files\R\R-2.15.1\include"
gfortran -c combn.f90 -o combn.o
g++ -shared -o combnCF.dll combnCF.o combn.o ^
    -L"C:\Program Files\R\R-2.15.1\bin\i386" -lR
```

 Linux
 Under Linux:
g++ -c combnCF.cpp -o combnCF.o -I"/usr/lib/R/include" -fPIC
gfortran -c combn.f90 -o combn.o -fPIC
g++ -shared -o combnCF.so combnCF.o combn.o \}
-I"/usr/lib/R/include" -L"/usr/lib" -lR

Now modify the code of function combnRC() given page 235:

- change the name of this function to combnRCF ();
- replace "combn" and "combnC" with "combnCF".

Save this new code in a file called combnCF.R. Then type the following instructions in the R console:

```
> source("combnCF.R")
```

$>$ CombnRCF $(5,3)$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	$[, 10]$
$[1]$,	1	1	1	1	1	1	2	2	2	3
$[2]$,	2	2	2	3	3	4	3	3	4	4
$[3]$,	3	4	5	4	5	5	4	5	5	5

6.5.4 Calling R code from a $\mathrm{C} / \mathrm{C}_{++}$program called by R

We have seen how to call a C/C++ (or Fortran) routine from R. It is also possible to use a type of pointer called SEXP (for Simple EXPression) and the function
.Call(). In this subsection, we only give a simple example. The reader can use this as inspiration for more complex examples.

See also

We refer the reader to the website http://cran.r-project.org/doc/ manuals/R-exts.html\#Handling-R-objects-in-C.

In the following example, we shall see how to call function pmvt() of package mvtnorm from C/C++ code, itself called from R. The function pmvt () computes the probability that a random vector following a multivariate Student distribution belongs to a specified hyperrectangle in \mathbb{R}^{n}.

Unlike the examples in the previous sections, which used the function .C(), we shall need the function. Call(). Furthermore, our C/C++ code will have to be a function (which we call pmvtC in the following) which returns a structure of type SEXP and which also takes arguments of type SEXP. The code below, available from http://biostatisticien.eu/springeR/pmvt.cpp, will be transformed into a DLL file then called by the function. Call().

```
#include <R.h>
#include < Rdefines.h>
#include "Rmath.h"
#include < R_ext/Rdynload.h>
extern "C" {
    SEXP pmvtCR(SEXP Rupper,SEXP Rcorr,SEXP Rdf,
                                    SEXP Rpmvt,SEXP Renv,SEXP Rres) {
        SEXP R_fcall;
        if(!isFunction(Rpmvt) & (Rpmvt != R_NilValue))
                error("Rpmvt must be a function");
            if(!isEnvironment(Renv))
                error("Renv must be an environment");
        PROTECT(R_fcall = lang4(Rpmvt,Rupper, Rcorr, Rdf));
        REAL(Rres)[0] = REAL(eval(R_fcall, Renv))[0];
        UNPROTECT(1);
        return(Rres);
    }
}
```

To compile this file, use the following instructions:

```
g++ -c pmvt.cpp -o pmvt.o -I"C:\Program Files\R\R-2.15.1\include"
g++ -shared -o pmvt.dll pmvt.o ^
    -L"C:\Program Files\R\R-2.15.1\bin\i386" -1R
```


Linux

Under Linux, use the instructions:

```
g++ -m64 -I/usr/include/R -I/usr/local/include -fpic \
    -c pmvt.cpp -o pmvt.o
R CMD SHLIB pmvt.cpp
# or:
g++ -m64 -shared -L/usr/local/lib64 -o pmvt.so pmvt.o \
    -L/usr/lib64/R/lib -lR
```

You can now call this function from R. First download the file http://biostatisticien.eu/springeR/pmvt.R which contains the following code:

```
> pmvtRCR <- function(upper,corr,df) {
+ res <- 0.0
+ Rpmvt <- function(upper,corr,df) {
+ d <- length(upper)
+ pmvt (lower=rep (-Inf,d),upper=upper, delta=rep (0,d) ,
+ corr=matrix(corr,ncol=d),df=df)}
+ dyn.load(paste("pmvt",.Platform$dynlib.ext,sep=""))
+ res <- .Call("pmvtCR", as.double(upper), as.double(corr),
+ as.double(df),Rpmvt, new.env (), as.double (res))
+ dyn.unload(paste("pmvt",.Platform$dynlib.ext, sep=""))
+ return(res)
+}
```

Then type the following instructions:

```
> require(mvtnorm)
> corr <- diag(3)
> set.seed(1)
> source("pmvt.R")
> pmvtRCR(c(2,3,2),corr,c(1, 1, 1))
[1] 0.706062
> set.seed(1)
> pmvt(lower=rep(-Inf,3),upper=c (2,3,2), corr=corr,df=c (1, 1,1)) [1]
[1] 0.706062
```


Tip

If an SEXP object contains a vector (for example SEXP x) or a matrix (for example SEXP M), you can use the instructions R_len_t $n=$ length(x) and R_len_t $p=$ nrows (M) to create integers containing the length n of vector x or the number of rows p of matrix M. The file Rinternals.h contains the list of many similar useful functions.

6.5.5 Calling R code from Fortran

We recommend the Open-Source software RFortran available at http://www. rfortran.org.

6.5.6 Some useful functions

Here are a few functions which you may find useful. The following functions are used in an MS-DOS terminal window (or in Cygwin, see page 256):

- $\quad \mathrm{nm}$: List of symbols of object files (e.g. nm random.dll).
- objdump: Information about object files (e.g.objdump -x random.dll).
- ldd: List dynamic dependencies if necessary (e.g. ldd random. dll).

The following functions are used in R:

- getLoadDLLs(): List all DLLs loaded in the current session (e.g. getLoadDLLs()).
- is.loaded(): Checks whether a library is loaded (e.g. is.loaded(random.dll)).

$\Gamma^{\text {SECTION } 6.6}$ Debugging functions

In this section, we present various options which can be useful to debug a function and find an error. The error could be either in the R code, or in $\mathrm{C} / \mathrm{C}++$ or Fortran code called from your \mathbf{R} function.

See also
We refer the reader to the website http://www. stats .uwo.ca/faculty/ murdoch/software/debuggingR.

6.6.1 Debugging functions in pure R

We present some debugging functions, useful when writing R code.

The function browser()

A useful debugging function in \mathbf{R} is the function browser(). If you insert the instruction browser () in the source of your function, the program will stop at the place where it was inserted.

Here is an example showing how to use browser() in a function called lsq() which calculates the least squares estimator of unknown arguments in a simple linear model (see Chapter 12 for further details).

```
lsq<- function(X,Y, intercept=T){
    X<- as.matrix (X)
    Y <- as.matrix (Y)
    plot(X,Y)
    nbunits <- nrow(X)
browser()
    if (intercept==T) X <- cbind(rep(1, nbunits),X)
    betahat <- solve(t (X)%*%X)%*%t(X)%*%Y
    curve(betahat[1]+betahat[2]*x,add=TRUE)
return(betahat)
}
```

Source the file containing the previous code (for example with the instruction source (file.choose())), then type:
lsq (X=cars[, 2], Y=cars[,1])
As you can see, the program stops and you can examine the contents of all local variables defined before browser(). For example, type nbunits.

Noue
By typing the letter n (for next), you can inspect the code and the contents of variables sequentially. To leave the inspection mode, type Q .

Here is an overview of a debugging session:

```
lsq(X=cars[, 2],Y=cars[,1])
Called from: mc(X = cars[, 2], Y = cars[, 1])
Browse[1]>nbunits
[1] }5
Browse[1]> betahat
Error: Object "betahat" not found
Browse[1]> n
debug: if (intercept == T) X <- cbind(rep(1, nbunits), X)
Browse[1]> n
debug: betahat <- solve(t(X) %*% X) %*% t(X) %*% Y
Browse[1]> n
debug: curve (betahat[1] + betahat[2] * x, add = T)
Browse[1]> betahat
    [,1]
[1,] 8.2839056
[2,] 0.1655676
Browse[1]> Q
>
```

Note
If you enter the letter c (for continue), the code is executed until the end, unless a browser() command is met again.

The function debug()

Another interesting function is debug() which is equivalent to putting the instruction browser () at the top of a function. Thus debug(var) marks the functions var as debuggable. Any subsequent call of this function will launch the online debugger.

```
debug(var)
var(1:3)
```

To get rid of this mark, use the function undebug ()

```
undebug(var)
```


6.6.2 Error in R code

First change line 6 of file combn.R, replacing the affectation arrow <- by the symbol $<$. We now have an error: an ommited symbol (the symbol -):

```
combmat<matrix(out$res,nrow=m,byrow=F)
```

Save the file, source it and type the following instruction:

$>c, ~ c o m b n R C$	$(5,3)$									
	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	$[, 10]$
$[1]$,	0	0	0	0	0	0	0	0	0	0
$[2]$,	0	0	0	0	0	0	0	0	0	0
$[3]$,	0	0	0	0	0	0	0	0	0	0

As you can see, there is an error in the result, and the error that we introduced deliberately in the code could be difficult to detect if it were an accidental omission. Here is how we could try to detect where the error comes from. First install and load the package debug. Then use the function mtrace() of this package, as follows:

```
mtrace(combnRC)
combnRC(5,3)
```

You should then see a debugging window with the source code of function combnRC(). Pressing the RETURN key repeatedly will evaluate your source code line by line until the next display (which occurs upon evaluation of the line we modified):

| | $[, 1]$ | $[, 2]$ | $[, 3]$ | $[, 4]$ | $[, 5]$ | $[, 6]$ | $[, 7]$ | $[, 8]$ | $[, 9]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$[, 10]$

This hints that there is an issue at this point. We can then correct the error, for example with the instruction fix (combnRC).

Note that the function mtrace() did not allow us to delve into the details of the following call:

```
.C('combnC",res=as.integer(combmat),as.integer(n),
    as.integer(m))
```


6.6.3 Error in the $C / C++$ or Fortran code

We shall now see how te perform the same kind of debugging for parts of the code written in C/C++ or Fortran. It mostly boils down to using the compilation option -g to add information on the source code in the DLL file, and then to using a specialized debugging tool.

Warning

You will need a debugging tool. We recommend the free software GDB. Download version 7.4 (32 bits) from http://biostatisticien.eu/ springeR/32/gdb.exe and put it in the folder C: \backslash Rtools \backslash bin. This software uses the command line and is rather austere. You may find useful to add a Graphical User Interface (GUI), such as the Data Display Debugger (DDD) or Emacs. Under Windows, another interesting avenue is the software Insight, included in the set of tools MinGW, available from http://sourceforge. net/projects/mingw/files/OldFiles/insight.exe/download. However, this software seems to be becoming obsolescent. If you try to use it, remember to change the system environment variable Path to add the path to Insight (probably C: \insight \bin), as explained page 229.

Under Microsoft Windows, you will have to install the version of Emacs available at http://vgoulet.act.ulaval.ca/en/emacs/windows. It is a bit more complicated to use DDD under Windows. You need to launch the Cygwin setup (available at http://cygwin.com/setup.exe), choose the installation directory $\mathrm{C}: \backslash$ Rtools \backslash bin and select the software Devel: ddd and Math: gnuplot (and accept the required dependencies). Also note that if the list of download sites is empty, you can try the URL http: //cygwin.mirrorcatalogs.com. To use DDD, you also need an implementation of the Linux X window system for Microsoft Windows. The
software Xming, available at http://biostatisticien.eu/springeR/ Xming-6-9-0-31-setup.exe, is a good choice. You could also use MobaXterm (http://mobaxterm.mobatek.net), or Cygwin's Xorg server (select X11: xorg-server: X.Org servers on installation).

6.6.4 Debugging with GDB

Start an MS-DOS command window from the Windows Start menu (type cmd) in which you type:

```
cd path to folder containing inv.cpp
g++ -IC:\newmat -o inv.o -c inv.cpp -g
g++ -shared -o inv.dll inv.o -IC:\newmat C:/newmat/newmat.a
```

This will create the file inv.dll with debugging information (see page 245 for the creation of the library newmat).

Tip

In order to also debug the functions from library newmat, you need to first create this library in a way that includes debugging information:

```
cd \
cd newmat
g++ -c *.cpp -Wno-deprecated -g
ar cr newmatdebug.a *.o
ranlib newmatdebug.a
cp newmatdebug.a newmatdebug.dll
```

Then type:
gdb Rgui
(gdb) run
This should start R, where you type:

```
> setwd("path to file inv.dll")
> dyn.load("inv.dll")
```

Then go to menu Misc/Break to debugger, which will allow you to return to GDB (black window), where you can type:
(gdb) info share
(gdb) break inv.cpp:1
(gdb) signal 0

The first instruction (info share) shows that the library inv.dll has been loaded; the second instruction (break inv.cpp:1) allows you to add a break point on the first (executable) line of the file inv.cpp; the last instruction (signal Q) exits GDB and returns to R. In R, type:
$>A \quad$ <- matrix(rnorm (4), nrow=2)
> source("inv.R") \# File created page 245.
> inv(A)
When the processor encounters the break point, the code execution is suspended. You can now type the following instructions in GDB. The first instruction (list) display the next lines to execute; the second instruction (next) moves to the next line; the third instruction (print nrow [0]) displays the value of nrow [0], and the last instruction continues the code execution until the end or the next break point.

```
(gdb) list
(gdb) next
(gdb) print nrow[0]
(gdb) continue
```

You are back in R and you see the output of the call inv(A). You can type the following instructions to verify that the result is the same as with function solve(), and to exit R.
> solve(A)
> $\mathrm{q}(\mathrm{l}$

Linux

Under Linux, type in a terminal window the command:
R -d gdb
instead of gdb Rgui.
Alternatively, you could use the following instructions:
export R_HOME=/usr/lib64/R
gdb /usr/lib64/R/bin/exec/R
To return to R from GDB, use the key combination CTRL+C. Note that to go from GDB to R, after typing signal 0 (or equivalently c), you need to press RETURN.

Tip

Note that GDB can be called with options. For example:
--directory=DIR Search for source files in DIR.
--pid=PID Attach to running process PID.

See also

The documentation of GDB, available at http://sourceware.org/gdb/ current/onlinedocs/gdb, is worth reading.

Tip

You can install/compile a package (hereafter called PKG) with debugging information (equivalent to using the flag -g mentioned above). First create a file called Makevars.win (Makevars under Linux) in a subfolder called .R/ in your \%HOME\% directory. This file should include the following lines:

```
## for C++ code
CXXFLAGS=-g
```

For this purpose, you can for example type: WINDOWS+R, cmd, ENTER, cd \%HOME\%, ENTER, mkdir .R, ENTER, cd .R, ENTER, echo CXXFLAGS $=-\mathrm{g}>$ Makevars.win, ENTER. Next, build the package PKG and install it (from the sources using the command R CMD INSTALL --build --debug PKG), then use one of the debugging methods presented above. Note that the file
NAMESPACE of your package PKG must include the line useDynLib("PKG") so that the DLL (or . so) file is automatically loaded when you execute in \mathbf{R} the instruction require (PKG). If this procedure fails, you can always use the function dyn. load() to load the package "by hand" from where it is installed.

Tip

It is also possible to display the contents of an object of type SEXP (call this object s). To do this, you can include in your $\mathrm{C} / \mathrm{C}++$ code the instruction PrintValue(s) ; This way, when the instruction is encountered during code execution, the contents of the object s will be displayed in the R console. Another solution is to use the instruction p Rf_PrintValue(s) from the GDB console. Note that in this case, the display of object s in the R console may be delayed until R takes over from GDB.

6.6.4.1 Debugging with Emacs

We have seen how to debug code with GDB. We shall now show how to perform the same kind of operations with the combination of Emacs (and its excellent module ESS, Emacs Speaks Statistics) and GDB. Note that you need to have installed GDB as explained page 6.6.3. Note also that you need to create, from an MS-Dos window,
the file combn.dll with debugging information (flag -g) thanks to the following instructions:

```
g++ -g -c combn.cpp -o combn.o
g++ -shared -o combn.dll combn.o
```


Note

Under Emacs, the notation $M-x$ means you must press simultaneously the keys ALT and X, whereas C-x means you must press simultaneously the keys CTRL and X , and [RET] designates the carriage return (key RETURN).

First open Emacs (see page 256 for how to install this software) then execute the following commands. For example, the first line is executed by pressing simultaneously on ALT and X, then R (which will display M-x R at the bottom of Emacs), then RETURN (which will display ESS [S(R): R (newest)] starting data directory? ~/), then RETURN again (which will start R in Emacs).

```
M-x R [RET] [RET]
M-x gdb [RET] gdb -i=mi --annotate=3 [RET]
```

Your Emacs window should then be split in two, with \mathbf{R} on top and GDB at the bottom. If that is not the case, go to the menu File/Split Window or File/New Window Below (C-x 2), then to the menu Buffer to select *R* *.

Warning

The system environment variable Path must include the entry $\mathrm{C}: \backslash$ Rtools \backslash bin first, so that the version of GDB used is 7.4.

You then need the process ID of R. Under Windows, use the key combination CTRL+ALT+Del to start the task manager. Then select the Processes tab. In the menu View/Select Columns..., tick the box PID (Process Identifier), which will add a column PID to the task manager. Then find the (PID) corresponding to the name Rterm. exe *32 (for example 5404).

Linux

Under Linux, you can get the PID of R directly by typing in Emacs:
M-! Shell command: pgrep R [RET]

Then type in Emacs the following instructions:
(gdb) attach 5404 [RET]
(gdb) signal 0 [RET]
Click on the panel (or Buffer in Emacs) called *R*, and execute the following instructions:
> setwd("chemin vers le fichier combn.R")
> source("combn.R")
> dyn.load(paste("combn", .Platform\$dynlib.ext,sep=""))
Click on the bottom sub-window (Buffer *gud*).
C-c C-c
(gdb) b combn.cpp:1 [RET]
(gdb) c [RET]
Click on the top sub-window (Buffer *R*),
$>$ combnRC $(5,3)$
C-g
M-x gdb-many-windows
Put the Emacs window in full screen. Your Emacs window should now be divided in six panels, as shown in figure 6.2. If needed, click on the relevant entries of the Buffer menu.

Fig. 6.2: Emacs and GDB.

Click on the bottom right panel called *breakpoints of*. Select the menu Buffers/*R* *.

Now click on the window combn. cpp. You will see new icons in the top part of Emacs. For example, you can click on the symbol for Next Line (right of GO) to execute your $\mathrm{C} / \mathrm{C}++$ line by line.

- Change line 32 of file integ.cpp into limit[0] $=-1$; Recompile this code and call it from R as seen above: .C("testintegral", val=0.0)\$val. Your R session should crash. Suppose you do not remember making the above change. Use the techniques you just learnt to find the error.
- Debug the file pmvt.cpp seen in Section 6.5.4. Type the instruction p Rf_PrintValue (Rpmvt) from the GDB console to display (in the R console) the contents of object Rpmvt.

6.6.4.2 Debugging with DDD

You first need to launch Xming (or an equivalent tool); its icon should appear in
the task bar. Then launch a Cygwin terminal window instructions:

```
$ export DISPLAY=localhost:0.0
$ cd path to directory containing the source and DLL files
$ ddd Rgui
```

You may need to wait a while before DDD starts.

Linux

Under Linux, replace the last instruction with the command $\mathrm{R}-\mathrm{d}$ ddd.

Next, type the following instructions in GDB (lower panel):
(gdb) dir \$cwd
(gdb) run
The first instruction tells GDB to search for source files in the current directory (which would be given by the command pwd), thus avoiding issues due to path management in Windows. The second instruction starts \mathbf{R} (you could also tick the box: Program/Run in Execution Window, and click on Program/Run, then on Run); type in R:
> dyn.load("inv.dll")
Note that the file inv.dll was created with debugging information, as mentioned page 257. Now go to menu Misc/Break to debugger to return to DDD. Go to menu File/Open source... and open file inv.cpp. Also tick the entry Data Window in menu View (and possibly entry Display Local Variables in menu Data, if you
are patient!). You can then put one or several breaking points in the code to debug (by double-clicking at the beginning of the line or by right-clicking), for example at the instruction $M \ll$ values; . This has the effect of displaying a stop symbol. Then type continue (or just c) in the lower part (gdb). This returns to R, where you type:
> A <- matrix(rnorm(4), nrow=2)
> source("inv.R") \# File created page 245.
$>$ inv(A)
When the (first) breaking point is encountered by the processor, code execution is suspended. You can now use the graphical tool DDD to debug your code.

Note that it is possible to display several values of an array. For example, you can type in the lower window (gdb) the following instruction:

```
graph display values[0] @ 4
```

to display the (first) 4 values of array values.

Fig. 6.3: DDD and GDB .

6.6.4.3 Debugging with Insight

Insight seems to have difficulties working on some Windows versions. Nonetheless, we present this software for those who have a compatible version of Windows,
or in case a new version of Insight is shipped after the publication of this book.
Recompile your file using flag -g (and possibly -fPIC) which tells the $\mathrm{C}++$ compiler to add information on the source code directly in the compiled file.

```
g++ -c combn.cpp -o combn.o -g
g++ -shared -o combn.dll combn.o
```

Then, from the MS-DOS window, execute insight Rgui.exe then click on Run教。

Next type the following commands in the \mathbf{R} console which opens:

```
> source("combn.R")
```

> dyn.load(paste("combn", .Platform\$dynlib.ext,sep=""))

Go to the \mathbf{R} menu called Misc, then Break to debugger. You are now in the Insight window.

In Insight, select menu View - Console [CTRL+N]. This opens the command window of debugger GDB. We can now add a breaking point to function combnC by typing:
break combnC
Then type:
continue
which returns to \mathbf{R}. As soon as the function combnC is called, we will return to the debugger.

Now type in R:
> debug (combnRC)
> combnRC $(5,3)$
Use instruction n (for next) to skip to the next instruction of our \mathbf{R} code, until reaching the call to the function written in $\mathrm{C}++$.

The breaking point we added is detected and we are back in Insight.

Next click on icon T^{T} to execute line by line the C++ code and check the value of the various variables.

The window Local Variables (shown by menu View -> Local Variable [CTRL+L]) displays all local variables and their contents during code execution.

Note that to see the contents of an \mathbf{R} matrix or vector, you simply need to go to the GDB console and type for example:
$x / 30 d w$ combmat

You can also display graphically this table of values and select it by clicking on plot.

You can now type the following instructions in the GDB console to add a breaking point at line 32 of your $\mathrm{C}++$ code, then re-execute the code. When the breaking point
is encountered, the code stops again and we can ask to display again the contents of array x :
break 32
continue
x/30dw combmat

6.6.4.4 Detecting memory leaks

The messages Segmentation fault (or segfault), invalid next size, std::bad_alloc (which you will certainly encounter under Linux!), incoherent results, or, more radically, a complete crash of R , are often indications that there is a memory issue (access to a non-reserved or non-initialized address, using freed memory, etc.) These memory leaks often occur when you have forgotten to use the instruction delete[] ptr; to delete from memory a pointer ptr introduced in a $\mathrm{C} / \mathrm{C}++$ function. This problem can sometimes be noticed in the task manager when you run a large simulation in \mathbf{R} and realize that the R process is using more and more memory even though it should not.

Linux

Under Linux, the display of memory usage by different processes is given by the command (entered in a terminal window) watch -d free for global usage or by top -p PID for a specific process (use ps au to find the PID of the desired process). You can also use the graphical tool ksysguard.

Another common mistake is to try to manipulate the nth entry in an array of size less than n (accessing undefined memory). It can then be difficult to detect the origin of the problem. The software Dr Memory (http://code.google.com/ p/drmemory, and possibly the software electric-fence-win32 (http://code. google.com/p/electric-fence-win32) and duma (http://duma. sourceforge. net), can be precious tools in such situations.

We now show on an example how to use Dr. Memory which you should install in the directory C: \drmemory (choose the entry Add Dr. Memory to the system PATH for all users upon installation).

The following piece of code includes several errors, which can be hard to find for a beginner. You can download it from http://biostatisticien.eu/springeR/ memory. cpp.

```
extern "C" {
    void testmemoey(int *M, double *a) {
        double *ptr1, *ptr2;
        int i;
        ptr1 = new double[10000];
        ptr2 = new double[M[0]];
        ptr1 [0] = 1.0;
        for (i=1;i<10000;i++){
            ptr1[i] = (double)i;
            ptr2[i] = ptr1[i-1]*(double)i;
        }
            delete[] ptr2;
            for (i=0;i<10;i++) a[i] = ptr2[i];
            return;
        }
}
```

First create the associated DLL file, using the following instructions in an Ms-Dos window:
cd directory containing file memory.cpp
g++ -o memory.o -c memory.cpp -g
g++ -shared -o memory.dll memory.o

Linux

Under Linux, use the instructions:
g++ -o memory.o -c memory.cpp -g -fPIC
g++ -shared -o memory. so memory.o

Next, type drmemory.exe -- Rgui in your command window (be patient), then type the following instructions in the R console:

```
> dyn.load("memory.dll")
> .C("testmemory",10000L,3.0)
> q()
```

Now look for the instances of testmemory in the file which opened up. This will indicate the lines which may contain errors. For example, this shows that there is an error at line 13. In fact, we realize that the array a is of length 1 (and initially contains only the value 3.0), whereas we are trying to write values in entries 0 to 9 . Furthermore, the pointer ptr2 was deleted on the preceding line.

You can also try the following R instruction, and note in the task manager that the amount of RAM used by R increases greatly. This is because we forgot the instruction delete[] ptr1; in the C/C++ code above.

```
> for (i in 1:10000) .C("testmemory",10000L,as.double(1:10))
```


Linux

The equivalent of Dr Memory under Linux is called Valgrind. To detect where the leak comes from, you can use the instruction:

```
    R -d 'valgrind --leak-check=full'
> dyn.load("memory.so")
> .C("testmemory", 10000L, 3.0)
> q()
```

In the output of valgrind, you then need to look for the errors and for the corresponding line numbers in the source code of memory. cpp. The following instructions give other error types displayed by R and detected by Valgrind:

```
> # Works only once!
> # Afterwards, R crashes with: "caught segfault":
> .C("testmemory",10000L,c(3.0,5.0))
> # R closes: "invalid next size":
> .C("testmemory", 10000,c(3.0,5.0))
> # R closes: "std::bad_alloc":
> .C("testmemory",10^12,c(3.0,5.0))
> # Works when ptr2 is no longer defined:
> .C("testmemory",10000L,as.double(1:10))
```


Parallel computing and computation on graphical cards

6.7.1 Parallel computing

You can speed up your calculations by having them run on several processors at the same time; these processors can even be on different computers. There are several specialized packages for this; they are listed in the CRAN Task View: High-Performance and Parallel Computing with R, available athttp://cran.r-project.org/ web/views/HighPerformanceComputing.html.

The easiest to use is package snow with communication protocol SOCK, which we briefly describe below through an example.

The MPI protocol (Message Passing Interface), used by package Rmpi, is more flexible than the SOCK protocol, but it requires the installation of other software (such as OpenMPI or mpich2).

```
See also
We refer the interested reader to the websites http://www.divms.uiowa. edu/~luke/R/cluster/cluster.html, http://www.sfu.ca/~sblay/ R/snow.html and http://cran.r-project.org/web/packages/ snowfall/vignettes/snowfall.pdf.
```

The following R code performs numerical evaluation (by Monte Carlo simulation) of the empirical level of the Shapiro-Wilks normality test for a nominal level of 5% :

```
> myfunc <- function(M=1000) {
+ decision <- 0
+ for (i in 1:M) {
+ x <- rnorm(100)
+ if (shapiro.test(x)$p < 0.05) decision <- decision + 1
+ }
+ return(decision)
+ }
```

Here is the computation time needed for this code with $M=60,000$ Monte Carlo iterations:

```
> system.time({
```

+ M <- 60000

```
+ decision <- myfunc(M)
+ print(decision/M)
+ })
[1] 0.04893333
    user system elapsed
18.124 0.331 18.457
```

We now show how this code can be parallelized using the package snow, and the corresponding gain in computation time. We used 6 processors. We also installed the package rsprng which handles the simulation of random numbers on the various processors of the cluster.

To know the number of processors on your computer, type the instruction devmgmt.msc in the menu Start/Run. Then count the number of lines in the Processors entry. Under Linux, type top in a terminal window, then 1. This shows the number of processors.

```
> require(snow)
> system.time({
+ nbclus <- 6
+ M <- 60000
+ cl <- makeCluster(nbclus, type = "SOCK")
+ clusterSetupSPRNG(cl)
+ out <- clusterCall(cl, myfunc, round(M/nbclus))
+ stopCluster(cl)
+ decision <- 0
+ for (clus in 1:nbclus) {
+ decision <- decision + out[[clus]]
+ }
+ print(decision/(round(M/nbclus) *nbclus))
+ })
[1] 0.0501
    user system elapsed
    0.019 0.033 5.522
```


6.7.2 Computation on graphical cards

The processor, or CPU (Central Processing Unit), is the computer component which handles execution of software. However, it is now also possible to perform computations on a GPU (Graphical Processing Unit), or graphical card. Graphical cards allowing such operations are marketed by Nvidia, and they can include hundreds of processors working in parallel. The speed-up in computation time can be substantial. To use this technology, however, you must know the programming language CUDA, developped by Nvidia. A few R developpers have delved into this language and have grouped a few functions in the package gputools, which is only available on Linux for now.

Here is a short example of use of this package. We used an NVIDIA GeForce GTX 480 graphical card.

```
> require(gputools)
```

> A <- matrix(runif(40000), nrow=200, ncol=200)
> B <- matrix(runif(40000), nrow=200, ncol=200)
> system.time(cor(A, B, method="kendall")) \# Computation CPU.
user system elapsed
$29.804 \quad 0.002 \quad 29.810$
> system.time(gpuCor(A, B, method="kendall")) \# Computation on
\# GPU.
user system elapsed
$0.836 \quad 0.052 \quad 0.891$

See also

To find out more on this topic, go to http://cran.r-project. org/web/packages/gputools/gputools.pdf and http://developer. nvidia.com/object/cuda_training.html.

Memorandum

function(<par1>, <par2>, . . , <parN>) <body> : declare a function object "\{"(): define a block of instructions and return the last evaluated instruction class(), "class<-"(): extract, affect the class of an object missing (): test whether an effective argument is defined attributes(), "attributes<-"(): extract, affect all attributes as a list attr(), "attr<-"(): extract, affect a single attribute expression(): create an expression object
parse(): convert text to an expression
eval(): evaluate an expression
"~"(): create a formula object
new.env(): create an environment
local (): execute code locally in an environment

Exercises

6.1- For each of the following command lines, indicate the class of the returned \mathbf{R} object. What is displayed upon execution of each of these command lines?

- function(name) \{name\}
- (function(name) \{name\})("Ben")
- (function(name) \{cat(name,"\n")\})("Ben")
- (function(name) \{invisible(name)\})("Ben")
6.2- Is there a difference between
- name <- function(name) name and name <- function(name) \{name\}
- name <- function(name) \{name\} and name <- function(name) \{return(name)\}
- name <- function(name) \{name\} and (function(name) \{name\}) -> name
6.3- Upon execution, is there a difference between name() and name("Peter") when
- name <- function(name="Peter") name
- name <- function(name="Peter") name2 <- name

For these two declarations of the function name(), is there a difference in the type of the R object res given by res <- name("Ben")?
6.4- What R object is returned upon execution of name() when:

```
name <- function(name="Peter") {
    name
    # The last instruction is a comment!
```


\}

6.5- When name <- function(firstname="Peter",name="L") \{ paste(firstname, name) \}, what R object is returned by

- name(firstname="Ben")
- name(fir="Ben")
- name(n="D",f="R")
6.6- Rewrite the following function declaration in one line, without using the command separator ";":
name <- function(name) \{ if(missing("name"))
name <- "Peter"; cat(name,"\n") \}
6.7- What is the output of the execution of names("peteR", "Ben", "R") when:
- names <- function(...) c(...)
- names <- function(...) list(...)
- names <- function(...) for(name in c(...)) print(name)
- names <- function(...) for(name in list(...)) print(name)

Same question upon execution of
names(c("peteR","L"), c("Ben", "L"), c("R", "D"))
6.8- When names <- function(names=c("Ben","R"),...) c(names,...), which R objects are returned by names("PeteR"), names (name="PeteR") and names(names="PeteR")?
Same question when
names <- function(..., names=c("Ben","R")) c(names,...).
6.9- Create a constructor function Male() generating an object of class "Male" with fields firstname and name (in an object of type list). Create the method hello.Male() which displays "Hello Mister FIRSTNAME NAME!" (do not forget the " $\backslash n$ " at the end of the display!) for an object with values "FIRSTNAME" and "NAME" respectively for the fields firstname and name. When man <- Male("Ben","L"), what is produced upon execution of the following commands: hello.Male(man) and hello(man)? What code should you execute in addition for the two results to be identical?
6.10- Create the analogous functions for the class "Female" (hint: do not forget to update the gender in hello. Female()). When
woman <- Female("Elsa","R"), what is produced upon execution of the following commands: hello.Male(woman), hello.Female(woman) and hello(woman).
6.11- When welcome <- function(...) for(person in list(...)) \{ hello(person) \}, what is returned by welcome(man, woman)?
And when welcome <- function(...) for(person in c(...))\{ hello(person) \}?
Same question when hello.default <- function(obj) \{ cat("hello", obj,"!\n")\}.

Programming functions and object-oriented programming in R

Before reading the practicals of this chapter, we strongly advise you to revise those of the previous chapters (especially the one on "advanced plots") and to reorganize the solutions to the exercises in as many functions as necessary.

A- Managing a bank account

The aim of this practical is to create three minimalist functions to manage bank accounts. The accounts will be stored in data.frame objects all called accounts and stored in different .RData files. All these files will be located in the same folder. The path to this folder should be saved in the R variable .folder. accounts and be accessible in all the functions you develop.
6.1- The instruction file.path(.folder.accounts, paste(name,".RData", sep="")) gives the path of the file associated with the account Name. Create the functions path.account (), which takes one formal argument name (representing the name of the account) and returns the complete path to the file (which contains the object account of class data. frame) with extension .RData.
6.2- Given that factor(levels=c("Debit", "Credit")), numeric(0) and character (θ) respectively give empty vectors of explicit types, which expression would generate an empty data matrix with the predefined fields amount, mode, date and remark? Create the function account () (not to be confused with the variable account called in its body) which takes one argument name and creates a new account.
6.3- Create the functions debit () and credit() to respectively debit and credit an amount amount (second argument) from the account name (first argument). The third argument is any comment to put as remark. A fourth argument can represent the date; the default value is format (Sys.time(), " $\% \mathrm{~d} / \% \mathrm{~m} / \% \mathrm{Y} "$) (i.e. the date of input). Remember to use the functions load() and save() to load and save the variable account in the body of each function.
6.4- If account is the data matrix containing information on the account, what is returned by sum (account [account\$mode=="Credit", "amount"])? Modify the function account () so that it returns the current state of the account only when the file returned by path.account (name) exists (use the function file.exists() to test whether a file exists).
6.5- Complete account management by creating any additional functions you wish.
6.6- Optional question: Since most use of R is done with objects, adapt the previous functions in a way that respects the R object-oriented philosophy. You can use the next practicals for inspiration.

B- Organizing graphical objects

When you think about it, plots in R do not really respect the object-oriented spirit: unlike most other entities, an R plot is not considered as an object which can be saved (and possibly modified) and on which certain methods can be applied. We shall attempt to propose a very basic prototype to draw a plot with circles and rectangles (and hence squares). You can enrich this library with graphical objects as you wish. Our aim is to maintain a list of graphical objects, with the possibility of changing any of its elements at any time.
6.1- R functions plot.new() and plot.window() are used to initialize a plot. The argument asp set to 1 creates plots with correct units for the x and y axes. Propose an object Window which gives the user the option of saving the dimensions of the graphics display window. The user can then call the constructor function (or method) Window () (which could have the same name as the class), which takes as arguments x and y (the coordinates of the centre), width, height (dimensions along the x and y axes respectively) and optionally log (logarithmic transformation). All these quantities should be stored in an object list, returned by the constructor function Window(), after affecting its class to "Window".
6.2- Similarly, propose constructor functions for objects of classes Circle and Rectangle. The fields x and y represent the coordinates of the centre of the object, radius is the radius of a circle and width and height are the dimensions of a rectangle.
6.3- Propose plotting methods plot. Window(), plot.Rectangle() and plot. Circle(). You can find inspiration in the following R treatments used to display a new plot with a circle and a square centred at the origin and of diameter and side length set to 1 :

```
plot.new()
plot.window(xlim=c (-1,1),ylim=c(-1,1),asp=1)
rect(-.5,-.5,.5,.5)
symbols(0,0, circle=.5,inches=FALSE,add=TRUE)
```

6.4- Test the code you have developed by executing the code:

```
mywindow <- Window(0,0,2,2)
mycircle <- Circle(0,0,.5)
myrectangle <- Rectangle(0,0,1,1)
plot(mywindow);plot(mycircle);plot(myrectangle)
```

If all goes well, you should see a graphics window with a circle inside a square.
6.5- We now need to develop the methods associated with the class MyPlot which will contain the list of all graphical objects. First, propose a constructor function MyPlot () which initializes an object as list (objects=list()) (where objects is the field containing the list of graphical objects), affects the class "MyPlot" and returns the object.
6.6- Propose a method add.MyPlot() which adds graphical objects. Remember to give a generic function add() to launch all associated methods. Use the functionalities of the list of supplementary arguments . . . and the function c() so that the method add. MyPlot() can initialize as many graphical objects as the user wishes. Propose a method plot.MyPlot() which executes the methods plot() for all graphical objects. The user can then enter the following lines to get the same result as earlier:

```
myplot <- MyPlot()
myplot <- add(myplot,Window ( }0,0,2,2),\operatorname{Circle}(0,0,.5)
    Rectangle(0,0,1,1))
plot(myplot)
```

6.7- To display a plot, you need to initialize an object of type Window and put it in first position of the list of graphical objects of the class MyPlot. It might be useful to initialize it directly inside the constructor function MyPlot(). The arguments of the function Window() can be proposed directly for the function MyPlot (). Another idea is to propose a list of graphical objects to the user upon creation of an object of class MyPlot. As we have done for the method add.MyPlot(), we could use the list of supplementary arguments ... , which must be placed as first argument of the function MyPlot() so as to get the previous result with only two lines:

```
myplot <- MyPlot(Circle(),Rectangle())
plot(myplot)
```

However, note that in the first line, it is assumed that the default values of the arguments of the function Window(), Circle() and Rectangle() are appropriate.
6.8- The project is launched with this first prototype. You can complete it as you wish. If you need inspiration, you could try managing the list of graphical objects (for example, deleting or modifying an object), display styles, axes...

C- Creating a class $\operatorname{lm} 2$ for linear regression with two regressors

The aim of this practical is to reproduce the procedure used by our two friends for simple regression. Graphical display will be made possible by the excellent package rgl, which is an OpenGL interface for R. Given the technical difficulty of this chapter, we propose here to develop functions (actually methods). Given that some aspects are very technical, the aim is only to get the reader to understand all the development steps of the following functions. This practical is aimed at more advanced users.

The following function returns an object of class lm2 which inherits from the standard class 1 m .

```
lm2 <- function (...) {
    obj <- lm(...)
    if(ncol(model.frame(obj))!=3)
        stop("two independent variables are required!")
    class(obj) <- c("lm2",class(obj)) # or c("lm2","lm")
    obj
7 }
```

For example, execute the following commands:

```
> n <- 20
> x1 <- runif(n,-5,5)
> x2 <- runif(n,-50,50)
> y <- 0.3+2*x1+2*x2+rnorm(n,0,20)
> reg2 <- lm2(y }\mp@subsup{}{}{~}\times1+x2
> summary(reg2)
Call:
lm(formula = ..1)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
\(-32.0767-17.1529\) & 0.9872 & 12.3298 & 35.5909
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>/t|)
(Intercept) -1.8708 5.0769 -0.368 0.717
\begin{tabular}{lllll}
x 1 & 2.8400 & 1.9594 & 1.449 & 0.165
\end{tabular}
x2 1.8084 0.1952 9.263 4.7e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 21.14 on 17 degrees of freedom
Multiple R-squared: 0.848, Adjusted R-squared: 0.8301
F-statistic: 47.42 on 2 and 17 DF, p-value: 1.112e-07
```

No surprises here: the R output of the summary is given by the method summary. $\operatorname{lm}()$.
The user now wishes a 3D scatter plot with the regression plane given by the standard method of least squares.

```
plot3d.lm2<- function(obj, radius=1,lines=TRUE,
                            windowRect,...) {
    matreg <- model.frame(obj)
    colnames(matreg) <- c("y","x1","x2")
    predlim <- cbind(c(range(matreg[,2]),
                            rev(range(matreg[,2]))),
    rep(range(matreg[,3]),c(2,2)))
    predlim <- cbind(predlim, apply(predlim,1,
        function(1) sum(c(1, l)*coef(obj))
    ))
    if(missing(windowRect)) windowRect=c(2,2,500,500)
```

```
    open3d(windowRect=windowRect,...)
    bg3d(color = "white")
    plot3d(formula(obj),type="n")
    spheres3d(formula(obj), radius=radius, specular="green")
    quads3d(predlim, color="blue",alpha=0.7, shininess=128)
    quads3d(predlim, color="cyan",size=5,front="lines",
                            back="lines",lit=F)
    if(lines) {
        matpred <- cbind(matreg[2:3],
                    model.matrix(obj)%*%coef(obj))
        points3d(matpred)
        colnames(matpred) <- c("x1","x2","y")
        matlines <- rbind(matreg[,c(2:3,1)], matpred)
        nr <- nrow(matreg)
        matlines <- matlines[rep(1:nr,rep(2,nr))+c(0,nr),]
        segments3d(matlines)
    }
```

\}

Here is a direct application of this method with four graphical illustrations for four different viewing angles.
> require (rgl)
> plot3d(reg2)

Chapter 7
 Managing sessions

Prerequisites and goals of this chapter

- Reading previous chapters.
- This chapter describes various procedures to manage \mathbf{R} sessions. You have to follow a rather rigorous discipline and a methodology specific to R to make sure you save your work efficiently. We present the commands to save your work: objects you have created, instructions you have typed, plots you have drawn. We also present a few other useful commands and offer a short introduction to package creation.

- SECTION 7.1
 R commands, objects, and storage

- Storing objects

The basic commands are either expressions, or affectations using the arrow <or $->$. If an expression is typed in, it is evaluated, the result is displayed and then lost. An affectation also evaluates an expression, but does not necessarily display the result. The result is then stored in an object.

```
> 2*9 # The result is displayed then lost.
[1] 18
> My.Weight <- 75 ; My.Height <- 1.90 # These two results are
    # stored. They can be
    # re-used.
> My.BMI <- My.Weight/My.Height^2
```

> My.BMI
[1] 20.77562

- Listing objects

After you have created R objects, you can get the list of all objects with the function ls() or the synonymous function objects().

> ls()			
[1] "A"	"B"	"cl"	"clus"
[5] "combnRC"	"combnRCF"	"corr"	"decision"
[9] "e"	"inv"	"lm2"	"lsq"
[13] "M"	"My.BMI"	"My.Height"	"My. Weight"
[17] "myfunc"	"n"	"nbclus"	"out"
[21] "plot3d.1m2"	"pmvtRCR"	"reg2"	"space"
[25] "space2"	"space3"	"x1"	"x2"
> objects()			
[1] "A"	"B"	"cl"	"clus"
[5] "combnRC"	"combnRCF"	"corr"	"decision"
[9] "e"	"inv"	"lm2"	"lsq"
[13] "M"	"My.BMI"	"My.Height"	"My. Weight"
[17] "myfunc"	"n"	"nbclus"	"out"
[21] "plot3d.1m2"	"pmvtRCR"	"reg2"	"space"
[25] "space2"	"space3"	"x1"	"x2"

- Deleting objects

To delete objects, use the function rm().

```
> rm(My.Height) # Delete the object My.Height.
> ls()
    [1] "A" "B" "cl" "clus"
    [5] "combnRC" "combnRCF" "corr" "decision"
    [9] "e" "inv"
[13] "M" "My.BMI" "My.Weight" "myfunc"
[17] "n" "nbclus" "out" "plot3d.lm2"
[21] "pmvtRCR" "reg2" "space" "space2"
[25] "space3" "x1" "x2"
> rm(list=ls()) # Delete all objects in the current work
    # environment.
> ls()
character(0)
```


Advanced users

You can use regular expressions to delete objects following a certain name pattern. For example, the following instruction only deletes objects with a name of the form a ?b, where ? represents a single character:
rm(list=ls(pattern=glob2rx("a?b")))
We will not give further details and refer the interested reader to the online help for the function glob2rx ().

- SECTION 7.2
 Workspace: .RData files

When working with \mathbf{R}, objects are created: vectors, matrices, functions, etc. These objects are physically saved in a file on the hard disk called workspace. The file name extension must be .RData (or .rda in older versions of \mathbf{R}).

It is possible (and highly advisable) to create several .RData files: one for each project you are working on. You should create these .RData files in different appropriate folders. For example, suppose you are working on two different statistical projects: one related to cars and one related to climate events. You could then create a folder called Cars containing a file cars.RData, and another folder called Climate containing a file called climevt.RData; these files will contain the \mathbf{R} objects corresponding to the two studies.

The function save.image() is used to save a workspace; you can use the function load() to load an existing workspace. Under Microsoft Windows, you can access .Rdata files from the menus File/Save workspace... and File/Load workspace.

Mac

Under Macintosh, you can access .Rdata files from the menus Workspace/Save workspace file and Workspace/Load workspace file. The menu Workspace is also useful to explore the contents of the workspace (you can open a window with a list of all objects including their type and dimension) and to edit objects.

Note that the function save() will save only the objects you choose in the workspace.

Note

There is a default workspace in \mathbf{R}. To find the path to the folder where it is stored, type the instruction getwd() just after launching R.

It is worth noting that the command getwd() returns the current working directory. The command setwd() is used to change working directory.

Do it yourself

Start R then type:
$\mathbf{x}<-3$ \# Assigning a value to x ; check the contents of x .
x <- 4 \# Assigning a new value to x, overwriting the old value.
Now, outside of R, create two folders in the same directory: one called Cars, the other Climate. Then type into \mathbf{R} the following instructions:

```
rm(list=ls()) # Start by deleting all objects
    # in the current workspace.
ls() # Returns character(0), indicating that no
    # objects are left.
x<-c("FIAT","VOLVO","RENAULT","PEUGEOT") # Assign a value to x.
ls() # Return x.
setwd("/path/to/Cars") # Move to folder Cars.
save.image("cars.RData") # Create the file cars.RData
                                    # in the folder Cars.
```

You have created an object called x , containing a list of car manufacturers. This object is saved (in binary form) in the workspace cars.RData in the folder Cars.
Now, type the following instructions:

```
# Affect a new value to x:
x <- c("storm","hurricane","tornado","typhoon")
setwd("/path/to/Climate") # Move to folder climate.
save.image("climevt.RDat") # Create the file climevt.RData
    # in the folder Climate.
```

You have created an object called x containing names of climate events. Note that the old value of x has been overwritten in the current workspace. This new object x is saved in the workspace climevt.RData in the folder Climate. Exit R (you can use the function $q($ "yes")). Start \mathbf{R} again and type in the following instructions:

```
ls() # Returns x; check the value of x
load(file.choose()) # Open the file cars.RData
    # in the folder Cars.
ls() # Returns x; check the value of x.
load(file.choose()) # Open the file climevt.RData
    # in the folder Climate.
ls() # Returns x; check the value of x.
q("no") # Exit R.
```

This shows the point of having several workspaces: you can keep several objects which have the same name but contain different information. Otherwise, the second affectation of a value to x would overwrite the first!

Tip

When exiting R with the command q () (or by clicking the cross at the top right corner of the \mathbf{R} window under Windows, or on the red button at the top left corner for Macintosh users), the following question is asked:

Save an image of the session?
If you answer Yes (or y under Linux), a workspace file called .RData (containing all objects created during the session) and a command history file called .Rhistory (which we explain in the next section) are saved in the current directory.

Note

The function attach() plays a similar role to the function load(). The difference between these two functions is explained later on.

$\int^{\text {SECTION } 7.3}$ Command history: .Rhistory files

\mathbf{R} includes a mechanism to recall and reexecute old commands. The up and down arrows on the keyboard can be used to go back and forward in the command history. Once you have located a command using this method, you can move the cursor using the right and left arrows, delete characters with the DEL key, and add or modify characters with the keyboard.

Just like all objects can be saved in a dedicated file with the command save.image(), you can also save all commands you typed. The commands are saved in a file which must have the extension . Rhistory (or . rhi in old versions of R).

Here again, it is a good idea to save a . Rhistory file for each project you are working on. You can then access these commands in an interactive fashion from the R command line, using the keyboard arrows.

To save the command history of the current session, use the command savehistory (). To load the command history from a previous session, use the command loadhistory (). Under Microsoft Windows, the same operations can be done from the menus File/Save History . . . and File/Load History...

Mac users can rely upon R.app which offers a lateral bar to view, navigate and manipulate the history. It is activated by clicking the icon Show/Hide history in the R console.

Tip

The command history() opens a new window with a list of all commands from the current session.

Start \mathbf{R} and type in the following instructions:

```
Mc <- "My car"
# Use the up arrow and change the last command to:
Yc <- "Your car"
# Save a file cars.Rhistory in the folder Cars.
savehistory("/path/to/Cars/cars.Rhistory")
q("no") # Exit R.
# Open R again.
# Note that the up arrow does not
# give access to the last two commands.
# Open the file cars.Rhistory in the folder Cars.
loadhistory(file.choose())
# Now, the up arrow can be used
# to find old commands.
q("no")
```


SECTION 7.4

Saving plots

You might also want to save plots you have produced with R. The instructions listed in this section have already been introduced in Chapter 5, but we give them again as a matter of interest. For example, to save the following plot:

```
> curve(cos(x),xlim=c(-10,10))
```


you simply need the command:
dev.print(png,file="myplot.png", width=480, height=480)
Another way of saving a plot is to first redirect the graphical device to a file, then execute the command to generate the plot.

```
png(file="myplot2.png",width=480,height=480)
curve(cos(x),xlim=c(-10,10))
dev.off()
```


Warning

Remember to use the function $\operatorname{dev} . \mathrm{off}()$ at the end of the procedure: it closes the device and writes the plot to a file. Otherwise, the file will remain empty.

Other commands are available to save images in other formats: jpeg(), png(), bitmap(), postscript(), pdf() ...

Under Microsoft Windows, you can also use the menu File/Save as..., or copy-paste the plot to another software. You must first click on the graphics window to make it active.

Mac

You can use the menus File/save. The saved/copied plot is in the PDF format. Note that graphical windows have a "history". You can explore the history of generated plots with the keystroke combination COMMAND + left and right keyboard arrows

Managing packages

A package is a collection of data and functions belonging to a same theme.
When you install R, some basic functionalities come out of the box. But you can extend the functionalities of \mathbf{R} by adding libraries, also called packages. First, install the package on the computer's hard disk, then load (activate) it in the memory of \mathbf{R} only when needed (see Appendix A for further details).

First, you can use the function search() which gives the list of databases (collections of \mathbf{R} packages) attached to the system. The function searchpaths() returns the same list, but adds the path to the corresponding file.

Recall that the function library() returns the list of all packages available in the library $\mathrm{C} /$ PROGRAM FILES/R/R-2.14.0/library.

Install package R2HTML and type in the following instructions:
library() \# Package R2HTML is present on the disk.
search() \# Package R2HTML is not loaded.
require (R2HTML) \# Activate package R2HTML.
search() \# Package R2HTML is now loaded.

Note

The instructions require (package) and library (package) have a similar behaviour. The function require() first checks whether the package is already loaded (activated). If it is, then it will not be reloaded. In this sense, this function is thus more efficient than the function library ().

- SECTION 7.6
 Managing access paths to R objects

In the previous section, we saw the use of the function search(), which lists and numbers all databases attached to the system. We also saw how to load a package with the function require(). A database can also be attached with the function
attach(), and detached with the function detach(). These two functions will be put to use in the practicals at the end of this chapter.

Tip

Suppose you have created a data.frame (individuals \times variables table) called mydata. Then attach(mydata) attaches the data.frame mydata, giving access to the variables of the data.frame data directly by typing their names in the console.

The following instructions will help you understand how the function attach() works.

```
# Start R.
attach(file.choose()) # Open the file cars.RData from the folder Cars.
ls() # x is not mentioned.
x # This is strange: the contents of x are displayed,
    # yet ls() does not mention it.
rm(x)
Warning message:
In rm(x): variable "x" cannot be found.
x # Yet x is there!
```

The command $l \mathrm{~s}(\operatorname{pos}=n)$, where n is an integer, returns the list of objects in the database at the $n^{\text {th }}$ position in the list given by search().

For example, ls(pos=2) returns the objects for the module in second place ls (pos=3) for the module in third place, and so on.

Note that position 1 is reserved. Thus $\operatorname{ls}()$ is equivalent to $l s(p o s=1)$ and gives the list of all objects in the current workspace.

```
search()
ls(pos=2) # List all objects from the database cars.RData.
```

```
Do it yourself —登:
require(datasets) # Load several datasets.
warpbreaks
mydata <- warpbreaks
fix(mydata) # Read the data and the variables names.
breaks # Returns an error message: this object
    # is not defined.
search() # Returns the list of databases attached
    # to the system.
searchpaths() # Same list, with the complete path.
position <- match("package:datasets",search())
    # Get the position of datasets in the list
    # output by search().
ls(pos=position) # Gives the list of all objects in datasets.
data() # Description of these datasets.
attach (mydata)
search()
searchpaths()
ls(pos=2)
breaks # No error message.
```

We now have direct access to the columns of mydata: breaks, wool and tension.

$—$ SECTION $7.7 \longrightarrow$ Other useful commands

In this section, we introduce a few other interesting commands to manage your work:

- Under Microsoft Windows, the menu File/Save to file... can be used to save to a text file all the text displayed in the console (including error messages); by default, the file is called lastsave.txt and is created in the current directory. The size of the contents is limited by parameters which can be changed in the menu Edit/Preferences...;
- The function sink(file="myoutput.txt") redirects all R output (which would usually be displayed in the console) to the file myoutput.txt. To stop this functionality, type sink() in the console;
- The menu File/Source R code... is used to transfer a sequence of \mathbf{R} instructions from a file directly to the console. This command also checks the syntax of the \mathbf{R} code in the file before transferring it. Equivalently, you can type source(file.choose()) in the console;
- $\quad \mathbf{R}$ includes many functions to manage files and directories on the hard disk: file.create(), file.exists(), file.remove(), file.rename(), file. append(), file.copy(), file.symlink(), dir.create(), Sys.chmod(), Sys.umask(), file.info(), file.access(), file.path(), file.show(), list.files(), unlink(), basename(), path. expand(). For example, the command list.files() returns a vector of strings of characters of the names of files in the specified directory. The command file.exists() is used to find out whether a file exists in a given directory. We refer the reader to the help files for the details of all these functions.

- SECTION 7.8
 \dagger Problems in memory management

In this section, we shall focus on memory management by the computer in general and by \mathbf{R} in particular. We shall try to understand why messages occur such as:

```
cannot allocate a vector of size xxx
```

We shall also see how to work with high dimension vectors and matrices.
Before giving indications on memory management in R, we need to give a short explanation of the internal workings of a computer. Upon execution of an \mathbf{R} program, the following internal components of the computer are used:

- the hard disk (which contains the code and data files);
- the processor (which performs the calculations; there are 32 bit and 64 bit processors);
- and the RAM (for Random Access Memory), which holds temporarily the data which are used by the processor for the calculations.
In what follows, we shall mostly focus on the RAM, though we will also mention the processor. The main interest of the RAM as opposed to the hard disk is that it can be accessed very quickly. In a computer, the processor accesses the instructions of the program to execute and the data necessary to execution from the RAM.

7.8.1 Organisation of RAM

The RAM is organised as an ordered sequence of boxes, and each box can contain a binary digit: 0 or 1 . The information contained in a box, the smallest quantity of information that can be contained, is called a bit (for binary digit). At this point, it is worth noting that information is actually often organised in blocks of 8 boxes. Another unit has thus been introduced: the byte, which is worth 8 bits.

Also note that each block is numbered; the number of an (8 box) block is called its memory address. A memory address is thus an identifier, which designates a specific zone of memory where data (or instructions to run) can be read and stored. This identifier is usally an integer, often expressed in hexadecimal notation (base $b=16$, see section 3.9).

Fig. 7.1: Illustration of storage of values in memory. Each little box contains a binary number (0 or 1). Each green number gives the decimal representation of the number in binary form in the block above. Each red number gives the address (expressed here in decimal notation) of the 8 -box block above. Note that the same memory addresses could have been written in hexadecimal notation ($b=16$), giving 3C, 3D, 3 E and 3 F .

7.8.2 Accessing the memory

Note

A process running on a computer does not usually have a direct access to the RAM, but rather to the so-called virtual memory. The memory addresses used by \mathbf{R} are thus addresses in the virtual memory; the operating system then puts these addresses in correspondence with the actual RAM memory addresses. We do not distinguish between the two types of memory.

To access a given zone of memory, \mathbf{R} uses (in a transparent way hidden from the user) what is called a pointer (a quantity which "points" to the desired memory zone). A pointer is a variable containing a memory address. At the address contained in a given pointer, we can find for example a data point. Note that each data point has a specific type, such as integer, double, etc. (see chapter 1). Note also that an integer is coded on 4 bytes, a double on 8 bytes, a character on 1 byte, a logical on 4 bytes, a complex on 16 bytes, to cite the most common variable types. This is
true on a 32 bit processor and on a 64 bit processor. Examine now the following R instructions:

```
> x <- 3L # create the value 3, of type integer,
> # or equivalently:
> x <- as.integer(3)
```

Given what we just explained, we can assume that at the same time, a memory slot of 32 successive blocks (4 bytes of 8 bits each) is reserved (or allocated), and a pointer is created containing the address of (the first of) these boxes. In fact, the pointer must not only contain the address of variable x , but also its type to know over how many boxes the variable is stored. For this reason, the pointers are said to be "typed". When a typed pointer is incremented (i.e. when we need to add one unit to the address it contains), it is not necessarily incremented by 1 , but by the size of the pointed type.

Fig. 7.2: Illustration of \mathbf{R} storage in memory of a (signed) integer. Each little box contains a binary digit(0 or 1). The green number gives the decimal notation of the integer expressed in binary notation in the four blocks above. The red number gives the address (expressed here in decimal base) of the first 8-box memory block above. Note that here, a number is stored over 32 boxes, and not over 8 as in figure 7.8.1. Furthermore, the first box is used to specify the sign of the number, negative here.

7.8.2.1 Problems caused by memory management of integers

Since a (signed) integer is coded over 4 bytes, i.e. 32 bits, the largest integer that can be represented is 2147483647 . Indeed, if the first bit is reserved for the sign, there are 31 remaining available boxes, or 2^{31} possible arrangements. Counting 0 , the largest available integer is thus $2^{31}-1$, or:

```
> as.integer(2^31-1)
[1] 2147483647
> .Machine$integer.max
[1] 2147483647
```

The result above is thus not surprising.

```
> as.integer (2^31)
```

[1] NA

The number 2^{31} can thus only be handled by R as a double:
> is.double ($2^{\wedge} 31$)
[1] TRUE

Warning

The largest vector that can be allocated in R is of length $2^{31}-1 \sim 2 \times$ 10^{9}, whether on a 32 bit or 64 bit processor. This is easy to understand: it corresponds to the largest integer that R can define, and the length on a vector (number of elements) is stored as a (signed) integer.

We note in passing that this knowledge on R's behaviour helps understand the output below.

```
> 46360*46360 # 46360 is stored as a double.
[1] 2149249600
> 46360L*46360L # 46360L is stored as an integer.
[1] NA
> sum(1:304) # 1:304 is stored as an integer.
[1] 46360
> sum(1:304)*\operatorname{sum}(1:304)
[1] NA
Warning message :
In sum(1:304) * sum(1:304) :
    NA produced by overflow
> 46360^2 # The result is stored as a double.
[1] 2149249600
> sum(1:304)^2 # The result is stored as a double.
[1] 2149249600
```

The Warning message above comes from the fact that sum(1:304) is an integer. Note that the exponent function (${ }^{\wedge}$) transforms its arguments into reals and returns a real number.

7.8.2.2 Successive allocation of memory

In fact, the smallest block of memory that can be allocated (reserved) by \mathbf{R} is 8 bytes (=64 bits). Memory is thus allocated in R in blocks of 8 successive blocks (both on 32 and 64 bit processors). In the instruction $x<-3 L$, there are thus 64 reserved boxes (of 1 bit each), of which the first 32 are used to store the integer value +3 . All 64 boxes would be used to allocate a double, with the instruction:

```
> x <- 3.0
```


Note

The 64 boxes are apportioned as follows: 1 box for the sign, 11 boxes for the exponent and 52 boxes for the significand, in the floating point representation (see section 3.9.2).

The package associated with this book includes the functions getaddr() and writeaddr () which can be used respectively to get the memory address of a variable containing a number, and to write a value at a memory address.

```
> x <- c(8L,9L)
> x
[1] 8 9
> addr <- getaddr(x)$addr.int # Gets the address of the first
    # box of the 64-box block where x
    # is stored.
> addr
[1] 53173920
> writeaddr(addr,6L) # Write the integer 6 at this address
> x
[1] 6 9
> writeaddr(addr+4L,7L) # An integer is coded over 4 bytes,
                                    # hence increment the address by 4 to
                                    # get to x[2].
> x
[1] 6 7
```

Now with a vector of doubles:

```
> x <- c(12.8,4.5)
> x
[1] 12.8 4.5
> addr <- getaddr (x) $addr.int # Get the address of the first box
    # of the 128-box block where x is
    # stored.
> writeaddr(addr,6.2)
> x
[1] 6.2 4.5
> writeaddr(addr+8L,7.1) # A double is coded over 8 bytes.
> x
[1] 6.2 7.1
```


Advanced users

\mathbf{R} can only access memory boxes that have been allocated by \mathbf{R}, and other software cannot access the memory zones reserved by R. This is essential! Otherwise, the data for our calculations could be modified by external software. Even another \mathbf{R} session cannot access the memory zones reserved by the first. For example, type in a first R session:

```
> x <- 1L
```

> getaddr (x) \$addr.int
[1] 37602112
which is the address of the memory block containing the integer value 1 . Then type in a second \mathbf{R} session:
> writeaddr(37602112,7L)

Then (if the second \mathbf{R} session does not crash!) we can check that the value of x in the first session has not been modified. Return to the first session and type:

```
> x # The attempt to modify the value of x in another R session
    # is doomed to failure.
[1] 1
> # Try the modification in the same session:
> writeaddr(37602112,7L)
> # This time it works!
> x
[1] 7
```


7.8.3 Object size in R

A useful R function gives the size of an object: the function object.size(). Given the previous subsection, we expect the instruction object.size(3L) to output 8 bytes, but that is not the case.

```
> object.size(3L) # (On a }64\mathrm{ bit processor.)
48 bytes
```

In fact, each R object contains (even when declaring a simple integer by x <- integer (3) a header which takes up some space in the RAM: 24 bytes on a 32 bit processor and 40 bytes on a 64 bit processor. This header is used to save information of the created object: its type (integer, double, complex, etc ..), its length, etc ..

Tip

To find out on what kind of processor R is running, use the instruction:

```
> .Machine$sizeof.pointer
```

[1] 8

The value 8 is returned for a 64 bit processor and the value 4 for a 32 bit processor.

The values returned by the following instructions are rather clear now:

```
> # On a 32 bit processor:
> object.size(3L) - 24
bytes
# On a 64 bit processor:
object.size(3L) - 40
bytes
```


Advanced users

Memory allocation in R is done differently for small and large integer vectors. Small vectors belong to one of 6 classes, depending on their length (lesser than or equal to $2,4,8,12,16$ or 32), and can store data of $8,16,32,48,64$ or 128 bytes respectively. Since an integer uses up only 4 bytes, these classes can be used to store respectively $2,4,8,12,16$ and 32 integers. An integer vector of length $n>32$ uses up space of size $4 n+40$ if n is even and $4(n+1)$ if n is odd, to which we add a header of 2 bytes on a 32 bit processor and 40 bytes on a 64 bit processor. The following code returns the size in memory of vectors of increasing size.

```
> N <- 50
> V <- vector(length = 50)
> for (L in 1:N) {
+ z <- sample(N, L, replace = TRUE)
        V[L] <- object.size(z)
    }
> V - 24 # On a 32 bit processor.
[1] 
[15] 64 64 128 128 128 128 128 128 128 128 128 128 128 128
[29] 128 128 128 128 136 136 144 144 152 152 160 160 168 168
[43] 176 176 184 184 192 192 200 200
> v - 40 # On a 64 bit processor.
[1] 
[15] 64 64 128 128 128 128 128 128 128 128 128 128 128 128
[29] 128 128 128 128 136 136 144 144 152 152 160 160 168 168
[43] 176 176 184 184 192 192 200 200
```


7.8.4 Total memory used by R

The total size of virtual memory allocated to R in a session includes:

- memory used to store the values of objects (their contents);
- memory used to store the headers of objects.

This information can be accessed with the function gc(), in which Ncells represents the number of cells used for the header, and Vcells the number of blocks for the values.

The following example illustrates this function.
> rm(list=ls()) \# Delete all objects in the session.
Type three times gc() . Note that the values displayed stabilize. Now type the instruction:
$>\mathrm{x}<-$ as.integer (3)
Type several times gc() until the results stabilize. Note that the value of Vcells has increased by 1 unit, corresponding to 8 bytes (smallest possible size of a block of data). Recall that an integer needs 4 bytes but is still stored in a memory zone of 8 bytes.

The total amount of memory available to \mathbf{R} depends on several factors:

- the RAM physically present on the computer;
- the RAM already used by the operating system and the other software being run on the system (such as a web browser if it is open);
- the type of processor (32 or 64 bits), since the RAM is limited to 4 GB (1 $\mathrm{GB}=1024 \mathrm{kB}$) for 32 bit processors (and it is often closer to 3 GB or 2 GB), but is (really!) much larger for 64 bit processors.

Note

On a 32 bit processor, an address is coded over 32 bits, hence the addressable memory is limited at 2^{32} bytes ($=4 \mathrm{~GB}$). On a 64 bit processor, an address is coded over 64 bits, so theoretically, the addressable memory is "limited" at 2^{64} bytes, a huge number. In fact, it is usually limited by the processor's architecture. This information can be obtained from the manufacturer (it is called 'Max Memory Size').

Note also that R allocates memory for the creation of large objects, and clears these objects from memory (when they are no longer used) by a process called garbage collection. You can force garbage collection with the function gc() .

Warning

When creating a large object, the memory reserved by R must be contiguous (it cannot be fragmented in several blocks).

It is therefore possible that there remains enough total memory for \mathbf{R}, but no "gap" large enough to fit the data of a single large object. Here is an illustration.

Beware that these commands may provoke a major slowdown of your system, or even a brutal crash of R.

```
> # First, type the instructions:
    # rm(list=ls()) ; gc() ; gc() # to empty the memory.
> P <- 14000
> D <- matrix(rep(0, P*P), nrow=P)
Error: cannot allocate a vector of size 1.5 GB.
> # But the next allocation is certainly possible,
    # after typing gc();gc() # to empty the memory.
> Q <- round(sqrt (P^2/2))
> D1 <- matrix(rep (0, Q*Q), nrow=Q)
> D2 <- matrix(rep(0, Q*Q), nrow=Q)
> # The sum of the sizes of D1 and D2 is approximatively 1.5 GB.
> object.size(D1) + object.size(D2)
1567843440 bytes
```

In the example above, it was not possible to create a single object of size 1.5 GB , but it was possible to create two objects of size 0.75 GB each.

Tip

Note that on a 64 bit processor, we would probably not have encountered this issue, even when creating an objects of size close to 3 GB :

```
> # First we typed the instructions
    # rm(list=ls()) ; gc() ; gc() # to empty the memory.
> P <- 20000
> D <- matrix(rep(0, P*P), nrow=P)
> object.size(D)
> 3200000200 bytes
```


7.8.5 A few recommendations

An elementary understanding of memory management on a computer in general, and in \mathbf{R} in particular, will be very useful to help identify the origin of memoryrelated issues. Our first recommendation is thus to read the previous sections. We give here some extra recommendations.

For example, you could calculate the (approximative) size of a matrix before creating it. Since a real number uses up to 8 bytes, a real-valued matrix of size $n \times p$ needs $8 n p$ bytes. If you need to work with very large matrices, a 64 bit processor will allow you to allocate larger memory blocks. Compare this to a 32 bit processor which will usually not allow for more that 2 gigabytes. If you are not able to create a large object, remember to remove (using the function rm()) other useless large objects (the function object.size() gives the size of such objects) and to free up some memory with the function gc() . You can also close other software running
on your computer to free up some memory, and as a last resort purchase further physical memory.

Linux

The software ksysguard can be used to visualize in real time the memory used by \mathbf{R} and by the other processes on your system.

Another option would be to split your matrix into several submatrices and find a way to perform your analysis on those, before combining the results.

Tip

The packages bigmemory, ff and RevoScaleR may be useful.

Under Windows, the functions memory.size() and memory.limit() display some information on the memory used. You can also read the online help: help("Memory-limits").

Note

These problems, which stem from the conception of R, may be solved in the future. We refer the interested reader to the document http://www.divms. uiowa.edu/ ${ }^{\sim}$ luke/talks/uiowa11.pdf.

- SECTION 7.9

\dagger Using R in BATCH mode

It is possible to launch a sequence of \mathbf{R} instructions in BATCH mode. In this mode, \mathbf{R} starts and automatically executes the instructions in the background, then closes down when the work is done.

- To start this mode, use the following instruction in a DOS window (or a terminal window under LINUX or Mac):

R CMD BATCH myfile.R myoutput.out
The file myfile.R should contain the list of \mathbf{R} instructions to execute and the file myoutput.out will contain any messages and output displayed by R.

Warning

Note that you will have to set the PATH system variable to contain the path to the executable Rgui.exe. See the Warning frame on page 229.

- This mode is also useful when you want to start simulations on a remote UNIX/LINUX station (through a simple ssh tunnel). In this case, you should add the LINUX command nohup.

```
nohup /path/to/executable/R CMD BATCH myfile.R myoutput.out &
```


Linux

Under Linux, to find the /path/to/executable/R, you need to type in a terminal the instruction: which R.

It is also possible to create an \mathbf{R} script that can be run without having to open R at first. To do this, download and modify to suit your needs the file http:// biostatisticien.eu/springeR/runthis.bat.

See also

The interested reader can consult with profit the web page http://cran. r-project.org/contrib/extra/batchfiles.

Linux

Under Linux, create a script named runthis and make it executable (chmod $\mathrm{u}+\mathrm{x}$ runthis). This script will contain the following lines:
\#!/bin/bash R --vanilla << "EOF" \# Pipe all subsequent lines into R. \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# Put all your R code here \#\#\#\#\#\#\#\#\#\#\#\#\#\#

X11(); plot(1:3)
require(tcltk)
tkmessageBox (message="hello")
\# end of R code \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
EOF

SECTION 7.10

\dagger Creating a simple R package

A package is a practical way of grouping datasets, functions and help files in a single structure. This structure is stored in a . zip file (or .tar.gz under Linux). Nonethe-
less, this operation is complicated under Microsoft Windows, because it requires the installation of many tools which are not present by default on this Operating System.

Specific documentation for Mac users will be made available on the website associated with this book.

You will need to install the following software:

- latest version of Rtools available here: http://cran.r-project.org/bin/ windows/Rtools/;
- http://www.biostatisticien.eu/springeR/htmlhelp.exe;
- a complete version of Tex Live. Download the file http://mirror.ctan. org/systems/texlive/tlnet/install-tl.zip and unzip it in a temporary folder. Then double click on the file install-tl.bat in the subdirectory install-tl-*. A graphical installation interface pops open and will guide you through the installation of Tex Live.

Here is the procedure to create an R package:

- \quad start R ;
- import into the workspace the datasets and functions you want to include in your package;
- use the function package. skeleton() to create the structure of your package. You should give a value to the following arguments:
- name: a string of characters containing the name of the package,
- list: a vector of strings of characters, specifying the various objects (datasets and functions) to include in the package,
- path: a string of characters containing the path to the directory where your package structure will be created;
- when you call this function, a folder is created in your current directory, containing the files and subfolders of your package. You then need to modify some of these files, as described in the file Read-and-delete-me which you will find in that folder;
- the last step is to create a . zip file containing the package structure. To this end, execute the following commands in an MS-DOS command window:
- R CMD check PackageName
- R CMD build --binary --use-zip PackageName

Tip

If your R code calls $C / C++$ or Fortran functions, the files containing the source code for these functions need to be placed in a sub-directory called $\mathrm{src} /$, located in the folder whose name is specified by the argument name of the function package.skeleton().

The practical section at the end of this chapter gives an example of package creation.

Advanced users

Linux users who do not have access to Microsoft Windows but wish to build a package for that operating system can use the website http: //win-builder.r-project.org/, on which the Linux-created .tar.gz package can be uploaded. A Windows-compatible .zip package is then sent by e-mail to the address given in the Maintainer field of file DESCRIPTION.

Memorandum

ls(), objects(): list all objects available in the workspace rm(): delete an object
.RData: extension for workspace files
save.image(): save all created objects in a file (name.RData)
load(): load a .RData file containing created objects
. Rhistory: extension for command history files
savehistory(): save the command history (.Rhistory file)
loadhistory (): load command history
dev.print (): save a plot
search(), searchpaths(): list of databases attached to the system
attach(): attach a database
detach(): detach a database
require(): load a package present on the disk
sink() : redirect R output to a .txt file
source(): import a sequence of R instructions from a file to the console
package.skeleton(): create a package structure

7.1- Name two R functions which return a list of objects in your session.
7.2- How would you delete the object foo?
7.3- Which R command gives the current directory?
7.4- Which R command changes the current directory?
7.5- What is the purpose of the function save.image ()?
7.6- What are the four things you can save before closing an R session?
7.7- What is the purpose of the command history? Which keys are necessary to use it?
7.8- What is the purpose of the function history()?
7.9- Give the list of R instructions you would use to get a file called myplot.png containing a plot of the curve $y=x^{2}$.
7.10- When is the function attach() useful for a data.frame?
7.11- Which R function is used to load an R package to the memory?
7.12- What is the purpose of the function source()?

Worksheet

Managing and creating packages
A- Using the functions attach() and detach()
7.1- Download the file http://www.biostatisticien.eu/springeR/ bmichild.xls.
7.2- Display the names of the variables of the data.frame.
7.3- Type GENDER. What do you observe?
7.4- Type ls(). Can you see the variable GENDER?
7.5- Use the function attach() on your data.frame, then type GENDER. What do you observe now?
7.6- Type ls() again. What do you observe?
7.7- Use the function search() to find the position at which your data.frame is attached.
7.8- Use the argument pos of the function ls() to list the objects present at this position.
7.9- Detach your data.frame and check (using the function search()) that it worked. Now type GENDER again and observe that this object has disappeared.
7.10- Create an object called GENDER containing the string "Male". Display the contents of this object.
7.11- Use the function attach() on your data.frame then type GENDER. What do you observe?
7.12- Can you display the contents of the object GENDER of your data.frame? How about the object weight?
7.13- Type ls(). What do you observe? How about with search()?
7.14- Use the argument pos of the function ls() to check that the object GENDER of the data.frame does exist.
7.15- Use the function get () and its argument pos to display the contents of the object GENDER from your data.frame. Can you propose another approach?

B- Creating a mini-package

- Objects in the package
7.1- Start R , then change the current directory to the Windows desktop, using the instruction setwd(choose. dir()).
7.2- Create the following functions and datasets:
f <- function (x, y) $x+y$
$g<-$ function $(x, y) \quad x-y$
d <- data.frame ($a=1, b=2$)
e <- rnorm(1000)

- Package structure

7.3- Use the function package. skeleton() to create the structure of your package.
package.skeleton(name="SmallRPkg",list=c("f","g","d","e"))

A folder called SmallRPkg is created on your desktop. It contains three subfolders (data, man and R) and two files (DESCRIPTION and Read-and-delete-me).
The folder data contains the files d.RData and e.RData, which contain respectively the datasets (in binary form) d and e , which you imported from the R console.
The folder R contains the files f.R and g.R, which contain the source code of the functions f and g defined earlier.
The folder man contains help files for all objects included in the package.
7.4- You must edit the help files (.Rd extension files), even if they are not empty. Use the description of the help file for the function mean in Chapter 4. The fields to fill in are made apparent in all help files by lines starting with $\% \%$. Replace those lines (including the characters \%\%) with the appropriate information. Do not change the sentences starting with a single \%. Furthermore, in fields of the form keyword \sim kwd1, you must replace \sim kwd1 with a reserved keyword; the list of reserved keywords is given by the instruction file.show(file.path(R.home("doc"), "KEYWORDS")).
7.5- You should also change the file DESCRIPTION and fill in the relevant fields. For example, it is very important that you give a valid e-mail address.
7.6- You can then read and delete the file Read-and-delete-me.

Your package structure has now been created.

- Creating the package file

7.7- You have one final operation to perform: building the .zip file which will include your structure (modified by R). You first need to change a few system environment variables. Use the key combination WINDOWS+PAUSE to open the system properties window, go to the section System Variables and edit the variable PATH. At the beginning of this long list of semi-colon-separated paths, add the path to the executable Rgui.exe and the path to the executable hhc.exe (be careful not to delete anything!).
7.8- Open an MS-DOS command menu (using the menu Start/Execute: command) and execute the instructions

- cd "C: \Documents and Settings $\backslash j o h n d o e \backslash D e s k t o p " ~(p u t s ~ y o u ~ i n ~$ the folder containing the package structure).
- R CMD check SmallRPkg

Check that there are no error or warning messages here. If there are, make the suggested changes.

- R CMD build --binary --use-zip SmallRPkg

If there were no errors, the package file SmallRPkg.zip is created.

[^9]You can follow this procedure to create more complex packages, which you can then publicize.

Part II

Elementary mathematics and statistics

Chapter 8
 Basic Mathematics: matrix operations, integration, optimization

Goals of this chapter

This chapter describes basic mathematical functions. It then gives some usual operations on matrices and the most usual decompositions. We also present a few numerical integration and differentiation functions, and the main optimization functions.

Basic mathematical functions

The following table is an almost exhaustive list of classical mathematical functions.

Table 8.1: Table of basic mathematical functions.

R name	Description	Example	Result
x\%\%y	Remainder of the division of x by y	10\%\%3	1
ceiling()	Smallest integer greater than or equal to x	ceiling(2.3)	3
floor()	Largest integer smaller than or equal to x	floor(2.3)	2
round()	Round the value of the first argument to the number of digits specified by the second argument	round (2.375,2)	2.38
signif()	Round the value of the first argument to a given number of significant digits	signif(2.375,2)	2.4
trunc ()	Integer part of x, obtained by removing all digits after the decimal separator	trunc (1.37)	1
sign()	Sign ± 1	sign(-2)	-1
abs()	Absolute value $\|x\|$	abs (-2)	2
$\exp ()$	Exponential e^{x}	$\exp (0)$	1
$\log ()$	Natural logarithm	$\log (1)$	0
sqrt()	Square root \sqrt{x}	sqrt (4)	2
range()	Range	range (2,5,1)	15
$\max ()$	Maximum	max (2,3)	3
$\min ()$	Minimum	$\min (2,3)$	2
sum()	Sum of effective arguments	$\operatorname{sum}(2,3,4)$	9
prod()	Product of effective arguments	prod (2,4,2)	16
cummax ()	Cumulative maxima	cummax $(\mathrm{c}(2,4,3))$	244
cummin()	Cumulative minima	cummin(c $(2,4,1)$)	221
cumsum()	Cumulative sums	cumsum (c $(2,3,4)$)	259
cumprod()	Cumulative products	cumprod (c $(2,4,3)$)	2824
$\cos ()$	Cosine	cos(pi)	-1
$\sin ()$	Sine	$\sin (\mathrm{pi} / 2)$	1
$\tan ()$	Tangent	$\tan (\mathrm{pi} / 4)$	1
$\operatorname{acos}()$	Arccosine	$\operatorname{acos}(1)$	0
asin()	Arcsine	$\operatorname{asin}(0)$	0
atan()	Arctangent	$\operatorname{atan}(0)$	0
$\cosh ()$	Hyperbolic cosine	$\cosh (0)$	1
$\sinh ()$	Hyperbolic sine	$\sinh (0)$	0
$\tanh ()$	Hyperbolic tangent	$\tanh (0)$	0
acosh ()	Inverse hyperbolic cosine	$\operatorname{acosh}(1)$	0
asinh()	Inverse hyperbolic sine	$\operatorname{asinh}(0)$	0
atanh()	Inverse hyperbolic tangent	$\operatorname{atanh}(0)$	0
beta()	Beta function	beta (1,2)	0.5
lbeta()	Logarithm of beta function $B(a, b)$	lbeta(1,1)	0
factorial()	Factorial x !	factorial(6)	720
choose()	Binomial coefficient $\binom{n}{p}=\frac{n!}{p!(n-p)!}$	choose (5,2)	10
gamma()	Gamma function $\Gamma(x)(\Gamma(n)=(n-1)$!, if $n \in \mathbb{N})$)	gamma (4)	6
lgamma()	Logarithm of gamma function	lgamma (2)	0
digamma()	First derivative of gamma function	digamma (2)	0.4227843
trigamma()	Second derivative of gamma function	trigamma (2)	0.6449341

Note that most of these functions can take a vector as argument.

Do it yourself ——

- Check numerically for a few values that the following formula is correct: $\binom{n-1}{p-1}+\binom{n-1}{p}=\binom{n}{p}$.
- \quad Compute the sum of the first n integers for the values $n=1, \ldots, 10$. Check that this corresponds to the formula $\frac{n(n+1)}{2}$.
- \quad Compute the sum of the squares of the first n integers for $n=1, \ldots, 10$. Check that this corresponds to the formula $\frac{n(n+1)(2 n+1)}{6}$.
- For $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}=(0.83,0.13,-1.16,-1.14,-0.68,0.73,-1.27)^{\top}$, compute the value of

$$
\hat{G}_{n}=\frac{n}{K} g_{n}\left(\widehat{m_{e}}, \hat{\theta}\right)^{2} \quad \text { where } \quad g_{n}\left(m_{e}, \theta\right)=1-\gamma-\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}\right| \log \left|y_{i}\right|
$$

with $y_{i}=\frac{x_{i}-m_{e}}{\theta}, \widehat{m_{e}}=\operatorname{Median}\left(x_{1}, \ldots, x_{n}\right), \hat{\theta}=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\widehat{m_{e}}\right|$, $K=\frac{\pi^{2}}{3}-3, \gamma=1-\psi(2)$ (Euler's constant) and $\psi(\cdot)$ the digamma function. Use the function median().
Note: It is sufficient to check that the value \hat{G}_{n} is greater than the critical value qchisq ($1-\alpha, \mathrm{df}=1$), for a given level α (usually 5%), to decide, at error level α, that the data were not generated following a Laplace distribution. Such procedures are explored in detail in Chapter 11.

Tip

The number π can be used in R with the command pi.

SECTION 8.2

Matrix operations

Several basic matrix operations are included in the base version of R. Before we introduce them, let λ be a scalar, let \mathcal{A} and \mathcal{B} be two real matrices, and let C be a complex matrix. We refer the interested reader to [29].

```
> lambda <- 2 # Creating scalar }\lambda
> A <- matrix(c(2,3,5,4),nrow=2,ncol=2) # Real matrix.
> A
    [,1] [,2]
[1,] 2 5
```

```
[2,] 3
> \(\mathrm{B}<-\) matrix \((\mathrm{C}(1,2,2,7)\), nrow=2,ncol=2) \# Symmetric real matrix.
\(>B\)
[,1] [,2]
\([1] \quad 1 \quad\),
\([2] \quad 2 \quad\),
> \(C\) <- matrix \((C(1,1 i,-1 i, 3), n c o l=2)\) \# Hermitian complex matrix.
\(>\mathrm{C}\)
    \([, 1][, 2]\)
[1,] 1+0i 0-1i
[2,] 0+1i 3+0i
> I2 <- diag(rep(1,2)) \# Identity matrix of order 2.
```

We shall use these objects to illustrate matrix operations.

For more sophisticated matrix manipulation, use the package Matrix.

8.2.1 Basic matrix operations

In \mathbf{R}, the basic matrix operations are:

- \quad Adding a scalar: $\lambda+\mathcal{A}$

- Addition (entry-wise): $\mathcal{A}+\mathcal{B}$
$>\mathrm{A}+\mathrm{B}$

	$[, 1]$	$[, 2]$
$[1]$,	3	7
$[2]$,	5	11

- \quad Substraction (entrywise): $\mathcal{A}-\mathcal{B}$
$>\mathrm{A}-\mathrm{B}$

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	1	-3

- Multiplying by a scalar: $\lambda \mathcal{A}$
> lambda*A
$[, 1][, 2]$
$[1] \quad 4 \quad$,
$[2] \quad 6 \quad$,
- Transposition: \mathcal{A}^{\top}
$>\mathrm{t}(\mathrm{A})$

	$[, 1]$	$[, 2]$
$[1]$,	2	3
$[2]$,	5	4

- Conjugation: \bar{C}
$\left.\begin{array}{lr} \\ & {[, 1]} \\ \text { Conj (C) } & {[, 2]} \\ {[1,]} & 1+0 i\end{array}\right) 0+1 i$
[2,] 0-1i 3+0i
- Entry-wise multiplication:
$>A * B$

	$[, 1]$	$[, 2]$
$[1]$,	2	10
$[2]$,	6	28

- Dot product: $\mathcal{A} \mathcal{B}$
> $\mathrm{A} \% * \% \mathrm{~B}$

	$[, 1]$	$[, 2]$
$[1]$,	12	39
$[2]$,	11	34

- Entry-wise division:
> A / B
$\begin{array}{lrr} & {[, 1]} & {[, 2]} \\ {[1,]} & 2.0 & 2.5000000 \\ {[2,]} & 1.5 & 0.5714286\end{array}$
- Matrix inversion: \mathcal{B}^{-1}

> solve (B)	$[, 1]$	$[, 2]$
$[1]$,	2.3333333	-0.6666667
$[2]$,	-0.6666667	0.3333333

- \quad Matrix division: $\mathcal{A} \mathcal{B}^{-1}$
> A\%*\%solve (B)

$$
\begin{array}{rrr}
& {[, 1]} & {[, 2]} \\
{[1,]} & 1.333333 & 0.3333333 \\
{[2,]} & 4.333333 & -0.6666667
\end{array}
$$

- \quad Cross product: $\mathcal{A}^{\top} \mathcal{B}$
$>\operatorname{crossprod}(A, B) \quad \# t(A) \% * \% B$
[,1] [,2]

$[1]$,	8	25
$[2]$,	13	38

Do it yourself

Let $\boldsymbol{\mathcal { M }}, \boldsymbol{\mathcal { N }}, \boldsymbol{O}, \boldsymbol{P}$ be the following matrices:

$$
\boldsymbol{M}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3 \\
4 & 1
\end{array}\right], \quad \boldsymbol{N}=\left[\begin{array}{ll}
3 & 4 \\
1 & 3 \\
4 & 1
\end{array}\right], \quad \boldsymbol{O}=\left[\begin{array}{lll}
3 & 4 & 2 \\
1 & 3 & 2
\end{array}\right] \quad \text { and } \boldsymbol{\mathcal { P }}=\left[\begin{array}{lll}
3 & 4 & 2 \\
1 & 3 & 2 \\
1 & 2 & 1
\end{array}\right] .
$$

Give the dimensions of the matrices $\boldsymbol{\mathcal { M }}, \boldsymbol{\mathcal { N }}, \boldsymbol{O}$ and \mathcal{P}. Calculate $\boldsymbol{\mathcal { M }}+\boldsymbol{\mathcal { N }}$, $\boldsymbol{\mathcal { M }}-\boldsymbol{N}, 3 \boldsymbol{M}, \mathcal{M} \boldsymbol{O}, \boldsymbol{O} \boldsymbol{M}, \boldsymbol{M}^{\top}, \boldsymbol{P}^{-1}$. Check that $\boldsymbol{\mathcal { P }} \mathcal{P}^{-1}=\boldsymbol{I}_{3}=\mathcal{P}^{-1} \mathcal{P}$.

Let \boldsymbol{Q} and \mathcal{R} be the following matrices: $\boldsymbol{Q}=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$ and $\mathcal{R}=\left[\begin{array}{lll}3 & 4 & 1\end{array}\right]$. Calculate $\boldsymbol{Q R}, \mathcal{R} \boldsymbol{Q}$ and $\boldsymbol{Q}^{\boldsymbol{\top}} \boldsymbol{P} \boldsymbol{Q}$.

8.2.2 Outer product

The outer product of column vectors \boldsymbol{x} and \boldsymbol{y} is the matrix $\boldsymbol{x} \boldsymbol{y}^{\top}$ of general element $x_{i} y_{j}$.
$>x<-\operatorname{seq}(1,4)$
$>y<-\operatorname{seq}(4,7)$
> outer(x,y,FUN="*")

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	4	5	6	7
$[2]$,	8	10	12	14
$[3]$,	12	15	18	21
$[4]$,	16	20	24	28

The function outer () allows more general operations than simple entrywise multiplication. For example, the command outer ($x, y, F U N=f$) on vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}, \boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{\top}$ with the function $f(x, y)$ produces the following matrix:

$$
\left(\begin{array}{ccc}
f\left(x_{1}, y_{1}\right) & \cdots & f\left(x_{1}, y_{n}\right) \\
\vdots & f\left(x_{i}, y_{j}\right) & \vdots \\
f\left(x_{n}, y_{1}\right) & \cdots & f\left(x_{n}, y_{n}\right)
\end{array}\right)
$$

8.2.3 Kronecker product

If \mathcal{A} is an $m \times n$ matrix and \mathcal{B} is a $p \times q$ matrix, then the Kronecker product of matrix
\mathcal{A} by matrix \mathcal{B} is the matrix $\mathcal{A} \otimes \mathcal{B}=\left[\begin{array}{ccc}a_{11} \mathcal{B} & \cdots & a_{1 n} \mathcal{B} \\ \vdots & \ddots & \vdots \\ a_{m 1} \mathcal{B} & \cdots & a_{m m} \mathcal{B}\end{array}\right]$ of dimensions $m p \times n q$.
> kronecker (A, B)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	2	4	5	10
$[2]$,	4	14	10	35
$[3]$,	3	6	4	8
$[4]$,	6	21	8	28

8.2.4 Triangular matrices

It can be useful to get the lower and upper parts of a matrix. This can be done with the functions lower.tri() and upper.tri().

```
> M <- matrix(1:16,nrow=4)
> lower.tri(M)
    [,1] [,2] [,3] [,4]
[1,] FALSE FALSE FALSE FALSE
[2,] TRUE FALSE FALSE FALSE
[3,] TRUE TRUE FALSE FALSE
[4,] TRUE TRUE TRUE FALSE
> upper.tri(M,diag=TRUE)
    [,1] [,2] [,3] [,4]
[1,] TRUE TRUE TRUE TRUE
[2,] FALSE TRUE TRUE TRUE
[3,] FALSE FALSE TRUE TRUE
[4,] FALSE FALSE FALSE TRUE
> M[lower.tri(M)] <- 0
> M
[,1] [,2] [,3] [,4]
[1,] 1 % 5 9
[2,] 0 6 10 14
[3,] 0
[4,] 0
```


8.2.5 Operators vec and half vec

The matrix operator vec applied to a matrix \mathcal{A} outputs the long column vector $\operatorname{vec}(\mathcal{A})$ made by concatenating the columns of \mathcal{A}. It is computed in R with the following instruction:

```
> vec <- function(M) as.matrix(as.vector(M))
> # or equivalently, but outside a function call:
> # dim(A) <- c(prod(dim(A)),1)
> A
    [,1] [,2]
[1,] 2 5
[2,] 3 4
> vec(A)
        [,1]
[1,] 2
[2,] 3
[3,] 5
[4,] 4
```

The matrix operator vech (for vec half) applied to a matrix \mathcal{A} outputs the long column vector $\operatorname{vech}(\mathcal{A})$ made by concatenating the columns of \mathcal{A}, but excluding elements above the diagonal of \mathcal{A}. It is computed in R with the following instruction:

```
> vech <- function(M) as.matrix(M[lower.tri(M,diag=TRUE)])
```

> vech (A)
[, 1]
[1,] 2
$[2] \quad$,
$[3] \quad$,

8.2.6 Determinant, trace, condition number

The function det () computes the determinant of a matrix.
$>\operatorname{det}(A)$
[1] -7
There is no \mathbf{R} function to compute the trace of a matrix directly, but it is very easy to calculate:
> sum(diag(A))
[1] 6

Warning

Do not use the function trace() to compute the trace of a matrix. This function is used to debug R code.

The condition number is the ratio of the largest and smallest non-zero singular values. A large condition number is an indicator that the matrix has bad numerical properties. It is computed with the function kappa().
> kappa (A, exact=TRUE)
[1] 7.582401

8.2.7 Scaling and centring data

The function scale() is used to centre and/or scale a matrix. Centring corresponds to subtracting to each column the mean of that column. Scaling corresponds to dividing each column by its standard deviation.

Warning

Note that the function sd() calculates a standard deviation with $n-1$ at the numerator.

Centring

> scale (A, scale=FALSE)

$$
[, 1] \quad[, 2]
$$

$[1]-,0.5 \quad 0.5$
[2,] $0.5-0.5$
attr(, "scaled:center")
[1] 2.54 .5

Scaling

> scale(A, center=FALSE, scale=sd(A))
[,1] [,2]
[1,] 2.828427 7.071068
[2,] 4.2426415 .656854
attr(, "scaled:scale")
[1] 0.7071068 0.7071068

Warning

To use a scaling factor based on the standard deviation of the population, as is done for example in the French school of data analysis, use the instruction:

```
> red <- sqrt((nrow(A)-1)/nrow(A))
> scale(A, center=FALSE,scale=sd(A) *red) # t(A/sd(A))/red
    [,1] [, 2]
[1,] 4 10
[2,] 6 8
attr(,"scaled:scale")
[1] 0.5 0.5
```


8.2.8 Eigenvalues and eigenvectors

The eigenvalues and eigenvectors of a matrix are returned by the function eigen().

```
> eigen(A)
$values
[1] 7 -1
$vectors
\begin{tabular}{rrr} 
& {\([, 1]\)} & {\([, 2]\)} \\
{\([1]\),} & -0.7071068 & -0.8574929 \\
{\([2]\),} & -0.7071068 & 0.5144958
\end{tabular}
```

Note that if C is a Hermitian matrix (i.e. a complex matrix equal to its own conjugate transpose), the function eigen can be used to get the eigendecomposition of \boldsymbol{C}, i.e. $\boldsymbol{C}=\mathcal{V} \mathcal{D} \mathcal{V}^{*}$ (where \mathcal{V}^{*} is the conjugate transpose of $\mathcal{V})$:
$>C<-\operatorname{matrix}(c(1,1 i,-1 i, 3)$, ncol=2)
$>$ e <- eigen (C, symmetric=TRUE)
> V <- e\$vectors
> D <- diag (e\$values)
> all.equal (C, V\%*\%D\%*\%t (Conj(V)))
[1] TRUE

8.2.9 Square root of a Hermitian positive-definite matrix

A square root of a positive-definite matrix \boldsymbol{C} is any matrix $\boldsymbol{\mathcal { M }}$ verifying $\boldsymbol{M}^{*} \boldsymbol{\mathcal { M }}=$ \boldsymbol{C}, where $\boldsymbol{\mathcal { M }}^{*}$ denotes the conjugate transpose (adjoint matrix) of $\boldsymbol{\mathcal { M }}$. It is usually denoted as $\boldsymbol{C}^{1 / 2}$ even when it is not unique. If \boldsymbol{C} is Hermitian (i.e. a complex matrix equal to its own conjugate transpose or a symmetric real matrix), then $\boldsymbol{C}^{1 / 2}$ can be computed as follows:

```
> e <- eigen(C,symmetric=TRUE)
> V <- e$vectors
> V %*% diag(sqrt(e$values)) %*% t(Conj(V)) # C C
                                    # which is
                                    # Hermitian in this
                                    # case.
    [,1] [,2]
```

[1,] 0.9238795+0.0000000i 0.000000-0.3826834i
[2,] $0.0000000+0.3826834 i 1.689246+0.0000000 i$

The matrix $C^{-1 / 2}$ can be computed as follows:

```
> v %*% diag(1/sqrt(e$values)) %*% t(Conj(V))
    # C C
    # which is
    # Hermitian in
    # this case.
    [,1] [,2]
[1,] 1.194478+0.0000000i 0.0000000+0.2705981i
[2,] 0.000000-0.2705981i 0.6532815+0.0000000i
```


8.2.10 Singular value decomposition

We wish to write $\boldsymbol{C}=\boldsymbol{\mathcal { U }} \mathcal{D} \boldsymbol{V}^{*}$ where \mathcal{D} denotes the diagonal matrix of the singular values of \boldsymbol{C} and $\boldsymbol{\mathcal { U }}$ (respectively $\boldsymbol{\mathcal { V }}$) denotes the matrix of left (respectively right) singular vectors of \boldsymbol{C}. To this end, we use the function $\operatorname{svd}()$.

```
> res <- svd(C)
> res
$d
[1] 3.4142136 0.5857864
$u
[,1] [, [, [, [1,]
[2,] 0.0000000-0.9238795i 0.0000000-0.3826834i
$v
[,1]
[2,] 0.0000000-0.9238795i 0.0000000-0.3826834i
> D <- diag(res$d)
> U <- res$u
> V <- res$v
> all.equal(C,U%*%D%*%t(Conj(V))) # \mathcal{A = UDV*}
[1] TRUE
```

To compute the Moore-Penrose pseudo-inverse of a (non invertible) matrix, use the following function:

```
> mpinv <- function(M,eps=1e-13) {
+ s <- svd(M)
+ e <- s$d
+ e[e>eps] <- 1/e[e>eps]
+ return(s$v%*%diag(e)%*%t(s$u))
+ }
```


8.2.11 Cholesky decomposition

Let \mathcal{B} be a symmetric and positive-definite real matrix. We wish to write $\mathcal{B}=$ $\boldsymbol{U}^{\top} \boldsymbol{U}=\mathcal{L} \mathcal{L}^{\boldsymbol{\top}}$, where $\boldsymbol{\mathcal { U }}$ (respectively \mathcal{L}) is an upper (respectively lower) triangular matrix. Note that this implies that \mathcal{U} is a square root of \mathcal{B}. To get this decomposition, use the function chol().

```
> U <- chol(B) # This is another method for calculating
    # B1/2}\mathrm{ .
> L<- t(U)
> U
```

```
[,1] [,2]
[1,] 12.000000
[2,] 0 1.732051
> all.equal(B,t(U)%*%U) # }\mathcal{B}=\mp@subsup{\mathcal{U}}{}{\top}\mathcal{U
[1] TRUE
```

Note that the function chol2inv() can be used to compute the inverse \mathcal{B}^{-1} of a square symmetric and positive definite matrix \mathcal{B}, using its Cholesky decomposition.

```
> B
[,1] [,2]
[2,] 2 7
> chol2inv(U) # This is }\mp@subsup{\mathcal{B}}{}{-1}\mathrm{ .
    [,1] [,2]
[1,] 2.3333333 -0.6666667
[2,] -0.6666667 0.3333333
> all.equal(chol2inv(U),solve(B))
[1] TRUE
```

Finally, note that the function chol () can be used to compute $\mathcal{B}^{-1 / 2}$ as follows:

```
> solve(chol(B))# This is a version of }\mp@subsup{\mathcal{B}}{}{-1/2}\mathrm{ .
    [,1] [,2]
[1,] 1 -1.1547005
[2,] 0 0.5773503
```


8.2.12 QR decomposition

We wish to write $\mathcal{A}=\boldsymbol{Q R}$, where \boldsymbol{Q} is an orthogonal matrix $\left(\boldsymbol{Q} \boldsymbol{Q}^{\top}=\boldsymbol{Q}^{\top} \boldsymbol{Q}=\boldsymbol{I}\right)$ and \mathcal{R} is an upper triangular matrix.

```
> res <- qr(A)
> Q <- qr.Q(res)
> Q
[1,] -0 5547002 -0.8320503
[2,] -0.8320503 0.5547002
> all.equal(I2,Q%*%t(Q)) # I I = QQ'
[1] TRUE
> R <- qr.R(res)
> R
[,1
[2,] 0.000000 -1.941451
> all.equal (A,Q%*%R) # \mathcal{A = QR}
[1] TRUE
```


Tip

Note that $\mathrm{qr}(\mathrm{A}, \mathrm{tol}=1 \mathrm{e}-07) \$$ rank returns the rank of the matrix A using tol as the tolerance for detecting linear dependencies in the columns of A .

SECTION 8.3

Numerical integration

The numerical value of an integral can be computed in R with the function integrate().
A few examples will help illustrate this function. Suppose you wish to check numerically that
$\int_{-\infty}^{\infty} \frac{\exp \left(-x^{2} / 2\right)}{\sqrt{2 \pi}} d x=1$. Use the following procedure:
$>$ myf <- function(x) \{exp(-x^2/2)/sqrt(2*pi)\}
> integrate (myf,lower=-Inf, upper=Inf) \$value
[1] 1
Note that it is also possible to integrate functions of several variables. Thus, suppose you wish to check numerically that
$\int_{x=0}^{x=1} \int_{y=2}^{y=3} \cos (x+y) d y d x=2 \cos (3)-\cos (4)-\cos (2)$. Use the following procedure:

```
> myf <- function(x) {
```

+ res <- vector("integer", length(x))
+ for (i in 1:length(x)) \{
+ res[i] <- integrate (f=function $(y, x)\{\cos (x+y)\}$, lower=2,
$+$
$+$
+ return (res)
+ \}
> integrate (myf,lower=0, upper=1) \$value
[1] -0. 9101945
> $2 * \cos (3)-\cos (4)-\cos (2)$
[1] -0.9101945

Note that the function integrate() also returns the precision of the numerical calculation.

Check numerically that the function $f_{\mathrm{X}}(x)=\frac{1}{2}\left(1+\frac{(x-1)}{8}\right)^{-5} \mathbb{1}_{[1,+\infty]}(x)$ is a probability distribution function, i.e. that it integrates to 1 . It is in fact the density function of a generalized Pareto distribution with parameters (1,2,1/4).

SECTION 8.4
 Differentiation

8.4.1 Symbolic differentiation

R has very limited capabilities for symbolic calculus and we shall not dwell on this aspect. Note however that \mathbf{R} includes symbolic differentiation functions: D() and deriv(). For instance:

```
> D(expression(sin(cos(x + y^2))), "x") # Differentiate with
    # respect to
    # x
-(cos(cos(x + y^2)) * sin(x + y^2))
> D(expression(sin(\operatorname{cos}(x+y^2))), "Y") # Differentiate with
    # respect to
    # y.
```



```
> f <- deriv(~ x^2, "x", function(x)) # Differentiate
    # x }\mp@subsup{}{}{2
    # and get
    # 2x.
> f(3) # Returns 3^2 and 2*3
[1] 9
attr(,"gradient")
        x
[1,] 6
```


Advanced users

The package Ryacas interfaces \mathbf{R} with the formal calculus software Yacas, available online at http://yacas.sourceforge.net. Install and load the package Ryacas, then try the command vignette("Ryacas").

8.4.2 Numerical differentiation

Numerical differentiation can be done in R with the function $\operatorname{grad}()$ from the package numDeriv.

```
> require(numDeriv)
> f <- function(x) x^2 # Function of one variable.
> grad(f,c(2,1,3,5)) # Computes the derivative at several
    # (scalar) points.
[1] 4 2 6 10
```

This package also includes the functions hessian() to compute second-order derivatives, but only at a single (vectorial) point.

```
> g <- function(x) x[1]*x[2]^2 # Function of two variables.
> grad(g,c(2,1)) # Calculates the derivative at a single
    # (vectorial) point.
[1] 1 4
> hessian(g,c(2,1)) # Calculates the second-order derivative
    # at a single (vectorial) point.
    [,1] [,2]
[1,] 4.210428e-14 2
[2,] 2.000000e+00 4
```

The function numericDeriv(), which is trickier to use, returns the gradient of a function of several variables at several vectorial points. For instance, the following instructions compute the gradient vector of the function $x y^{2}$ at $(2,1)$ and $(3,4)$. The results are $(1,4)$ and $(16,24)$.

```
> h <- function(x,y) x*y^2 # Function of two variables.
> x <- c(2,3)
> y <- c(1,4)
> attributes(numericDeriv(quote(h(x,y)),c("x", "y"))) $gradient
    [,1] [,2] [,3] [,4]
[1,] 1
[2,] 0
```

- SECTION 8.5

Optimization

8.5.1 Optimization functions

Optimizing a function means finding where it reaches its maximum or its minimum. There are several R functions to this end, based on various algorithms: optimize(), optim(), nlm(), constrOptim(), nlminb().

- One-dimensional optimization

The function optimize(), which only works in one dimension, is the easiest to manipulate. As an example, suppose you wish to find the value and argument of the minimum of the function $\cos \left(x^{\wedge} 2\right)$ over the interval $[0,2]$. This function is plotted on the next figure.

The function optimize() solves this problem numerically.
> optimize(f=function (x) \{cos ($\left.\left.\mathrm{x}^{\wedge} 2\right)\right\}$, lower=0, upper=2)
\$minimum
[1] 1.772453
\$objective
[1] -1
The minimum is -1 and is reached at $x=1.772453$.

Tip

The argument maximum=TRUE of the function optimize() is used to compute the maximum rather than the minimum of a function.

- Multidimensional optimization

We wish to find the maximum of the function of two variables $f(x, y)=$ $10 \frac{\sin \left(\sqrt{(x-3)^{2}+(y-4)^{2}}\right)}{\left((x-3)^{2}+(y-4)^{2}\right)^{\alpha / 2}}$ with $\alpha=1.1$. We use the function $\operatorname{nlm}()$, which calculates the minimum of a function. The function f is plotted on Figure 8.1 using the following R instructions:

```
> x <- seq(-10,10, length= 30)
> y <- x
> f <- function(x,y,alpha=1.1) {r <- sqrt((x-3)^2+(y-4)^2)
+ 10 * sin(r)/r^alpha }
> z <- outer(x, y, f)
> z[is.na(z)] <- 1
> op <- par(bg = "white")
> persp(x,y,z,theta=30,phi=30, expand=0.5,
col="lightblue",ticktype="detailed")
```


Fig. 8.1: Modified sinc function

Finding the maximum of f is equivalent to finding the minimum of $-f$, so we use $n \operatorname{lm}()$ on the function $-f$.

```
> f <- function(z,alpha=1.1) {
+ x <- z[1]
+ y<- z[2]
+ r <- sqrt((x-3)^2+(y-4)^2)
+ - 10 * sin(r)/r^alpha
+ }
> res <- nlm(f,c(0,0)) # The second effective argument gives
                # the initial values.
> res
$minimum
[1] -1.046464
$estimate
[1] -1.627385 -2.169848
$gradient
[1] -1.534979e-07 1.139977e-07
$code
[1] 1
$iterations
[1] 7
```

The maximum is $(-1) \times$ res $\$$ minimum $=1.046464$ and is reached at res\$estimate $=(-1.627,-2.169)$.

In nlm(), you can specify the value of a parameter of the function to minimize. Thus, to maximize f with $\alpha=2$, use the following instruction: $\operatorname{nlm}(\mathrm{f}, \mathrm{c}(\theta, \theta)$, alpha=2)

- Constrained optimization

For optimization subject to simple constraints, such as $-a \leq x \leq b$ and $-c \leq$ $y \leq d$, use the function nlminb () and its arguments lower and upper. For example, suppose we wish to find the three maxima of the surface of equation $e^{-(x-1.2)^{2}-(y-2)^{2}} \cos (2 \pi(x-1.2))$ over the range $[-1,3] \times[0,4]$, whose plot is obtained using the following instructions:
$>f<-$ function $(x, y) \exp \left(-(x-1.2)^{\wedge} 2-(y-2)^{\wedge} 2\right) * \cos ((x-1.2) * p i * 2)$
$>x<-\operatorname{seq}(-1,3,0.1)$
$>y<-\operatorname{seq}(0,4,0.1)$
$>\operatorname{persp}(x, y$, outer (x, y, f), theta $=30$, phi $=30$, expand $=0.5$,
$+\quad c o l=" l i g h t b l u e ", t i c k t y p e=" d e t a i l e d ")$

First, we search for the global maximum. Visual inspection shows that it is reached in the range $[0.5,1.5] \times[0,4]$.

```
> f <- function(x) - exp(-(x[1]-1.2)^2-(x[2]-2)^2)*
+ cos(2*pi*(x[1]-1.2))
> nlminb(c(0.8,0),f,lower=c(0.5,0),upper=c(1.5,4))
$par
[1] 1.200000 2.000000
```

```
$objective
[1] -1
$convergence
[1] 0
$message
[1] "relative convergence (4)"
$iterations
[1] 19
$evaluations
function gradient
27
```

The (global) maximum is $(-1) \times$ res $\$$ objective $=1$ and is reached at res\$par=(1.2,2).

We conclude with a search over the ranges $[-1,0.5] \times[0,4]$ and $[1.5,3] \times[0,4]$, with the following instructions:

```
nlminb (c (0,0), f, lower=c (-1,0) , upper=c (0.5,4))
nlminb (c (2,0), f, lower=c (1.5,0), upper=c (3,4))
```

For linear constraints such as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}-\binom{c_{1}}{c_{2}} \geq 0 \Leftrightarrow\left\{\begin{array}{l}
a x+b y-c_{1} \geq 0 \\
c x+d y-c_{2} \geq 0
\end{array}\right.
$$

you can use the function constrOptim() with arguments ui=($\left.\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\operatorname{ci}=\binom{c_{1}}{c_{2}}$.

8.5.2 Roots of a function

The roots (or zeros) of a function f are defined as the solutions to the equation $f(x)=0$.

- \quad Single root

If there is a single root, use the function uniroot () which performs a onedimension search over a given interval. For example, here is how you would find the value at which the function $\cos \left(x^{2}\right)$ vanishes, over the interval $[0,2]$ (we mentioned this function when we introduced one-dimension optimization). The analytical solution to this simple problem is $x=\sqrt{\pi / 2}=1.253314$.
> uniroot (f=function (x) \{cos ($\left.\left.\mathrm{x}^{\wedge} 2\right)\right\}$, lower=0, upper=2,
$+$ tol=0.00001) \$root
[1] 1.253314

- Roots of a polynomial

The function polyroot () finds all (possibly complex) roots of a polynomial. For example, this instructions finds the roots of the polynomial $P(x)=3-$ $8 x+x^{2}$.
> polyroot $(\mathrm{c}(3,-8,1))$
[1] 0.3944487+0i 7.6055513+0i

Memorandum

round(): round numbers
abs (): absolute value
sqrt(): square root
$\exp (), \log ():$ exponential, logarithm
$\max (), \min ():$ maximum, minimum
sum(), prod(): sum, product
cummax (), cummin(), cumprod(), cumsum(): cumulative maxima, minima, prod-
ucts and sums
$\cos (), \sin ():$ cosine, sine
$\% * \%$: matrix multiplication operator
t(), solve(): matrix transposition, inversion
outer (), kronecker(): external product, Kronecker product
$\operatorname{det}()$: matrix determinant
eigen(): eigenvalues and eigenvectors of a matrix
svd(), chol(), qr(): matrix decompositions (singular values, Cholesky, QR)
integrate(): numerical integration
D(), deriv(): symbolic differentiation
grad(), hessian(): numerical differentiation with package numDeriv
optimize(), nlm(), nlminb(): function optimization
uniroot(), polyroot(): roots of a function

Exercises

8.1- Which function calculates binomial coefficients?
8.2- Give the instruction to compute the sum of the first n integers.
8.3- Which function returns the range of a sample?
8.4- What is the output of this instruction:
matrix(c (1, 0, 0, 1) , nrow=2)*matrix(1:4,nrow=2)?
8.5- What is the symbol for matrix multiplication?
8.6- Which function transposes a matrix? Which function inverses a matrix?
8.7- Give the instruction to create the identity matrix of size 5.
8.8- Give the instructions to calculate the determinant and the trace of a matrix.
8.9- Give the instruction to centre and scale a matrix \mathcal{A}.
8.10- Which function calculates the eigenvalues and eigenvectors of a matrix?
8.11- Give the instruction to integrate numerically the function $3 x^{2}+2$ over $[-1,1]$.
8.12- Give the instruction to find the maximum of the function $\sin ^{2}(x)$ over $[0,2]$.
8.13- Which function would you use to find where a function vanishes? Where a polynomial vanishes?
Worksheet

Matrix operations, optimization, integration

A- A first optimization problem

The aim of this practical is to find the eigenvalues of the following matrix, using several methods.
> A

	$[, 1]$	$[, 2]$
$[1]$,	2	5
$[2]$,	3	4

8.1- Create a function called $\operatorname{myf}()$ which evaluates the characteristic polynomial $P(x)=\operatorname{det}\left(\mathcal{A}-x I_{2}\right)$ at point x (hint: use the function $\operatorname{det}()$). Recall that the eigenvalues of a matrix are the roots of its characteristic polynomial.
8.2- Change the function $\operatorname{myf}()$ so that it takes vector values.
8.3- Plot the function $\operatorname{my} f()$ over the range $[-10,10]$. Add axes.
8.4- Use the function uniroot () twice to find the two roots of this function.
8.5- Find the coefficients of the polynomial $P(x)$, then use the function polyroot () to calculate the roots of this polynomial.
8.6- Check your results with the function eigen().

B- A second optimization problem

The following information is given about the figure below:

- $\quad(M H)$ is the perpendicular bisector of $[D C]$
- $\quad Q$ is the orthogonal projection of M onto ($B C$)
- $g(\alpha)=M A+M B+M H$ with $\alpha=\widehat{A M B} \in] 0 ; \pi / 2]$
- $A B=10$ and $B C=6$

The aim of this practical is to find the angle α which minimizes $g(\alpha)$.
Recall the following trigonometric identities:

- $\cos (\theta)=\frac{\text { length of adjacent side }}{\text { length of hypotenuse }} ;$
- $\sin (\theta)=\frac{\text { length of opposite side }}{\text { length of hypotenuse }}$;
- $\quad \tan (\theta)=\frac{\text { length of opposite side }}{\text { length of adjacent side }}=\frac{\sin (\theta)}{\cos (\theta)}$;
- $\quad \sin (\pi / 2-\theta)=\cos (\theta)$.
8.1- Reproduce the figure with R .
8.2- Show analytically that $g(\alpha)=5(2-\sin (\alpha)) / \cos (\alpha)+6$.
8.3- In R, create the function g.
8.4- Calculate numerically the value and argument of the minimum of $g(\alpha)$.
8.5- Calculate analytically $g^{\prime}(\alpha)$.
8.6- Check your result with symbolic differentiation.
8.7- In R, create this function, which you can call gprime.
8.8- Calculate numerically the root of $g^{\prime}(\alpha)$. Check that you get the same result as before.

C- Standard normal table

We shall use the function integrate() to create a table for the distribution $\mathcal{N}(0,1)$.

Let $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t$ be the cumulative density function of $\mathcal{N}(0,1)$. It is well known that $\Phi(-x)=1-\Phi(x)$. We shall thus only create the table for positive values of x.
8.1- Create a function phi() which takes as input a vector \boldsymbol{x} of length n and returns the vector of values $\frac{1}{\sqrt{2 \pi}} e^{-\frac{x_{i}^{2}}{2}}, i=1, \ldots, n$.
8.2- Use the function integrate() to compute $\Phi(x)$ for all x in the following vector: quantiles <- seq $(\theta, 5.5, b y=0.1)$. Store these values in a vector called probs.
8.3- Use the function all. equal() to compare these results with those given by the function pnorm().
8.4- Plot the values of $\Phi(x)$ for all x and all $-x$ in quantiles (hint: use the function rev()).
8.5- Plot the function pnorm() in blue over the previous curve. Check that the two plots coincide perfectly.

D- Principal components analysis

Principal components analysis is used to describe the proximity of individuals on which several quantitative traits have been measured. This method requires many matrix operations, and is thus a good way to put into practice the notions introduced at the beginning of this chapter.

Data were collected in the wine region of Bordeaux. They include:

- four weather traits:
- TEMPER: sum of daily average temperatures (in degrees Celsius),
- SUN: length of insolation (in hours),
- HEAT: number of days of strong heat,
- RAIN: rainfall (in mm);
- wine quality (QUALITY), as determined by wine-tasters:
$1=$ good wine, $2=$ average wine, $3=$ mediocre wine.

We shall represent these quantitative data on a scatter plot after projecting the data onto a subspace (a plane) chosen so as to limit the loss of information caused by the projection.
8.1- Import into the variable climatewine the contents of the data file http: //www.biostatisticien.eu/springeR/climatewine.csv
8.2- Store in matrix X the variables TEMPER, SUN, HEAT, RAIN (hint: as . matrix ()).
8.3- Calculate the centre (of gravity) g of the scatter plot of individuals included in X (vector of column averages) with the function colMeans(). Display it with two decimal places.
8.4- Use the function scale() to calculate the matrix $\dot{\mathcal{X}}=\left(\dot{x}_{i j}\right)$ of centred data, and store it in the variable Xdot.
8.5- Calculate the global inertia of the scatter plot, which represents the dispersion of the points: $\mathcal{I}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \dot{x}_{i j}^{2}$, where n is the number of individuals in \mathcal{X}.
8.6- The contribution of individual i to the global inertia is given by the formula $\frac{1}{n I} \sum_{j=1}^{p} \dot{x}_{i j}^{2}$, where p is the number of variables (four in this case).
Calculate the vector inertiacontr of contributions to inertia from each individual.
8.7- Create the column matrix onen of length n, containing only 1 's.
8.8- Check that the centre of gravity g of the scatter plot is also given by the formula $\boldsymbol{g}=\frac{1}{n} \boldsymbol{X}^{\boldsymbol{\top}} \mathbf{1}_{n}$.
8.9- Check that the matrix Xdot of centred data is also given by the formula $\dot{\mathcal{X}}=$ $X-1_{n} g^{\top}$.
8.10- Calculate the matrix of covariances S with the formula $\mathcal{S}=\frac{1}{n} \dot{\mathcal{X}}^{\top} \dot{\mathcal{X}}$. Try to reproduce this result with the function $\operatorname{cov}()$.
8.11- Use the matrix S to calculate the diagonal matrix Doneovers containing the inverses of standard deviations: $\mathcal{D}_{1 / s}=\operatorname{diag}\left(1 / s_{1}, \ldots, 1 / s_{p}\right)$.
8.12- Calculate the matrix Z of scaled and centred data with the formula $\mathcal{Z}=$ $\dot{\mathcal{X}} \mathcal{D}_{1 / s}$.
8.13- Calculate the matrix of correlations R with the formula $\mathcal{R}=\frac{1}{n} \mathcal{Z}^{\top} \mathcal{Z}$. Try to reproduce this result with the function cor ().
8.14- Calculate the diagonal matrix Lambda of eigenvalues $(\boldsymbol{\Lambda})$ and the matrix W of eigenvectors (\boldsymbol{W}) of the correlation matrix \mathcal{R}. The matrix W contains the coordinates of a new basis in which we shall represent the individuals.
8.15- Plot the circle of correlations, which is a circle of radius 1 , over which you should overlay arrows starting at the origin and ending at the points with coordinates given by the first two columns of the matrix $\boldsymbol{W} \boldsymbol{\Lambda}^{1 / 2}$. On the same plot, add the names of the variables at the end of the four arrows.
8.16- The total inertia of the scaled and centred scatter plot is equal to the number of variables (four in this case). It can be decomposed into a sum of inertias contributed by each one of the four axes of the basis of \boldsymbol{W}, which are given by the diagonal of $\boldsymbol{\Lambda}$. Calculate the vector of percentages of total inertia explained by the first k axes $(1 \leq k \leq p)$. What percentage of the inertia is explained by the first two axes?
8.17- Calculate the matrix $C W$ of principal components with the formula $C_{\mathcal{W}}=$ $\mathcal{Z} \mathcal{W}$. The principal components are the coordinates of the individuals in the new basis described by W.
8.18- Open a new graphics window and plot the individuals projected onto the first principal plane, i.e. with coordinates given by the first two columns of $\boldsymbol{C}_{\boldsymbol{W}}$. Add the names of the individuals onto the plot.
8.19- Draw the last plot again, but this time plot in red (respectively blue, green) good wines (respectively average wines, mediocre wines). Add a caption.
8.20- The quality of representation of individual i on the first principal plane is given by the formula $\frac{c_{i 1}^{2}+c_{c 2}^{2}}{\sum_{j=1}^{p} c_{i j}^{2}}$, where $c_{i j}$ is the entry at row i and column j of the matrix $C_{\mathcal{W}}$. Calculate the vector QLT of qualities of representation of individuals on the first principal plane. Display QLT with two decimal places.
8.21- We shall briefly explore package ade 4 which performs PCA. Install and load this package.
8.22- Type the following instructions:

```
rownames(X) <- climatewine[,1]
res <- dudi.pca(X) # Answer 2 to the question you are asked.
scatter(res)
s.class(res$li, as.factor(climatewine[, 6]))
```


Chapter 9
 Descriptive statistics

Goals

This chapter describes the procedures in R to structure your variables, draw standard summary plots of your data and calculate simple numerical statistical summaries on a data set. The data used to illustrate this chapter are from the dataset NutriElderly. We also give a few examples of functions to produce prettier plots, useful for presentations or reports.

SECTION 9.1
 Introduction

All examples in this chapter are based on the data file nutrition_elderly.xls which you can import into \mathbf{R} using one of the methods described in Chapter 2. For example, you could use the following instructions (remember to install the file http: //www.biostatisticien.eu/springeR/Rtools29.exe if you are working under Microsoft Windows):

```
> require(gdata) # Gives access to the function read.xls()
> nutrielderly <- read.xls(
+ "http://www.biostatisticien.eu/springeR/nutrition_elderly.xls")
```


This table includes measures of thirteen variables for 226 individuals.
In the remainder of the chapter, we shall assume that the data used for the various examples have been structured as explained in the next section.

SECTION 9.2
 Structuring variables according to type

The thirteen variables from the dataset NutriElderly can be sorted by type with the algorithm given in the next figure. Recall that the type of a variable X is determined by the set E_{X} of observable modalities, and not by the modalities which are actually observed.

Fig. 9.1: Algorithm to determine the type of a variable.

With this algorithm, we get the following summary table:

Qualitative variables	gender, situation and fat
Ordinal variables	meat, fish, raw_fruit, cooked_fruit_veg and chocol
Discrete quantitative variables	tea and coffee
Continuous quantitative variables	height, weight and age

First of all, we shall set up an adapted \mathbf{R} structure for each variable.

9.2.1 Structuring qualitative variables

For qualitative variables, set up the structure with the function as.factor(). It might be useful to also use the function levels() to recode the modalities of a
qualitative variable.

Let us perform these operations on the qualitative variables from our dataset:

```
gender <- as.factor(gender)
levels(gender) <- c("Male","Female")
situation <- as.factor(situation)
levels(situation) <- c("single","couple","family","other")
fat <- as.factor(fat)
levels(fat) <- c("butter","margarine","peanut",
+ "sunflower","olive","Isio4","rapeseed","duck")
```

Note that if the variable is coded as presence/absence, you can also use an \mathbf{R} structure with a vector of logical values:

```
> smoker <- c(1,0,0,1,0,1,0,1,0,0) # 10
    # smokers (=1)/non-smokers (=0).
> smoker
    [1] 1 0 0}0010
> smoker <- as.logical(smoker)
> smoker
    [1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[10] FALSE
```

If you also wish to associate a name to your modalities, you can proceed as follows:

```
> smoker <- c(smokes=smoker)
> smoker
    smokes1 smokes2 smokes3 smokes4 smokes5 smokes6 smokes7
        TRUE FALSE FALSE TRUE FALSE TRUE FALSE
    smokes8 smokes9 smokes10
        TRUE FALSE FALSE
```

However, we advise against coding presence/absence variables as logical values, as this hinders their use in other \mathbf{R} functions, especially for graphical representation.

Advanced users

If you start with a variable which is already structured into factors, for example:

```
> smoker <- as.factor(c("Smoker","NonSmoker","NonSmoker",
+ "Smoker","NonSmoker","Smoker", "NonSmoker",
+ "Smoker","NonSmoker","NonSmoker"))
> smoker
[1] Smoker NonSmoker NonSmoker Smoker NonSmoker
[6] Smoker NonSmoker Smoker NonSmoker NonSmoker Levels: NonSmoker Smoker
```

you can code it as logical values with the following procedure:

```
> smoker <- c(smoke=as.logical(2-as.integer(smoker)))
> smoker
smoke1 smoke2 smoke3 smoke4 smoke5 smoke6 smoke7
    FALSE TRUE TRUE FALSE TRUE FALSE TRUE
smoke8 smoke9 smoke10
    FALSE TRUE TRUE
```


9.2.2 Structuring ordinal variables

For ordinal variables, the structure can be set up with the function as.ordered(). It can also be useful to recode the modalities of an ordinal variable with the function levels().

Let us perform these operations on the ordinal variables from our dataset:

```
> meat <- as.ordered(meat)
> fish <- as.ordered(fish)
> raw_fruit <- as.ordered(raw_fruit)
> cooked_fruit_veg <- as.ordered(cooked_fruit_veg)
> chocol <- as.ordered(chocol)
> mylevels <- c("never","< 1/week.","1/week.","2-3/week.",
+ "4-6/week.","1/day")
> levels(chocol) <- levels(cooked_fruit_veg) <-
+ levels(raw_fruit) <- mylevels
> levels(fish) <- levels(meat) <- mylevels
```


9.2.3 Structuring discrete quantitative data

For a discrete variable, the structure is set up with the function as.integer().

```
> tea <- as.integer(tea)
> coffee <- as.integer(coffee)
```

This only works if the data take integer values.

9.2.4 Structuring continuous quantitative variables

For a continuous variable, the structure is set up with the function as.double().

```
> height <- as.double(height)
> weight <- as.double(weight)
> age <- as.double(age)
```


Data tables

For a given dataset, which plots and numerical summaries can be performed depends strongly on the structure of the data table, and on the type of the variable(s) in play. In this chapter, we detail how data can be organized into tables in \mathbf{R}.

9.3.1 Individual data tables

This is the most common organization type. The data consist of measures of one or several variables for each of N individuals in a population. Refer to Chapter 2 to find out how to import data into R. These data are usually organized in a data.frame.

9.3.2 Tables of counts and frequency tables

It is often interesting to represent a table of individual data (or raw data table) in a more condensed form. A table of counts or a table of frequencies makes it easier to understand the distribution of a variable, especially if the data are qualitative or ordinal. Such tables are obtained with the function table().

```
> tc <- table(fat) # Table of counts.
> tc
fat
    butter margarine peanut sunflower olive Isio4
            15 47 48 48 40
    rapeseed duck
            1 4
> tf <- tc/length(fat) # Frequency table.
> tf
fat
    butter margarine peanut sunflower olive
0.066371681 0.119469027 0.212389381 0.300884956 0.176991150
            Isio4 rapeseed duck
0.101769912 0.004424779 0.017699115
> levels(fat) # Levels.
[1] "butter" "margarine" "peanut" "sunflower" "olive"
[6] "Isio4" "rapeseed" "duck"
> nlevels(fat) # Number of levels.
[1] 8
```


9.3.3 Tables of grouped data

It is sometimes interesting to represent a table of individual data (or raw data table), of one or several quantitative variables, in a more condensed form. To this end, use a table of grouped data, giving the count (or frequency) of predefined classes.

Note that you can use the function hist () and specify the boundaries of classes in the argument breaks; it will then return the count in each of these classes. The default value of the argument breaks is "Sturges", which automatically calculates the classes.

```
> res <- hist(height,plot=FALSE)
> nn <- as.character(res$breaks)
> x <- as.table(res$counts)
> dimnames(x) <- list(paste(nn[-length(nn)],nn[-1], sep="-"))
> x
140-145 145-150 150-155 155-160 160-165 165-170 170-175
llllllll
175-180 180-185 185-190
    17 4 6
> # Or using the function cut():
> table(cut(height,res$breaks,include.lowest=TRUE))
[140,145] (145,150] (150,155] (155,160] (160,165] (165,170]
1 % 7 37 50 50,
(170,175] (175,180] (180,185] (185,190]
    27 17 4
```


9.3.4 Cross tabulation

9.3.4.1 Contingency tables

When given a table of individual data, you can use the function table() to get the observed contingency table for a couple (X, Y).

```
> mytable <- table(gender,situation)
> mytable
    situation
gender single couple family other
    Male 
```

To add margins to this table, use the function addmargins().

```
> table.complete <- addmargins(mytable,FUN=sum,quiet=TRUE)
> table.complete
            situation
gender single couple family other sum
    Male }\begin{array}{llllll}{\mathrm{ Ma }}&{20}&{63}&{2}&{0}&{85}
    Female 
    sum 98 119 0
```


Tip

- To change the label ("sum") of the margins in the previous table, you can define the function Total() (thus: Total <- sum) then replace sum with Total in the above call of addmargins().
If the contingency table is already given in a file, see Chapter 2 on how to import such a file with the function read.ftable() and display it with the function ftable() .

9.3.4.2 Joint distribution

The joint distribution table (or table of relative frequencies) for a couple (X, Y) is obtained from the contingency table mytable .

```
> freqtable <- mytable/sum(mytable)
> freqtable
        situation
gender single couple family other
    Male 0.088495575 0.278761062 0.008849558 0.000000000
    Female 0.345132743 0.247787611 0.030973451 0.000000000
```

To get margins, use one of the following instructions:

```
> Total <- sum
> addmargins(freqtable,FUN=Total,quiet=TRUE)
                situation
gender single couple family other
    Male 0.088495575 0.278761062 0.008849558 0.000000000
    Female 0.345132743 0.247787611 0.030973451 0.000000000
    Total 0.433628319 0.526548673 0.039823009 0.000000000
            situation
gender Total
    Male 0.376106195
    Female 0.623893805
    Total 1.000000000
> freqtabletotal <- table.complete/table.complete[
+ length(table.complete)]
> freqtabletotal
                situation
gender single couple family other
    Male 0.088495575 0.278761062 0.008849558 0.000000000
    Female 0.345132743 0.247787611 0.030973451 0.000000000
    sum 0.433628319 0.526548673 0.039823009 0.000000000
        situation
gender sum
    Male 0.376106195
    Female 0.623893805
    sum 1.000000000
```


9.3.4.3 Marginal distributions

The marginals of a distribution or contingency table freqtable are obtained with the function margin.table().

```
> margin.table(freqtable,1) # Right margin.
gender
            Male Female
0.3761062 0.6238938
> margin.table(freqtable,2) # Bottom margin.
situation
    single couple family other
0.43362832 0.52654867 0.03982301 0.00000000
```


Warning

When the distribution (or contingency) table is complete, i.e. when it already includes the margins (as is the case for freqtabletotal), do not extract them with the function margin.table(), but proceed thus:

```
> freqtabletotal[,ncol(freqtabletotal)] # Right margin.
    Male Female sum
0.3761062 0.6238938 1.0000000
> freqtabletotal[nrow(freqtabletotal),] # Bottom margin.
    single couple family other sum
```

0.433628320 .526548670 .039823010 .000000001 .00000000

9.3.4.4 Conditional distributions

Conditional distribution tables are obtained with the function prop.table().

- Conditional distribution of situation knowing the values of gender :

```
> prop.table(mytable,1)
    situation
gender single couple family other
    Male 0.23529412 0.74117647 0.02352941 0.00000000
    Female 0.55319149 0.39716312 0.04964539 0.00000000
> addmargins(prop.table(mytable,1),margin=2,FUN=sum) # Add Total.
                situation
gender single couple family other
    Male 0.23529412 0.74117647 0.02352941 0.00000000
    Female 0.55319149 0.39716312 0.04964539 0.00000000
                situation
gender sum
    Male 1.00000000
    Female 1.00000000
```

- Conditional distribution of gender knowing situation :

```
> prop.table(mytable,2)
    situation
gender single couple family other
    Male 0.2040816 0.5294118 0.2222222
    Female 0.7959184 0.4705882 0.7777778
> addmargins(prop.table(mytable,2),margin=1,FUN=sum) # Add Total.
                situation
gender single couple family other
    Male 0.2040816 0.5294118 0.2222222
    Female 0.7959184 0.4705882 0.7777778
    sum 1.0000000 1.0000000 1.0000000
```

SECTION 9.4

Numerical summaries

For simplicity, we present all numerical summaries on the vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right)^{\boldsymbol{\top}}$. This vector is the set of N values of the variable X measured on a population of size N (standard situation in descriptive statistics). When the vector \boldsymbol{x} represents a subsample, we shall denote its length by n. Examples are mainly based on the data vector height.

Warning

Numerical summaries cannot be computed when some data are missing (NA). If necessary, missing data can be omitted with the function na.omit ().

```
> x <- na.omit(height) # Useless in this case since height has
    # no NA.
```


9.4.1 Summaries of the location of a distribution

9.4.1.1 Modes

The modes of variable X are the values that occur most frequently. They can be computed for a variable of any type, although for continuous quantitative variables, the modal class should be used instead. Note that the mode may be unique, in which case the distribution is said to be unimodal, as opposed to multimodal.

```
> tabtea <- table(tea)
> names(which.max(tabtea)) # Getting a unique mode.
[1] "0"
```

```
> names(tabtea) [max(tabtea)==tabtea] # Getting all modes.
[1] "0"
```

In this case, the variable tea (number of cups of tea per day) is unimodal.

Tip

For a quantitative variable, you can use the function as.numeric() on the above results to get numerical values.

9.4.1.2 Median

The median of a statistical series is the value m_{e} which splits the series into two halves (larger and smaller than m_{e}) of same size, when the values are sorted from smallest to largest. It is a location criterion, which is obviously relevant only for purely qualitative variables. To compute it, there are two cases:

- if the total sample size N of the series is odd, then the median is the value at position $\frac{N+1}{2}$;
- if the total sample size N is even, then any value between the values at positions $\frac{N}{2}$ and $\frac{N}{2}+1$ can be used as a median of the series. In practice, the median is usually the mean between these two values (this method thus excludes ordinal characters).

The \mathbf{R} function to calculate the median, only for numerical data, is median().

```
> median(x)
[1] 163
```

We propose the following code, which computes the median for individual ordinal or numerical data:

```
> my.median <- function(x) {
+ if (is.numeric(x)) return(median(x))
+ if (is.ordered(x)) {
+ N <- length(x)
+ if (N%%2) return(sort(x)[(N+1)/2]) else {
+ inf <- sort(x)[N/2]
+ sup <- sort(x)[N/2+1]
+ if (inf==sup) return(inf) else return(c(inf,sup))
    }}
+ stop("Cannot calculate the median for this type of data.")
+ }
> my.median(fish)
```

[1] 2-3/week.
6 Levels: never \ll $1 /$ week. < $1 /$ week. < \ldots < $1 /$ day

Now suppose that we do not have individual data, but only the table of observed frequencies $f_{1}, \ldots, f_{k}, \ldots, f_{K}$ in the K classes $\left.\left.\left.\left.\left.] e_{0}, e_{1}\right], \ldots,\right] e_{k-1}, e_{k}\right], \ldots,\right] e_{K-1}, e_{K}\right]$ of a quantitative variable. In that case, we need a linear interpolation between the two values with cumulative frequencies closest to 50%. Let e_{k} and e_{k+1} be the two consecutive values of class boundaries such that $C F P_{X}\left(e_{k}\right)<0.5 \leq C F P_{X}\left(e_{k+1}\right)$, where $C F P_{X}\left(e_{j}\right)=f_{1}+f_{2}+\ldots+f_{j}, j=1, \ldots, K\left(C F P_{X}(x)\right.$ is the value of the cumulative frequency polygon at point x). Then:

$$
m_{e}=e_{k}+\left(e_{k+1}-e_{k}\right) \frac{0.5-P F C_{X}\left(e_{k}\right)}{P F C_{X}\left(e_{k+1}\right)-P F C_{X}\left(e_{k}\right)}
$$

We propose the following code to compute the median in such a case:

```
> median.for.freq <- function(x) {
+ # x is the frequency table.
+ if (all(is.numeric(names(x)))) {
+ tab.freq.cum <- cumsum(x)
+ index <- order(tab.freq.cum < 0.5)[1]
+ fc1 <- tab.freq.cum[index]
+ fc2 <- tab.freq.cum[index-1]
+ x1 <- as.numeric(names(fc1))
+ x2 <- as.numeric(names(fc2))
+ mex <- as.numeric(x1 + (x2-x1)*(0.5-fc1)/(fc2-fc1))
+ } else {mex <- NA}
+ return(mex)
+ }
```

Here is how we compute the median for the data in vector x grouped into classes with the function hist():

```
> res <- hist(x,plot=FALSE,breaks=c (130,150,160,170,180,190))
> tab.x <- table(rep(res$breaks[-1],res$counts))
> tab.x
150}16017018019
    8
> median.for.freq(tab.x/sum(tab.x))
[1] NA
```


9.4.1.3 Mean

It can only be computed for quantitative variables.

```
> mean(x)
    # }\mp@subsup{\mu}{X}{}=\frac{1}{N}\mp@subsup{\sum}{i=1}{n}\mp@subsup{x}{i}{
[1] 163.9602
```


9.4.1.4 Fractiles

The fractile of order $p(0<p<1)$ is the value q_{p} of the variable X which splits the sample into two parts, one of size equal to $p \%$ of the total sample size of \boldsymbol{x} (elements smaller than q_{p}), the other of size $(1-p) \%$ (elements greater than $\left.q_{p}\right)$. It cannot be computed for purely qualitative variables.

Fractiles of order 10% and 90% :

```
> quantile(x,probs=c(0.1,0.9))
10% 90%
1 5 3 1 7 6
```

Quartiles $q_{1 / 4}, q_{1 / 2}, q_{3 / 4}$ (also denoted as $q_{1}, q_{2}=m_{e}, q_{3}$):

```
> quantile(x,probs=c(0.25,0.5,0.75))
25% 50% 75%
157163170
```

Deciles:

```
> quantile(x,probs=1:10/10)
    10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
153.0 156.0 158.5 160.0 163.0 165.0 168.0 172.0 176.0 188.0
```


Tip

The function summary () applied to a vector of quantitative data calculates the minimum, maximum, mean and the three quartiles.

9.4.2 Summaries of the dispersion of a distribution

These summaries can only be computed for quantitative variables. We first define the following three \mathbf{R} functions, then present the summaries in the next table.

```
> # Variance \sigma}\mp@subsup{\sigma}{}{2}\mathrm{ of the population }\mp@subsup{\sigma}{}{2}(x)=\frac{1}{N}\mp@subsup{\sum}{i=1}{N}(\mp@subsup{x}{i}{}-\mp@subsup{\mu}{X}{}\mp@subsup{)}{}{2}
> var.pop <- function(x) var(x)*(length(x)-1)/length(x)
> # Standard deviation }\sigma\mathrm{ of the population }\sigma(x)=\sqrt{}{\frac{1}{N}\mp@subsup{\sum}{i=1}{N}(\mp@subsup{x}{i}{}-\mp@subsup{\mu}{X}{}\mp@subsup{)}{}{2}}\mathrm{ .
> sd.pop <- function(x) sqrt(var.pop(x))
> # Coefficient of variation:
    # c
> co.var <- function(x) sd.pop(x)/mean(x)
```

Name	Mathematical formula	R instruction	Result
Range	$\max _{1 \leq i \leq N}\left(x_{i}\right)-\min _{1 \leq i \leq N}\left(x_{i}\right)$	$\max (\mathrm{x})-\min (\mathrm{x})$ $\operatorname{diff}(\mathrm{range}(\mathrm{x}))$	48.0
Interquartile range	$q_{3 / 4}-q_{1 / 4}$	$\operatorname{IQR}(\mathrm{x})$	13.0
Variance	$\sigma_{\text {Pop }}^{2}(\boldsymbol{x})=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}$	var.pop(x)	80.702
Standard deviation	$\sigma_{\text {Pop }}(\boldsymbol{x})=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}$	sd.pop (x)	8.983
Coefficient of variation	$c_{v}=\frac{\sigma_{\text {Pop }}}{\mu_{X}}$	$\operatorname{co} . \operatorname{var}(\mathrm{x})$	0.055
Absolute deviation to the median	$\frac{1}{N} \sum_{i=1}^{N}\left\|x_{i}-m e_{X}\right\|$	$\operatorname{mad}(\mathrm{x})$	10.378
Mean absolute deviation	$\frac{1}{N} \sum_{i=1}^{N}\left\|x_{i}-\bar{x}\right\|$	mean $(\operatorname{abs}(\mathrm{x}-\operatorname{mean}(\mathrm{x})))$	7.312

Note

An unbiased estimator $\hat{\sigma}^{2}$ of the variance σ^{2} of a population, based on a sample of size n, can be computed with the function var(). The corresponding standard deviation $\hat{\sigma}$ is computed with the function sd() .

```
> var (x) # \hat{\sigma}}\mp@subsup{}{}{2}(x)=\frac{1}{n-1}\mp@subsup{\sum}{i=1}{n}(\mp@subsup{x}{i}{}-\overline{x}\mp@subsup{)}{}{2
    # with \overline{x}=\frac{1}{n}\mp@subsup{\sum}{i=1}{n}\mp@subsup{x}{i}{}.
[1] 81.06063
> sd (x) # \hat{\sigma}(x)=\sqrt{}{\frac{1}{n-1}\mp@subsup{\sum}{i=1}{n}(\mp@subsup{x}{i}{}-\overline{x}\mp@subsup{)}{}{2}}
    # with \overline{x}=\frac{1}{n}\mp@subsup{\sum}{i=1}{n}\mp@subsup{x}{i}{}.
[1] 9.003368
```


9.4.3 Summaries of the shape of a distribution

These summaries can only be computed for quantitative variables. It is worth mentioning coefficients of asymmetry (skewness) and of peakedness (kurtosis); the relevant \mathbf{R} code is given below.

```
\(>\) skew <- function (x) mean \(\left((x-\operatorname{mean}(x))^{\wedge} 3\right) /\) sd.pop (x) ^ 3
\(>\) skew (x) \# \(\gamma_{1}=\frac{\mu_{3}}{\sigma^{3}}\)
    \# with \(\mu_{3}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu_{X}\right)^{3}\)
[1] 0.4256203
\(>\) kurt <- function (x) mean ( \(\left.(x-\operatorname{mean}(x))^{\wedge} 4\right) / s d . p o p(x)^{\wedge} 4\)
\(>\operatorname{kurt}(\mathrm{x}) \quad \# \beta_{2}=\frac{\mu_{4}}{\sigma^{4}}\)
    \# with \(\mu_{4}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu_{X}\right)^{4}\).
[1] 2.778185
```


Tip

The functions skewness() and kurtosis() from package moments perform the same operations.

Measures of association

9.5.1 Measures of association between two qualitative variables

9.5.1.1 Pearson's χ^{2} statistic

The results of this section are obtained with the function chisq. test (). We present how to compute the contingency table of observed counts $O_{i j}$, the contingency table of theoretical (expected) counts $E_{i j}(1 \leq i \leq p, 1 \leq j \leq q)$ (also called independence table), the table of contributions to the χ^{2} as well as the χ^{2} itself.

```
> genderfat <- table(gender,fat) # Observed contingency table
# of O}\mp@subsup{|}{ij}{}\mp@subsup{}{}{\prime}\textrm{s}
> tab.ind <- chisq.test(genderfat) $expected # The E
> round(tab.ind)
    fat
gender butter margarine peanut sunflower olive Isio4
\begin{tabular}{lllllll}
\(M a l e\) & 6 & 10 & 18 & 26 & 15 & 9
\end{tabular}
    Female 
            fat
gender rapeseed duck
    Male 0 2
    Female 1 2
> # (genderfat-tab.ind)^ 2/tab.ind: }\frac{(\mp@subsup{O}{ij}{}-\mp@subsup{E}{ij}{}\mp@subsup{)}{}{\wedge}2}{\mp@subsup{E}{ij}{}
> tab.contr <- chisq.test(genderfat)$residuals^2
> tab.contr
                fat
gender butter margarine peanut sunflower
    Male 3.367083116 0.002361810 0.233489502 0.818473834
    Female 2.029801879 0.001423786 0.140756083 0.493406212
                fat
gender olive Isio4 rapeseed duck
    Male 1.632483082 1.540468053 0.376106195 1.486777720
    Female 0.984121007 0.928650954 0.226730685 0.896284441
> chi2 <- chisq.test(genderfat)$statistic # sum(tab.contr)
> chi2 # \chi \chi
X-squared
    15.15842
```


Tip

Another way to compute Pearson's χ^{2} statistic is to use the function summary ().
> chi2 <- summary(table(gender, fat)) \$statistic
> chi2
[1] 15.15842

9.5.1.2 Φ^{2}, Cramér's V^{2} and Pearson's contingency coefficient

All indicators in the next table are computed from the χ^{2} coefficient.

```
> N <- sum(genderfat)
> p <- nrow (genderfat)
> q <- ncol(genderfat)
```

Indicator	Formula	Instruction R	Result
Φ^{2}	$\Phi^{2}=\frac{\chi^{2}}{N}$	Phi2 <- chi2/N	0.067
Cramér's V^{2}	$V^{2}=\frac{\Phi^{2}}{\min (p-1, q-1)}$	Phi2/(min(p,q)-1)	0.067
Pearson's	$C=\sqrt{\left.\frac{\chi^{2}}{\left(N+\chi^{2}\right.}\right)}$	sqrt(chi2/(N+chi2)))	0.251
contingency coefficient	$=\sqrt{\frac{\Phi^{2}}{\left(1+\Phi^{2}\right)}}$		

9.5.2 Measures of association between ordinal variables (or ranks)

9.5.2.1 Kendall's τ and τ_{b}

This coefficient is based on the notion of concordance of individuals. For two individuals i and j and for ordinal variables X and Y having p and q modalities respectively, pairs $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ are said to be concordant if $\operatorname{sign}\left(x_{j}-x_{i}\right)=\operatorname{sign}\left(y_{j}-y_{i}\right)$ and discordant if $\operatorname{sign}\left(x_{j}-x_{i}\right)=-\operatorname{sign}\left(y_{j}-y_{i}\right)$. If $x_{i}=x_{j}$ or $y_{i}=y_{j}$ (or both), the corresponding pair is neither concordant nor discordant: we say there is a tie. If there are n_{c} concordant pairs, n_{d} discordant pairs and n_{t} ties, then $n_{c}+n_{d}+n_{t}=\frac{1}{2} N(N-1)$. Kendall's τ_{b} is then given by the formula:

$$
\tau_{b}=\frac{2\left(n_{c}-n_{d}\right)}{\sqrt{\left(N^{2}-\sum_{k=1}^{p} n_{k \bullet}^{2}\right)\left(N^{2}-\sum_{l=1}^{q} n_{\bullet} n^{2}\right)}}
$$

where $2\left(n_{c}-n_{d}\right)=\sum_{k=1}^{p} \sum_{l=1}^{q} \operatorname{sign}\left(x_{k}-x_{l}\right) \operatorname{sign}\left(y_{k}-y_{l}\right), n_{k \bullet}=\sum_{l=1}^{q} n_{k l}$ and $n_{\bullet l}=$ $\sum_{k=1}^{p} n_{k l}$, with $n_{k l}$ being the number of individuals having the modalities k for X and l for Y.

When there are no ties, this formula simplifies to what is known as Kendall's τ :

$$
\tau=\frac{2\left(n_{c}-n_{d}\right)}{N(N-1)}
$$

These two quantities can be computed in R with the function cor ().

```
> cor(as.numeric(meat),as.numeric(fish),method="kendall")
[1] -0.1583088
```


Tip

Note that you could also compute these coefficients yourself by translating the formula for τ_{b} into R instructions:

```
> Kendall.taub <- function(x,y) {
+ a1 <- sign(outer(as.numeric(x), as.numeric(x),"-"))
+ a2 <- sign(outer(as.numeric(y),as.numeric(y),"-"))
+ num <- sum(a1*a2)
+ N <- length(x)
+ b1 <- sum(margin.table(table(x,y),1)^2)
+ b2 <- sum(margin.table(table(x,y), 2) ^2)
+ denom <- sqrt((N^2-b1)*(N^2-b2))
+ taub <- num / denom
+ return(taub)
+ }
> Kendall.taub(meat,fish)
[1] -0.1583088
```


9.5.2.2 Spearman's rank correlation coefficient ρ

First compute the ranks (function rank()) x_{i} and y_{i} of all individuals for variables X and Y. In case of a tie, assign to tied values the rank equal to the mean of their shared positions (which is what the function $\operatorname{rank}()$ does by default).

When there are no ties, Spearman's rank correlation coefficient is given by the formula

$$
\rho=1-\frac{6 \sum_{i=1}^{N} d_{i}^{2}}{N\left(N^{2}-1\right)} \quad \text { with } d_{i}=x_{i}-y_{i}
$$

When there are ties, we need to use the Pearson's standard correlation coefficient between ranks:

$$
\rho=\frac{N\left(\sum_{i=1}^{N} x_{i} y_{i}\right)-\left(\sum_{i=1}^{N} x_{i}\right)\left(\sum_{i=1}^{N} y_{i}\right)}{\sqrt{N\left(\sum_{i=1}^{N} x_{i}^{2}\right)-\left(\sum_{i=1}^{N} x_{i}\right)^{2}} \sqrt{N\left(\sum_{i=1}^{N} y_{i}^{2}\right)-\left(\sum_{i=1}^{N} y_{i}\right)^{2}}} .
$$

To compute Spearman's rank correlation coefficient in R, you can use the functions $\operatorname{rank}()$ and cor(), or use directly the function cor() with the argument method set to "spearman".
> cor(rank(fat), rank(situation))
[1] 0.008787643
> cor(as.numeric(fat), as.numeric(situation), method="spearman")
[1] 0.008787643

9.5.3 Measures of association between two quantitative variables

9.5.3.1 Covariance and Pearson's correlation coefficient

For two quantitative variables, the appropriate measure of association is correlation. It is defined as the ratio of the covariance of the two variables and their respective standard deviations. It is computed with the function cor().

```
> cor(height,weight)
[1] 0.6306576
```

Covariance is computed with the function $\operatorname{cov}()$.
> cov(height, weight)
[1] 68.32596

Tip

This coefficient can also be computed with the function cor.test().

```
> cor.test(height, weight) $estimate
    cor
0.6306576
```


9.5.4 Measures of association between a quantitative variable and a qualitative variable

9.5.4.1 Correlation ratio $\eta_{Y \mid X}^{2}$

The correlation ratio $\eta_{Y \mid X}^{2}$ indicates how much of the variation of the quantitative variable Y is explained by the levels of the qualitative variable X with p levels. Indeed, X can be viewed as defining groups in the population. The correlation ratio is the ratio of variance within groups and inter-group variance. It is given by the formula

$$
\eta_{Y \mid X}^{2}=\frac{\sum_{k=1}^{p} n_{k}\left(\bar{y}_{k}-\bar{y}\right)^{2}}{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}
$$

where n_{k} denotes the number of observations y_{i} corresponding to the k th level of X.
Here is the \mathbf{R} code to compute this ratio:

```
> eta2 <- function(x, gpe) {
+ means <- tapply(x, gpe, mean)
+ counts <- tapply(x, gpe, length)
+ varwithin <- (sum(counts * (means - mean(x))^2))
+ vartot <- (var(x) * (length(x) - 1))
+ res <- varwithin/vartot
+ return(res)
+ }
```

We compute it for the variables weight and gender.

```
> eta2(weight,gender)
```

[1] 0.3325501

You can also use the following R instruction to compute $\eta_{Y \mid X}^{2}$:
> summary(lm(weight~ ${ }^{\sim}$ gender)) \$r.squared
[1] 0.3325501

SECTION 9.6

Graphical representations

The way a variable is represented graphically should always be adapted to the type of variable. Indeed, the type of a variable often translates into specificities of a plot. For instance, an arrow head at the end of an axis indicates that the corresponding levels are ordered. The direction of the axis of levels should thus be made evident for all variables, except those of a qualitative type. We have thus defined (and included in the package associated with this book) the function arrowaxis() which we shall use, when needed, to add an arrow on a plot axis. For some plots, we have decided to show side by side a basic version and a more elaborate and aesthetically pleasing version. We do not necessarily recommend using the elaborate version in data exploration, but these plots show the possibilities offered by \mathbf{R} to modify a plot as one wishes.

9.6.1 Plotting qualitative variables

9.6.1.1 Cross chart

For each observation, the cross chart shows a small horizontal bar in the column of the relevant level. This diagram is not included in R , but it can be coded with the function plot() and its argument pch. The corresponding function, which we call crosschart (), is included in the package associated with this book.
> crosschart(situation, col=c("orange","darkgreen", "black","tan"))

Fig. 9.2: Cross chart for a qualitative variable.

Note that there also exists a function dotchart(). When coupled with the function table(), it gives a similar display, except that it is rather a representation of the table of counts of the variable.

```
> dotchart(table(situation),col=c("orangered","darkgreen",
+ "turquoise","tan"),pch=15,main=paste("Dot chart of counts",
+ "of variable situation",sep="\n"))
```


Fig. 9.3: Dot chart for a qualitative variable.

9.6.1.2 Bar charts

It is obtained with the function barplot(). To make the plot prettier, we propose the function barchart (), included in the package associated with this book.

```
> col <- c("gray","orangered","lightgoldenrodyellow","red")
> barplot(table(situation),col=col)
```


Fig. 9.4: Bar chart for a qualitative variable.
> barchart(situation,col)

9.6.1.3 Pareto chart

A Pareto chart can also be produced with the function barplot(), since it is a bar chart with bars ordered from tallest to smallest.
> col <- c("yellow", "yellow2","sandybrown", "orange",

+ "darkolivegreen", "green", "olivedrab2", "green4")
> barplot (sort (table(fat), T), col=col)

Fig. 9.5: Pareto chart for a qualitative variable.

9.6.1.4 Stacked bar chart

A stacked bar chart can be obtained with the function barplot() with an object of type matrix as first effective argument.

```
> nbh <- table(gender) [1]
> nbf <- table(gender) [2]
> tabfreq.fat.males <- table(fat[gender=="Male"])/nbh
> tabfreq.fat.females <- table(fat[gender=="Female"])/nbf
> barplot(cbind(tabfreq.fat.males,tabfreq.fat.females),
+ main="Stacked bar chart for variable fat",col=
+ c("yellow","yellow2","sandybrown","orange",
+ "darkolivegreen","green","olivedrab2","green4"),xlim=
+ c(0,1),width=0.15,space=1,names.arg=
+ c("Males","Females"),legend=TRUE,density=40)
> arrowaxis(x=F,Y=T)
```

Stacked bar chart for variable fat

Fig. 9.6: Stacked bar chart for a qualitative variable.

9.6.1.5 Pie chart

A pie chart can be obtained with the function pie(). We propose the more aesthetically pleasing function camembert (), included in the package associated with this book.
> require("RColorBrewer")
> col <- brewer.pal(8,"Pastel2")

> camembert(fat,col)

9.6.2 Plotting ordinal variables

9.6.2.1 Bar chart with cumulative frequencies line

Such a chart can be obtained with the functions barplot() and points(). As previously, the function barchart () included in the package associated with this book allows a different representation (for instance, the line of cumulative frequencies is raised and projects a shadow).

```
> require("RColorBrewer")
> col <- brewer.pal(6,"Blues")
> tx <- table(fish)
> tx <- tx/sum(tx)
> r <- barplot(tx,ylim=c(0,1),col=col)
> points(r,cumsum(tx),type="l")
```


Fig. 9.7: Bar chart with cumulative frequencies line for an ordinal variable.

9.6.3 Plotting discrete quantitative variables

9.6.3.1 Cross chart

A cross chart can be obtained with the function crosschart (), included in the package associated with this book.

See also

See the section on qualitative variables, page 356.

9.6.3.2 Bar chart

Such a chart can be obtained with the function plot() applied to a contingency table.
> plot (tabtea/length (unique (tea)), ylab="",

+ col="darkolivegreen", lwd=5,
+ main="Bar chart for variable tea")
> arrowaxis()

Fig. 9.8: Bar chart for a discrete quantitative variable.

9.6.3.3 Plotting the empirical distribution function

Such a plot is obtained with the functions plot() and ecdf().
> plot (ecdf(na.omit (coffee)), main=paste("Empirical distribution function",

+ "for variable coffee", sep=" $\backslash \mathrm{n} "$), verticals=TRUE,
$+\quad y l a b=$ expression $(F[n](x))$, col.011ine="\#89413A", col.points=
+ "\#6D1EFF", col.hor='\#3971FF', col.vert='\#3971FF')
$>$ arrowaxis $(x=T, y=T)$

Fig. 9.9: Empirical distribution function for a discrete quantitative variable.

9.6.3.4 Stemplot

A stemplot, or stem-and-leaf display, can be obtained with the function stem. leaf() of package aplpack.

9.6.3.5 Boxplot

Such a chart can be obtained with function boxplot (), as shown below. The chart gives explanations.

```
> boxplot(coffee,col="orange",
+ main="Boxplot for variable coffee")
> arrowaxis(x=F,y=T)
```


Boxplot for variable coffee

Fig. 9.10: Boxplot and explanations.

The box is drawn using the values of the three quartiles. Values represented as small circles are outliers, which might be suspect or deviant (boxplot(cafe)\$out). These extreme values are those that are outside the box, further than 1.5 times the interquartile range (the argument range can be used to change this value from the default 1.5). Note that values which are outside the box, but within 1.5 times the interquartile range, are called adjacent values. The whiskers are drawn at the largest and smallest adjacent value.

Tip

Type example(bxp) or example(boxplot) for other examples of such diagrams.

9.6.4 Plotting continuous quantitative variables

We now present a few useful graphs for exploring quantitative data.

9.6.4.1 Empirical distribution function

Use the functions plot() and ecdf().
> plot (ecdf(na.omit(age)), main=paste("empirical distribution function", + "of variable age", sep=" $\backslash \mathrm{n} "$), col.hor=' \# 3971FF', col.points='\#3971FF')
> arrowaxis()

Fig. 9.11: Plot of the empirical distribution function for a continuous quantitative variable.

9.6.4.2 Stemplot

You can use the function stem(), but it is not very sophisticated. We recommend the function stem. leaf() from package aplpack. Chart construction is done in three steps:

- choose a leaf unit, using argument unit;
- choose the number of parts (1,2 or 5) in which each stem should be divided, using argument m ;
- choose the representation style, using argument style which can take the values "Tukey" or "bare".
> require(aplpack)
> stem.leaf(height, m=5, style="bare")
1 | 2: represents 12
leaf unit: 1

$$
: 226
$$

114 | 0
14 I
14 /
14 /
14 | 88
1215 | 000001111
2415 | 222223333333

```
45 15 | 444444444444555555555
60 15 | 666666666667777
73 15 | 8888888899999
97 16 | 000000000000000000000011
(22) 16 | 2222222222333333333333
107 16 | 4444444455555555555555
85 16 | 6666777
78 16 | 88888888888999
64 17 | 000000000011111
49 17 | 2222222222333
36 17 | 444555555
27 17 | 6666666777
17 17 / 88889
12 18 | 0011
    8 18 / 22
18 |
6 18 / 666
3 18 | 888
```


9.6.4.3 Boxplots

They can be created with the function boxplot ().

See also

See the section on discrete quantitative variables, page 364.

9.6.4.4 Density histogram with identical or different class ranges

Use the function hist().
> classes <- hist (age, right=T,freq=F,ylab="Density",

+ main="Histogram of variable age", col="orangered")
> arrowaxis()

Fig. 9.12: Density histogram with identical or different class ranges.

9.6.4.5 Frequency polygon

Use the functions hist() and segments().

```
> classes <- hist(height,right=T,freq=F,
+ main=paste("Histogram and frequency polygon",
+ "of variable height",sep="\n"), col="orangered")
> middles <- classes$mid ; mlon <- length(middles)
> densities <- classes$density
> segments(middles[1:mlon-1],densities[1: mlon-1],
+ middles[2:mlon],densities[2:mlon],col=
+ rgb(0.4196078,0.4196078,0.1372549,0.9),lwd=3)
> arrowaxis()
```


Fig. 9.13: Frequency polygon.

9.6.4.6 Cumulative frequency polygon

Use the functions hist(), $\operatorname{ecdf()}$ and plot().

```
> bounds <- hist(height,right=T,plot=F) $breaks
> plot (bounds,ecdf(height) (bounds),type="l",main=
+ paste("Cumulative frequency polygon","of variable height",sep="\n"),
+ ylab="Frequencies",col="darkolivegreen",lwd=3)
> arrowaxis()
```


Fig. 9.14: Cumulative frequency polygon.

Tip

This plot can be used to give a graphical estimator of the median. Simply add a horizontal line at height $h=0.5$ with the instruction abline $(\mathrm{h}=0.5)$. Then, type the instruction locator (1) $\$ \mathrm{x}$ and click on the intersection between this horizontal line and the cumulative frequency polygon. Similarly, you can get any other quantile by replacing the value 0.5 with the desired quantile.

9.6.5 Graphical representations in a bivariate setting

In this section, we present a few useful representations for bivariate settings.

9.6.5.1 Two-way plots for two qualitative variables

You can overlay two barplots, as shown on the next two figures.

```
> tss <- prop.table(table(gender,situation),1)
> barplot(tss,bes=T,leg=T)
> title(paste("Barplots of situation","as a function of gender",
+ sep="\n"))
> arrowaxis(F,T)
```


Fig. 9.15: Bar plot for two qualitative variables.

A mosaic plot can also be useful to visualize the relationship between two qualitative variables.

```
> par(las=1) # Horizontal writing of levels.
> mosaicplot (gender~~ fat, color=brewer.pal(5, "Set1"),
+ main="Mosaicplot of fat as a function of age")
```


Fig. 9.16: Mosaic plot for two qualitative variables.

Another interesting function in this setting is assocplot () which produces a Cohen-Friendly association plot indicating deviations from independence in a 2×2 contingency table. We can also cite the function spineplot ().
> assocplot(table(gender,fat))

Fig. 9.17: Cohen-Friendly association plot for two qualitative variables.

One last interesting function is table.cont() from package ade4.

```
> require(ade4)
> genderfat <- table(gender,fat)
> table.cont (genderfat,row.labels=rownames (genderfat),
+ col.labels=colnames(genderfat))
```


Fig. 9.18: table. cont plot for two qualitative variables.

9.6.5.2 Two-way plots for two quantitative variables

In this setting, use the function plot().
> plot (height~weight)
> arrowaxis()

We have seen in Chapter 5 how to make this plot prettier. To this end, we create a function flashy.plot().

Fig. 9.19: Plot of two quantitative variables.

9.6.5.3 Two-way plots for one qualitative and one quantitative variable

In this setting, it is interesting to draw box plots of the quantitative variable for each level of the qualitative variable. If the variables are structured correctly in R , you simply need to call the function plot().
> par (bty="n")
> plot (coffee~~gender, col=brewer.pal(5,"Set2"), notch=T, varwidth=T,
$+\quad$ boxwex=0.3)
> title(paste("Boxplot of coffee consumption",

+ "as a function of gender", sep="\n"),family="Courier")
> arrowaxis(F,T)

Fig. 9.20: Box plots of a quantitative variable as a function of the levels of a qualitative variable.

Also note that the function stripchart () is useful to get the following plot:

```
> stripchart(raw_fruit~age,data=nutrielderly)
> arrowaxis (y=T)
```


Fig. 9.21: stripchart plot for a quantitative and a qualitative variable.

Memorandum

as. factor (): transform a variable into factors
levels(): display or affect the levels of a factor
as.ordered(): transform a variable into ordered factors
as.integer (): structure a discrete variable
as.double(): structure a continuous variable
table(): table of counts for a variable, or contingency table between two variables
addmargins(): add margins to a contingency table
margin.table(): marginal distributions of a contingency table
prop.table(): conditional distributions from a contingency table
na.omit (): remove missing values (NA) of a variable
median(): median of a vector
mean(): mean of a vector
quantile(): quantiles of a vector
summary (): when applied to a numerical series, returns minimum, maximum, quartiles and mean
range(): minimum and maximum
IQR(): interquartile range
$\operatorname{var}()$: variance of a sample
sd() : standard deviation of a sample
$\operatorname{mad}()$: absolute deviation from the median
chisq.test(): chi-squared statistic
cor.test (): Pearson's correlation coefficient, Kendall's τ or Spearman's ρ
$\operatorname{cov}()$: covariance
$\operatorname{cor}()$: correlation
barplot () : draw a bar chart
pie(): draw a pie chart
plot.ecdf(): plot the empirical cumulative distribution function
stem(): draw a stem plot
boxplot(): draw a box plot
hist (): draw a histogram
plot(): draw a scatter plot

9.1- Give the instruction which returns the table of frequencies for a qualitative variable x .
9.2- Give the instruction which returns the contingency table for qualitative variables x and y .
9.3- Which function returns the marginal distributions from a contingency table?
9.4- Which function returns the conditional distributions from a contingency table?
9.5- Give the instruction which returns the mode of a distribution.
9.6- Give the instruction which returns the range of a vector x .
9.7- Give the instruction which returns the interquartile range of a vector x .
9.8- Give the instruction which returns the (non empirical) variance of a vector \mathbf{x}.
9.9- Give the code of a function which calculates the coefficient of variation.
9.10- Give the instruction which calculates the mean absolute deviation.
9.11- Which package includes functions to calculate skewness and kurtosis?
9.12- Give the instruction which returns Cramér's Φ^{2}.
9.13- Give the code of a function which calculates the correlation ratio $\eta_{Y \mid X}^{2}$.
9.14- Which function would you use to draw a Pareto chart?
9.15- Which function would you use to draw a stacked bar chart?
9.16- Which function would you use to draw a pie chart?
9.17- Which function would you use to draw a box plot?
9.18- Which function would you use to draw a histogram?

Worksheet

Descriptive data studies

A - Thoughts on independence in descriptive statistics

9.1- Import the file http://www.biostatisticien.eu/springeR/snee74en. txt into an R object called snee.
9.2- Display the first and last lines of snee with the functions head() and tail(). How many individuals are there? How many variables? What type are the variables?
9.3- Use the function attach() on your data.frame then check with the functions class() and levels() that the structure of your variables is correct. What are the levels of the variables?
9.4- Perform a univariate descriptive study of each variable: numerical results and appropriate graphical representations.
9.5- We shall now study the dependence of variables eyes and hair. Create the contingency table eyeshair (observed counts) of variables eyes and hair.
9.6- Calculate the frequency of each level of the variable hair (profile by column). You get the distribution function fhair of hair colour in the population.
9.7- Now, include the second characteristic: eye colour. Calculate the number nblue of individuals with blue eyes in the entire population.
9.8- Suppose that eye colour and hair colour are independent. In other words, the fact that an individual has blue eyes bears no relation with the colour of their hair. In that case, the proportions calculated in 9.6 should still be the same within the subpopulation of people with blue eyes. Under this independence hypothesis, calculate the number of blue-eyed people who should have blond hair (respectively brown, black and red).
9.9- Do the same with other eye colours. You get a table tab.ind1 of theoretical counts under the hypothesis of independence between eye and hair colour.
9.10- Repeat the entire process, but with the two characteristics inverted (i.e. start with the variable eyes). From table eyeshair, calculate the frequency of each level of the variable eyes (profiles by rows). You get the distribution function feyes of eye colours in the population.
9.11- Now include the second characteristic: hair colour. Calculate the number nblond of people with blond hair in the entire population.
9.12- Suppose that hair and eye colour are independent. In other words, the fact that an individual has blond hair bears no relation with their eye colour. In that case, the proportions calculated in 9.10 should still be the same within the subpopulation of people with blond hair. Under this independence hypothesis, calculate the number of blond people who should have blue eyes (respectively brown, hazel and green).
9.13- Do the same with other hair colours. You get a table tab. ind2 of theoretical counts under the hypothesis of independence between hair and eye colour.
9.14- Use the function all. equal () to compare the two tables of theoretical counts. What do you observe?
9.15- Compare the table of observed counts eyeshair with the table of theoretical counts (for each entry, calculate the square of the difference).
9.16- Calculate the table of contributions to the χ^{2}.
9.17- Calculate all relevant link indicators. Conclude.
9.18- Independence can also be defined (and this is in fact the primary definition) as equality of all conditional distributions. Calculate the conditional distribution of the variable hair knowing that the eye colour is blue (i.e. the frequency of various hair colours knowing that eye colour is blue). Calculate the three other conditional distributions of the variable hair. Calculate the conditional distributions of the variable eyes knowing each of the levels of variable hair. Conclude.
9.19- Perform a descriptive study of variable hair as a function of variable gender.
9.20- Perform a descriptive study of variable eyes as a function of variable gender.
9.21- Analyze the dependence between eye colour and hair colour for the following contingency table:

Hair					
Blond					
Brown	Black	Red	Total		
Blue	1768	807	189	47	2811
Eyes Grey/green	946	1387	746	53	3132
Brown	115	438	288	16	857
Total	2829	2632	1223	116	6800

B- Descriptive analysis of data set NutriElderly

We now propose to solve the following questions on the dataset NutriElderly, in which deliberate errors were introduced.
9.1- Import the data file nutrition_elderly.xls.
9.2- Give the absolute mode of variables situation, chocol and height.
9.3- Choose classes for variable height and give the modal class.
9.4- Calculate the median of variable chocol.
9.5- Give frequency tables of variables chocol and raw_fruit.
9.6- Using only these frequency tables, give the median of these two variables.
9.7- Calculate the quartiles of variable height using the classes defined earlier.
9.8- Draw the cumulative frequency polygon for variable height. On this plot, estimate the quartiles of the distribution.
9.9- Using individual data, calculate the mean of variables height, weight and age.
9.10- Calculate the frequency table of variable tea. Using this table, calculate the mean of this variable.
9.11- Calculate the mean of variable height using the classes defined earlier.
9.12- Calculate the range of variable weight.
9.13- Draw a boxplot of variable weight.
9.14- Using individual data, calculate the standard deviation of variable height.
9.15- Using only its frequency table, calculate the coefficient of variation of variable tea.
9.16- Calculate the total variance, the within-group variance and the between-group variance of variable coffee with the population split into two groups: males and females. Calculate the coefficient η^{2}.

C- Descriptive analysis of data sets

9.1- Perform a descriptive statistical analysis of data set Birth-weight.
9.2- Perform a descriptive statistical analysis of data set Infarction.

Chapter 10
 A better understanding of random variables, distributions and simulations using R specificities

Goals of this chapter

We use the specificities of \mathbf{R} to build empirically the notions of random variable, distribution of a random variable, law of large numbers and central limit theorem. We introduce some complex notions for statistical inference and examine sampling variation as well as the bias and variance of estimators. We go on to describe a few classical methods for simulating from a distribution. At the end of the chapter, we give commands to generate observations from common probability distributions and to calculate their probability and cumulative distribution functions and quantiles.

[^10]B 22 A better understanding of random variables, distributions and simulations using R specificities
The algorithm is defined by an initial value x_{1}, chosen arbitrarily over $[0,1]$ and called the seed of the generator, by the constant $m=2^{31}-1$ and by the following recurrence relation

$$
\left\{\begin{array}{l}
x_{1} \leftarrow \text { arbitrary value in }[0,1] \\
x_{2} \leftarrow 48271 \times x_{1} \quad(\bmod m) \\
x_{2} \leftarrow x_{2} / m \\
x_{j+1} \leftarrow 48271 \times x_{j} \times m \quad(\bmod m) \quad \forall j>1 \\
x_{j+1} \leftarrow x_{j+1} / m \quad \forall j>1
\end{array}\right.
$$

Recall that $x(\bmod m)$ represents the "remainder in the division of x by m ".

Note

Other similar algorithms are presented in Robert and Casella's book ([35]).

Do it yourself

Give the sequence of \mathbf{R} instructions which code this algorithm to create $n=$ 30 values. Recall that $x(\bmod m)$ can be computed in \mathbf{R} with the instruction $\mathrm{x} \% \%$.

The following vector x contains $n=30$ values generated from this algorithm.

```
> x
    [1] 0.278500000000 0.000006260105 0.302181537086
    [4] 0.604976700582 0.830313805990 0.077728950753
    [7] 0.054181800068 0.409671066650 0.232058248096
[10] 0.683693839119 0.585308108730 0.407716482275
[13] 0.882315872859 0.269498774347 0.975336507395
[16] 0.468548470068 0.303198629407 0.701040127026
[19] 0.907971684400 0.701177660149 0.546833070337
[22] 0.179138237141 0.181845028591 0.841375117960
[25] 0.018319062984 0.279489323074 0.229114104720
[28] 0.566948946948 0.192618109052 0.868742036839
```

As you can see, the values created by this algorithm are unpredictable (apart from the fact that they are between 0 and 1). However, because they were created with a deterministic mathematical algorithm, these values are called pseudo-random numbers.

The algorithm above is a pseudo-random number generator called uniform over $[0,1]$, because it generates numbers spread uniformly over this interval.

Tip

Pseudo-random number generation is of course implemented at the core of R. For instance, a more elaborate version of the algorithm above is available through the R function runif(). The function set.seed() is used to set the seed of the algorithm.

SECTION 10.2

The notion of random variables

In the previous section, we proposed an algorithm to generate pseudo-random numbers. In Probability and Statistics, such a process is usually called a random variable. The purpose of this section is to propose a heuristic on this topic: a random variable could be viewed as an algorithm to generate numbers, which are then called realizations of the random variable.

10.2.1 Realizations of a random variable and functioning law

In this section, we shall see how the syntax of \mathbf{R} can help us better understand the difference between a random variable and its realizations.

A common example is that a Statistics problem start with one of the following assertions: (1) "Let X be a random variable with distribution $\mathcal{U}(0,1)$ " or (2) "Let X be a random variable with distribution $\mathcal{N}(0,1)$ ".

A random variable can be viewed as a number creation factory or, in mathematical terms, as a function which creates a random number every time it is called. The process which creates values generated by a random variable is governed by a functioning rule imposed upon this variable, called the distribution of the random variable. This is shown clearly in the body of the function that defines it.

In R, it is easy (and informative) to create such random variables. For instance, the instruction

```
> X <- function() runif(1)
```

corresponds to assertion (1). Successive calls of this function create realizations of the random variable X :

```
> X()
[1] 0.8806583
```

B84A better understanding of random variables, distributions and simulations using R specificities

```
> X()
[1] 0.07355798
> X()
[1] 0.05503209
```

Similarly, the instruction
> X <- function() rnorm(1)
corresponds to assertion (2). Once again, successive calls of this function create realizations of the new random variable X :
$>\mathrm{X}()$
[1] 0.6683035
$>\mathrm{X}()$
[1] -0.3708295
$>\mathrm{X}()$
[1] 0.7179792
We find this makes it easier to understand the difference between a random variable (the function) and its realizations (the numbers output by the function). As you can see, a random variable is a "machine" (a procedure) which makes values, called realizations. It is random in the sense that the realizations change at each call, and that it is impossible to predict which value will be output.

Warning
Note that the two random variables we have introduced are built in the same way (the instructions are the same), except for the functioning rule or distribution which governs them (runif or rnorm in the body of the function).

10.2.2 I.i.d. random variables

Another standard statement in Statistics is: "Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ be n independent and identically distributed (i.i.d.) random variables following the distribution $\mathcal{N}(0,1)$ ". This concept can easily be translated into R. For example, with $n=4$, we get:

```
> X <- function() rnorm(1) # r.v. governed by the distribution
    # rnorm (i.e. N(0,1)).
> X4 <- X3 <- X2 <- X1 <- X # Translates the fact that
    # Xi are i.i.d.
```

 Warning
 X1 and X2 follow the same distribution rnorm. They are identically distributed. However, they are not identical, in the sense that they do not produce the same values. Independence of X1 and X2 means the production of values by X 1 is not influenced by X 2 :

```
> X1
function() rnorm(1) # r.v. governed by the distribution
> X2
function() rnorm(1) # r.v. governed by the distribution
> c(X1(),X2())
[1] -0.6319022 -0.1029233
```

Note that you could also consider the vector $\mathbf{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{4}\right)$, which is a random vector with four components and which produces four "independent" realizations simultaneously at each call.

```
> vecX <- function() c(X1(),X2(),X3(),X4())
> vecX()
[1] 0.8041706 -3.6413500 1.7871627 0.7710802
> # or, equivalently in R:
> vecX <- function() rnorm(n = 4)
> vecX()
[1] -0.3010423 0.7895389
```


Tip

If the $n \mathrm{X}_{i}$ are i.i.d. with same distribution as X , then $\mathbf{X}_{n}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ can be created using:

```
> vecXn <- function(n) replicate(n,X())
```

The random vector $\mathbf{X}_{n}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ is called the sample.

10.2.3 Characterizing the distribution of a random variable

We have seen that the process by which a random variable produces values is governed by a functioning rule, called the distribution of the random variable.

Note

We shall use the standard symbol \sim to indicate that a random variable X follows a given distribution. For example, we shall write $\mathrm{x} \sim \mathcal{U}(0,1)$ to indicate that the random variable X follows a uniform distribution over the interval $[0,1]$, or $\mathrm{X} \sim \mathcal{N}(0,1)$ to indicate that X follows a standard Normal distribution.

The next drawing illustrates the idea that a random variable is a "machine" governed by parameters, and which outputs realizations. There is a blueprint of the machine, which governs how the realizations are created. But slight, unpredicted
variations in the run of the process lead to variations in the output, which can therefore not be completely predicted. Indeed, each specific realization is unpredictable and governed by randomness. However, since there is a fixed functioning rule for the generator, it is still possible to describe a few global properties of these numbers. There are thus several kinds of randomness, each structured by the distribution of the random variable at play. When speaking of "random numbers", it is necessary to specify the kind of randomness.

Mathematicians have introduced mathematical objects describing this structure: the probability density function (or density, or p.d.f.); the cumulative distribution function (or distribution function, or c.d.f.); and the quantile function of a random variable, to name a few. In most cases, these functions characterize completely the distribution of the random variable.

10.2.3.1 Density function, distribution function, quantile function

Suppose that we observe several unpredictable values produced by a random variable X . We wish to describe these values and, through them, to better understand or specify the functioning of the generator X .

Here are a few examples of what you might notice for a given random variable X:

- there are positive and negative values;
- they are gathered around the number 7;
- as many values are greater than and lesser than 7;
- they are spread symmetrically about 7;
- and so on

On a more global scale, you can also look at the density of observations (in the common meaning of the word: a high density corresponds to values close to each
other) generated by X in intervals $[x-\epsilon, x+\epsilon]$ (where ϵ is a very small non-negative number) of the range of possible values. The range of possible values is called the support of X . The code of the function density, given below, was written for didactic reasons and is not efficient; it should help translate the notion of density of observations.

```
> # The code (distribution) of the r.v. X is temporarily hidden
    # on purpose.
> X <- function() some.code(some,parameters)
> ourdensity <- function(x,n=1000, eps=0.01) {
+ lx <- length(x)
+ res <- vector("integer",lx)
+ obs <- replicate(n,X()) # Generate observations from X.
+ for (i in 1:lx) { res[i] <-
+ length(which((x[i]-eps) <= obs & obs <= (x[i]+eps)))/n
+ }
+ return(res)
+ }
```

The plot below represents the function which associates to each interval in the support of X the value y of the relative concentration of observations in this interval (i.e. the frequency of values belonging to this interval).

```
> curve(ourdensity,xlim=c(-1, 10))
```


If you increase the number n of observations generated by X and decrease ϵ, this plot becomes smoother.
> curve(ourdensity ($\mathrm{x}, \mathrm{n}=1000000$, eps=0.001), xlim=c $(-1,10)$)

Fig. 10.1: Plot approximating the density of X.

In the limit, as $n \rightarrow \infty$ and $\epsilon \rightarrow 0$, this plot becomes perfectly smooth and regular. Once normalized so that its area equals 1 , it is called the density function of the random variable X and is denoted f_{X}.

Note

A random variable whose possible values can make a continuous set of values (such as an interval) is called continuous. A random variable which can only take a finite or countable number of different values (also called modalities) is called discrete. For a discrete random variable, we do not speak of its density, but of its mass function which gives the probability of outcome of each modality.

To sum up, it could be said that describing the distribution of a random variable X consists in giving two pieces of information:

1) the range of possible values or support of X (which can be discrete or continuous);
2) for each (infinitesimal) interval in this range, the value of the density of X for a continuous random variable, or of the mass function of X for a discrete random variable.

Note

The cumulative distribution function $F_{\mathrm{X}}(x)$, which accumulates the densities of observations up to the point x (or which accumulates the observation probabilities of all modalities up to and including x for a discrete variable), is another way of characterizing the distribution of a random variable. It can be shown that it represents the area of the density plot f_{X} up to x and that it gives the probability that the random variable X creates observations smaller than x :

$$
F_{\mathrm{X}}(x)=P[\mathrm{X} \leq x]=\int_{-\infty}^{x} f_{\mathrm{X}}(t) d t
$$

The quantile function F_{X}^{-1}, the inverse distribution of the cumulative distribution function, also characterizes a random variable.

For each probability value $p \in[0,1]$, the value $x_{p}=F_{\mathrm{X}}^{-1}(p)$ is called the fractile or quantile of order p of random variable X . It is defined by the equation

$$
x_{p}=F_{\mathrm{X}}^{-1}(p) \Leftrightarrow F_{\mathrm{X}}\left(x_{p}\right)=P\left[X \leq x_{p}\right]=p
$$

Thus, the probability that the realizations of the random variable X be lesser than or equal to the value x_{p} is p. The following plot illustrates this notion.

10.2.4 Parameters of the distribution of a random distribution

We had deliberately hidden the body of the function defining the random variable X . We can now reveal that the density shown on Figure 10.1 is the density of a random variable X following the distribution $\mathcal{N}\left(\mu=7, \sigma^{2}=1\right)$.

B00 A better understanding of random variables, distributions and simulations using R specificities

```
> X <- function() rnorm(1,7,1)
```


Tip

The \mathbf{R} function density () gives the density plot of a sample of observed values.
> plot (density (rnorm $(1000,7,1))$,xlim=c ($-1,10$),

+ main="Density plot with function density()")

Density plot with function density()

In this definition, the quantities $\mu=7$ and $\sigma^{2}=1$ appear explicitly. They are called the parameters of this distribution.

Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ be n independent and identically distributed (i.i.d.) random variables following the normal distribution with mean $\mu=7$ and variance $\sigma^{2}=1$. We also define $\overline{\mathrm{X}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i}$.

We have noticed that it is sometimes difficult to understand the (fundamental) difference that exists between:

- the random variable $\overline{\mathrm{X}}_{n}$;
- its realizations \bar{x}_{n};
- and the parameter $\mu=\mathbb{E}(\mathrm{X})$, which is the theoretical expectation.

It is true that, by abuse of language, these three objects are often all called by the same name: the mean.

We believe that the R language helps better understand and distinguish these concepts. The random variable $\overline{\mathrm{X}}_{4}=\frac{1}{4} \sum_{i=1}^{4} \mathrm{X}_{i}($ for $n=4)$ could be defined as:

```
> X1 <- function() rnorm(1, mean = mu <- 7,sd = 1)
> X4 <- X3 <- X2 <- X1
> Xbar4 <- function() (X1() +X2()+X3()+X4())/4
```


Advanced users

The random variable \bar{X}_{n} can be defined automatically (for small n):

```
> n <- 10
> eval (parse(text=paste(paste("X",1:n," <- ",sep="",
+ collapse=""),"X")))
> eval(parse(text=paste("Xbar",n," <- function()
+ (",paste("X",1:(n-1),"()+", sep="",collapse=""),
+ "X",n,"())/",n, sep="")))
> Xbar10
function()
    (X1 () +X2 () +X3 () +X4() +X5 () +X6() +X7 () +X8() +X9() +X10()) /10
```

This function can be used repeatedly to create several realizations, which could be denoted $\bar{x}_{4}^{(i)}, i=1,2, \ldots$:
> xbar4.1 <- Xbar4 ()
> xbar4.1
[1] 7.495727
> xbar4.2 <- Xbar4()
> xbar4.2
[1] 7.069361
> xbar4.3 <- Xbar4()
> xbar4.3
[1] 6.837127
It is clear that successive calls of the same function Xbar4 () result in several different unpredictable realizations which vary around 7 : the $\bar{x}_{4}^{(i)}$. This helps show that:

- $\quad \overline{\mathrm{X}}_{4}$ is indeed a random variable, i.e. a machine to create realizations;
- the realizations $\bar{x}_{4}^{(1)}, \bar{x}_{4}^{(2)}, \bar{x}_{4}^{(3)}, \ldots$ are all different, unpredictable, and come from the random variable \bar{X}_{4};
- the machine \bar{X}_{4} is made of the individual random variables X_{1}, \ldots, X_{4}, which all follow the same functioning law;
- this functioning law depends on a parameter mu (affected to the formal parameter mean of the function rnorm()) which was set upon creation to the value $\mu=7$, and which does not vary between calls of the function;
- the parameter $\boldsymbol{\mu}$ is thus an intrinsic characteristic of each of the variables X_{i}.

Since $\overline{\mathrm{X}}_{4}$ is a random variable, it has a distribution, like any random variable. Mathematical theory states that $\bar{X}_{4} \sim \mathcal{N}\left(\mu=7, \sigma^{2}=1 / 4\right)$. If we only care about the behaviour of the distribution of Xbar4(), we can define it directly with:

```
> Xbar4 <- function() rnorm(1,mean = 7,sd = sqrt(1/4))
```


SECTION 10.3

Law of large numbers and central limit theorem

Let $\overline{\mathrm{X}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i}$ be the mean random variable made of n i.i.d. random variables X_{i}, each following the same distribution \mathcal{L} (which is not necessarily known) with expectation $\mathbb{E}\left(\mathrm{X}_{i}\right)=\mu$ and variance $\operatorname{Var}\left(\mathrm{X}_{i}\right)=\sigma^{2}<\infty$.

10.3.1 Law of large numbers

The law of large numbers states that when n goes to infinity, the mean random variable \bar{X}_{n} goes (technical term: converges in probability) to $\mathbb{E}\left(\mathrm{X}_{1}\right)$, i.e. the theoretical mean μ. This is written $\overline{\mathrm{X}}_{n} \xrightarrow{P} \mathbb{E}\left(\mathrm{X}_{1}\right)$. This can easily be checked in \mathbf{R}, for example when $\mathcal{L}=\mathcal{U}(0,1)$:

```
> mean(runif(1))
[1] 0.2501903
> mean(runif(10))
[1] 0.3372082
> mean(runif(100))
[1] 0.5185887
> mean(runif(1000))
[1] 0.4885624
> mean(runif(10000))
[1] 0.5062192
> mean(runif(100000))
[1] 0.4998102
> mean(runif(1000000))
[1] 0.5000058
```

We notice that when the size of the sample n increases, these numbers get closer to the theoretical mean $\mu=0.5$ of the n i.i.d. random variables $\mathcal{U}(0,1)$.

Note

This will be very useful to approximate (technical term: estimate) the unknown parameters of a distribution. We shall return to this point in Section 10.4.

10.3.2 Central limit theorem

We can also look at the random variable $\mathrm{Y}_{n}=\sqrt{n}\left(\frac{\overline{\mathrm{X}}_{n}-\mu}{\sigma}\right)$ which is used as a pivot when constructing some confidence intervals and hypothesis tests. As all random variables, Y_{n} has a distribution. In some cases, mathematics allow us to calculate it explicitly. In general, this distribution depends on the size n of the sample. One might wonder how this distribution changes as n increases. This behaviour is called the convergence in distribution of a random variable. The central limit theorem states that Y_{n} converges in distribution to a random variable with distribution $\mathcal{N}(0,1)$. In other words, generating observations from Y_{∞} is equivalent (as far as one is only concerned with the distribution of the values of Y_{∞}) to generating observations from a random variable with distribution $\mathcal{N}(0,1)$.

This mode of convergence, as well as other classical modes of convergence (convergence in probability, almost sure, and in r-th order mean) are very well explained in [24].

The package ConvergenceConcepts, described in [23], is a tool to visualize this evolution graphically. For example, try the following instructions:

```
require (ConvergenceConcepts)
investigate() # Choose Example 3.
```

B04A better understanding of random variables, distributions and simulations using R specificities

Fig. 10.2: Convergence in distribution in action on an example with simulated data. Left: the cumulative distribution function of a $\mathcal{N}(0,1)$ is plotted in black; the empirical cumulative distribution function $\hat{F}_{\boldsymbol{y}_{n}}$ (see Section 10.4.2) of the sample Y_{n} ($n=70$) based on $M=5000$ realizations is plotted in red. Right: 3D plot of $\left|\hat{F}_{y_{n}}(t)-F(t)\right|$ as a function of n and t.
$[$ Inferential statistics

In the previous section, we saw that the law of large numbers can be used to approximate the fixed parameter (call it θ) of a distribution thanks to the realization of a random variable (for example, the parameter μ thanks to a realization of \bar{X}_{n}). This will of course be very useful when the parameter is unknown. The "approximating" random variable is then called an estimator of the parameter. Realizations of this estimator are called estimates (of the unknown parameter θ). To perform inference is to estimate unknown parameters based on a sample of random variables which follow a distribution which depends on these unknown parameters.

10.4.1 Point estimate of parameters

What is an estimator? Since we are proposing a plausible value for the unknown parameter of a distribution, based on a sample generated from this distribution, we can consider this plausible value as a function of the sample. If θ is the unknown
value of the parameter to guess (estimate), we note our proposition $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$, thus specifying explicitly that it depends on the values of our sample. We call it an estimate of θ.

Then $\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ is the estimator of θ. This estimator is a random variable, a function of the random variables which generated the sample, and was built so that it is close of θ in some sense.

There are several techniques to propose an estimator of a parameter θ. For example, recall that the law of large numbers implies that we can propose $\overline{\mathrm{X}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i}$ as an estimator of the theoretical expectation $\mu=\mathbb{E}\left(\mathrm{X}_{1}\right)$. Note that the sample $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ was generated from a distribution which takes precisely this unknown value μ as one of its parameters.

```
> theta <- 7 # Value assumed unknown.
> mean(rnorm(10000,mean=theta)) # Use the observed sample ( }\mp@subsup{x}{1}{},\ldots,\ldots,\mp@subsup{x}{10000}{\prime})
[1] 7.019249
```

Following the same idea based on the law of large numbers, we can propose $\overline{\mathrm{X}_{n}^{2}}-\left(\overline{\mathrm{X}}_{n}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i}\right)^{2}$ as an estimator of the (assumed unknown) parameter $\sigma^{2}=\operatorname{Var}\left(\mathrm{X}_{1}\right)=\mathbb{E}\left(\mathrm{X}_{1}^{2}\right)-\left[\mathbb{E}\left(\mathrm{X}_{1}\right)\right]^{2}$. To estimate σ^{2}, we thus only used an observed sample of random variables (which follow a distribution depending on the unknown parameter σ).

Note

This estimator is biased (see Section 10.4.4). An unbiased estimator of σ^{2} is $\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathrm{X}_{i}-\overline{\mathrm{X}}_{n}\right)^{2}$.

```
> theta <- 2 # Var( }\mp@subsup{X}{1}{})\mathrm{ ), assumed unknown.
> vecx <- rnorm(10000,sd=sqrt(theta))
> mean(vecx^2)-(mean(vecx)) ^2 # We only used the observed sample.
[1] 1.976646
```


Tip

Note that this approach can be used to compute integrals. Indeed, for example,

$$
\int_{a}^{b} g(x) d x=\int_{\mathbb{R}} g(x) \mathbb{1}_{[a, b]}(x) d x=\mathbb{E}[g(\mathrm{X})],
$$

where X is a random variable distributed along the uniform distribution $\mathcal{U}(a, b)$ over the interval $[a, b]$.

It thus suffices to generate a sample $\left(x_{1}, \ldots, x_{n}\right)$, with large size n, from random variables following a distribution $\mathcal{U}(a, b)$, to estimate $\mathbb{E}[g(\mathrm{X})]$ with

$$
\frac{1}{n} \sum_{i=1}^{n} g\left(x_{i}\right) .
$$

This is called integral computation by Monte Carlo simulation.

10.4.2 Empirical cumulative distribution function

A random variable following a Bernoulli distribution with parameter p is defined as a generator to create only 1 's and 0 's, with probability p of creating a 1 , and $1-p$ of creating a 0 . Given a sample $\left(x_{1}, \ldots, x_{n}\right)$ of n realizations of random variables following this distribution, we can then compute the proportion \hat{p} of values equal to 1 amongst all the values of the sample. This proportion is also equal to the mean $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

By the law of large numbers, as n gets larger, this mean gets closer to the expectation of X , i.e. $\mathbb{E}(\mathrm{X})=1 \times P[\mathrm{X}=1]+0 \times P[\mathrm{X}=0]=P[\mathrm{X}=1]=p$. This is called the frequentist approach of probability, which stipulates that the probability of an event is defined as the limit of the frequency that this event occured. We note \hat{p} the estimator of the proportion p.

Let X be a random variable and x a real value (here, x is not a realization of X). We can then create a new random variable $\mathbb{1}_{[\mathrm{X} \leq x]}$ which takes the values 1 or 0 depending on whether X takes values lower or greater than x. Following the same idea, and using a sample $\mathbf{X}_{n}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)^{\top}$, we can create the random variable $\hat{\mathrm{F}}_{n}(x):=\hat{\mathrm{F}}_{\mathbf{X}_{n}}(x):=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left[\mathrm{X}_{i} \leq x\right]}$. The law of large numbers states that

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left[\mathrm{X}_{i} \leq x\right]} \xrightarrow{P} \mathbb{E}\left(\mathbb{1}_{\left[\mathrm{X}_{1} \leq x\right]}\right) .
$$

It can be shown theoretically that $\mathbb{E}\left(\mathbb{1}_{\left[\mathrm{X}_{1} \leq x\right]}\right)=P\left[\mathrm{X}_{1} \leq x\right]=F_{\mathrm{X}_{1}}(x)$. Thus,

$$
\hat{\mathrm{F}}_{\mathbf{X}_{n}}(x) \xrightarrow{P} F_{\mathrm{X}_{1}}(x) .
$$

The random variable $\hat{\mathrm{F}}_{\mathbf{X}_{n}}(x)$, seen as a function of x, is called the empirical cumulative distribution function of the sample $\mathbf{X}_{n}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$. We shall return to this function when we introduce the bootstrap method in Section 10.6.

The R function $\operatorname{ecdf}()$ can be used to create simply the empirical cumulative function:

```
> X <- function() rnorm(1)
> vecXn <- function(n) replicate(n,X()) # Sample of r.v.s
    # following the
    # distribution N(0,1).
> Fnhat <- function(n,x,X) ecdf(X(n))(x) # Creating function
    # (r.v.) \hat{F}
> Fnhat (n=10,x=0,X=vecXn) # First call of }\mp@subsup{\hat{F}}{n}{}(x)\mathrm{ with }x=0
[1] 0.6
> Frhat (n=1000,x=0,X=vecXn) # Second call of \hat{F}
[1] 0.509
```


10.4.3 Maximum likelihood estimation

The problem is as follows. We observe in nature some phenomenon and gather data related to this phenomenon. We thus have an observed sample of data $\left(x_{1}, \ldots, x_{n}\right)$ of size n. We can then assume that these data were created by "Mother Nature", who generated them with a random variable following a distribution, say $\mathcal{N}\left(\theta^{\bullet}, 1\right)$, for some parameter θ^{\bullet} whose exact value is unknown, but which belongs to the set $\{0,1,2, \ldots, 9\}$.

The aim of the method of maximum likelihood is to guess (estimate) the value of θ^{\bullet}, based only on the observed sample, which is the only piece of information available about the data generation process (apart from the hypothesis on the distribution of the random variable which generated the data). We are trying to find out which is the most plausible value for θ° (in $\{0,1, \ldots, 9\}$): the one most likely to have led to generating the data we observed.

We shall use a computer simulation, which will help us better understand the mechanism of the maximum likelihood method.

To this end, let us pretend for a moment that we are "Mother Nature" (or the "Great Architect") and choose a value θ^{\bullet} in the set $\{0,1,2, \ldots, 9\}$, called the true value of the parameter θ. To allow us ("Mother Nature") to choose a value while allowing us (the "Statistician") to leave it unknown temporarily, we use the function runif().

```
> theta.point <- as.integer(runif(1)*10)
> # For now, do not display the value of theta.point.
```

Now, still as "Mother Nature", we simulate a sample $\left(x_{1}, \ldots, x_{n}\right)$ of size n from a distribution $\mathcal{N}\left(\theta^{\bullet}, 1\right)$.

```
> n <- 1000
> x1...xn <- rnorm(n,mean=theta.point)
```

As we mentioned in part I , it is allowable to include dots (.) in the name of a variable. Thus $\mathrm{x} 1 \ldots \mathrm{xn}$ represents the name of an R variable.

We can now shed the clothes of "Mother Nature" and return to our simple statistician's envelope. We now wish to estimate the unknown θ^{\bullet} with a numerical value, which we note $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$. To this end, we shall use the R optimization function nlminb () to create a function $\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ which builds this estimate. It will be built as the value of θ which maximizes the likelihood $\mathcal{L}\left(\theta ; \mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ of the sample, or, equivalently, which minimizes $-\log \mathcal{L}\left(\theta ; \mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$. This function is called the maximum likelihood estimator of θ^{\bullet}. Note that the likelihood (evaluated at θ) is in a sense a measure of the plausibility of observing the sample if we assume that $\theta^{\bullet}=\theta$.

```
    We define
> theta.hat <- function(X1...Xn) {
+ start <- 0.5
+ nlminb(start,minus.log.likelihood,X1...Xn=X1...Xn)$par
+ }
```

where the function minus.log.likelihood() is defined as

```
> minus.log.likelihood <- function(theta,X1...Xn) {
+ res <- -sum(log(dnorm(X1...Xn,theta)))
+ return(res)
+ }
```

Now, we can use our estimator on the observations x_{1}, \ldots, x_{n} given by "Mother Nature" to get our estimate.

```
> theta.hat (x1...xn)
```

[1] 9.024612

Since we assumed that the value θ^{\bullet} belongs to the set $\{0,1, \ldots, 9\}$, we can propose as an estimate of θ^{\bullet} the value $\widehat{\theta^{\bullet}}=9$.

We can now return to the role of "Mother Nature" and check whether the estimate we got is close to the true unknown value θ^{\bullet} which we had temporarily hidden.

```
> theta.point
[1] 9
```

Note that we had assumed here that θ^{\bullet} lives in a discrete set (finite or countable), which allowed us to find its exact value with our estimate. This will not be possible with continuous values of parameters to estimate.

Warning

One of the main advantages of introducing Statistics with simulations is that we can be simultaneously (or at least alternately) on both sides of the fence:
"Mother Nature" I Statistician

10.4.4 Sampling variation and properties of an estimator

- Sampling variation

In the practical section, we shall see how to create a tool which simulates the throw of a die. We use it now to throw twenty virtual dice:

```
> n <- 20
> res <- throw.die(n)
> res
    [1] 
```

We saw in Section 10.4.2 that we can estimate the probability p of getting a 4 by the proportion of times we got a 4 in the above sample: $\hat{p}=0.15$.

Since a die has six sides, the expected value is $1 / 6 \approx 0.1667$. This is not quite the value we got. Let us throw twenty other virtual dice to see what is going on.

```
> res <- throw.die(n)
> res
    [1] 2 5 5 3 2 4 4 4 1 2 2 4 4 4 4 4 4 4 4 6 5 5 1 5 6 2
```

This time, our estimate of the probability p of getting a 4 is $\hat{p}=0.4$. The estimate has changed with this new sample. This phenomenon is called sampling variation. When we try to estimate an unknown parameter θ, the estimates vary as a function of the samples. Each new observed sample leads to a different estimate of θ.

If the size of the sample increases (for example $n=10,000$), there is much less variation between two throws of 10,000 dice.

```
> n <- 10000
> res <- throw.die(n)
> sum(res==4)/n
[1] 0.1725
> res <- throw.die(n)
> sum(res==4)/n
[1] 0.1678
```


- Properties of an estimator

How can we know whether an estimator $\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ is accurate enough to estimate an unknown parameter θ ? We can define two criteria for an estimator:

- its bias (when estimating $\theta) \mathbb{B}\left[\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right) ; \theta\right]=\mathbb{E}\left[\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)\right]-\theta$, which measures whether the estimator is correct "on average";
- and its variance $\operatorname{Var}\left[\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)\right]$ which measures the variability of the estimator.

Note that the bias and variance of $\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ depend (theoretically) on n.
Now, suppose we have a generator which simulates the behaviour of random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$, i.e. we are able to create a large number of samples ($\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$) (say $M=10,000$ or even more, depending on the context). It is then possible, with Monte Carlo simulation, to estimate the bias and variance of an estimator. Indeed, for each observed sample ($x_{1, i}, \ldots, x_{n, i}$), we can compute the corresponding estimate $\hat{\theta}\left(x_{1, i}, \ldots, x_{n, i}\right)$. We then have M values $\hat{\theta}_{1}, \ldots, \hat{\theta}_{M}$ which can be used to estimate $\mathbb{E}\left[\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right) ; \theta\right]$ with $\overline{\hat{\theta}}=\frac{1}{M} \sum_{i=1}^{M} \hat{\theta}_{i}$ and the variance $\operatorname{Var}\left[\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)\right]$ with $\frac{1}{M} \sum_{i=1}^{M}\left(\hat{\theta}_{i}-\overline{\hat{\theta}}\right)^{2}$.

In the next example, we use Monte Carlo simulation to estimate the bias and variance of the estimator $\hat{\mathrm{P}}$ (frequency of 4's out of n dice throws) of the known parameter $p=\theta=1 / 6$. Note that p is the parameter of the random variable X which represents whether we get a 4 when throwing a die. The distribution of X is a Bernoulli with parameter $p=1 / 6$.

```
> n <- 20
> M <- 100000
> vec.theta.hat <- replicate(M, {res <- throw.die(n)
+ theta.hat <- sum(res==4)/n})
> mean(vec.theta.hat) -1/6 # estimate of the bias.
[1] -0.00006716667
> var(vec.theta.hat) # estimate of the variance.
[1] 0.006969351
```

For this example, it can be shown that the random variable $n \hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ follows a binomial distribution $\operatorname{Bin}(n, p)$, with expectation $n p$ and variance $n p(1-p)$ (here, $p=1 / 6$). Thus the estimator $\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ is an unbiased estimator of θ and its variance is $\frac{p(1-p)}{n}$.

We can check this numerically:

```
> p <- 1/6
> p*(1-p)/n
[1] 0.006944444
```


See also

The bootstrap technique, which we introduce in Section 10.6, can be used to approximate the bias and variance of a given estimator, based on a single sample ($\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$) (which is often all we have in real life), rather than on M samples as we did in Monte Carlo simulation, where a data generator is available.

SECTION 10.5

A few techniques to draw from a distribution

Why performing simulations?

- To " check", using the computer, a mathematical result already known;
- to " demonstrate", using the computer, a result we can not prove theoretically;
- this can guide us in the demonstration of a difficult mathematical result;
- \quad it is often required when trying to publish results in scientific journals;
- this allows better reasoning as a statistician, as we have already seen in this chapter.

How should one perform efficient simulations? One must:
10.1- properly identify the (heart of) the problem;
10.2- write an outline of an algorithm to solve the problem;
10.3- translate this algorithm into a program written in an interpreted language like R;
10.4- test this program to ensure it works properly;
10.5- translate (possibly) the program using a lower level language (compiled) as C/C++ or Fortran.

Any simulation needs one to be able to simulate random variables from a given law. In the previous sections, we saw how to simulate from a few distributions in \mathbf{R} (rnorm(), runif()). When the distribution to simulate from is not implemented in R, you can use one of the methods introduced in this section.

10.5.1 Simulating from another distribution

There sometimes exists a simple formula expressing the random variable X with distribution \mathcal{L}, from which we wish to sample observations, as a function of one or several random variables with a standard distribution. It is then easy to build a generator with distribution \mathcal{L} thanks to this formula. The very simple following example illustrates this point. For example, recall that a random variable following

402 A better understanding of random variables, distributions and simulations using R specificities
a χ_{1}^{2} distribution can be obtained by taking the square of a standard normal random variable.
$>$ rchi2.1 <- function() rnorm(1) ${ }^{\wedge} 2 \# X \sim \mathcal{N}(0,1) \Rightarrow X^{2} \sim \chi_{1}^{2}$.

Do it yourself

Generate observations from a $T U(2)$ distribution (see the definition of this distribution in Section 10.7), page 408.

10.5.2 Inverse transform method

Suppose we know the inverse cumulative distribution function F_{X}^{-1} of the random variable X , and we wish to draw observations following the same distribution as X . This is very easy to do with a generator U with distribution $\mathcal{U}(0,1)$, thanks to the following formula:

$$
\tilde{\mathrm{X}}=F_{\mathrm{X}}^{-1}(\mathrm{U}) .
$$

Indeed, the cumulative distribution function of the random variable \tilde{X} happens to be F_{X}. This property is known as inverse transform method and was discovered by R.A. Fisher ([16]).

Do it yourself

Recall that the cumulative distribution function of an exponential random variable X with distribution $\mathcal{E}(\lambda)$ is

$$
F_{\mathrm{X}}(x ; \lambda)=\left\{\begin{aligned}
1-e^{-\lambda x}, & x \geq 0, \\
0, & x<0 .
\end{aligned}\right.
$$

Calculate F_{X}^{-1} then use the function runif() to generate observations from the distribution $\mathcal{E}(2)$.

10.5.3 Rejection sampling

Suppose we know the density function f_{X} of the random variable X , but not its inverse cumulative distribution. We wish to simulate observations following the same
distribution as X . Rejection sampling consists in generating data following a distribution with density g close to f (in the sense that $f_{\mathrm{X}}(x) \leq c \times g(x)$ for some $c>0$) and then discard some proportion of these data, so as to get data which follow the desired distribution.

The algorithm is as follows:

1) generate a data point y using a random variable Y with density g;
2) generate u from a random variable U with density $\mathcal{U}(0,1)$;
3) if $c \times g(y) \times u \leq f(y)$, then keep y as a generated data point; else discard it and return to the start of the algorithm.
The values output by this algorithm can be used as if they were generated by a random variable with density f_{X}. The best value for the constant c to minimize the number of rejections is $c=\sup _{x} \frac{f_{\mathrm{X}}(x)}{g(x)}$.

Do it yourself

Use the rejection method to generate observations from the distribution $\mathcal{N}(0,1)$, using as reference function the density of an exponential distribution with parameter $\lambda=1$. Take the value $c=\sqrt{\frac{e^{1}}{2 \pi}}$, and use the function rbinom() to assign a positive or negative sign to the values given by the rejection algorithm.

10.5.4 Simulation of discrete random variables

Suppose we wish to simulate a sample from a discrete random variable X which satisfies $P\left(\mathrm{X}=x_{i}\right)=p_{i}$ for all i in \mathbb{N} (or a subset of \mathbb{N}). Define U as a random variable with distribution $\mathcal{U}(0,1)$, which can be sampled from with the function runif(), and use the following algorithm:

$$
\left\{\begin{array}{l}
\mathrm{X}=x_{0} \text { if } 0<\mathrm{U} \leq p_{0} \\
\mathrm{X}=x_{i} \text { if } \sum_{j=0}^{i-1} p_{j}<\mathrm{U} \leq \sum_{j=0}^{i} p_{j}
\end{array}\right.
$$

Do it yourself

Use this algorithm to generate observations from the discrete uniform distribution over the set $\{0,1,2,3,4,5\}$.

404A better understanding of random variables, distributions and simulations using R specificities
$\Gamma^{\text {SECTION } 10.6}$ Bootstrap

Resampling methods, also known as bootstrap methods, consist in using the information available in a sample of observed values $\left(x_{1}, \ldots, x_{n}\right)$ to approximate the distribution of the i.i.d. random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ which generated this sample. We saw in Section 10.2.3.1 that the distribution of a random variable can be described by the cumulative distribution function F_{X}, and we saw in Section 10.4.2 how the cumulative distribution function can be approximated with the empirical cumulative distribution function $\hat{\mathrm{F}}_{\mathbf{x}_{n}}$. The idea behind bootstrap is to generate several observed data sets $\boldsymbol{x}_{1}^{*}=\left(x_{1,1}^{*}, \ldots, x_{n, 1}^{*}\right), \ldots, \boldsymbol{x}_{B}^{*}=\left(x_{1, B}^{*}, \ldots, x_{n, B}^{*}\right)$ following the distribution described by $\hat{\mathrm{F}}_{\mathbf{X}_{n}}$ (which we know), as a proxy for F_{X} (which is unknown in practice). We then consider that these new data which can be generated have the same properties as observations we would get if we could use the generator based on F_{X} (which we cannot in practice). We can then use Monte Carlo techniques, as introduced in Section 10.4.1, to estimate for example the bias and the variance of the estimator $\hat{\theta}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ of some unknown parameter θ, with the formulae $\frac{1}{B} \sum_{b=1}^{B} \hat{\theta}\left(x_{1, b}^{*}, \ldots, x_{n, b}^{*}\right)-\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ and $\frac{1}{B} \sum_{b=1}^{B}\left(\hat{\theta}\left(x_{1, b}^{*}, \ldots, x_{n, i}^{*}\right)-\frac{1}{B} \sum_{j=1}^{B} \hat{\theta}\left(x_{1, i}^{*}, \ldots, x_{n, i}^{*}\right)^{2}\right.$.
One question still needs to be answered: how do we generate observations from $\hat{\mathrm{F}}_{\mathbf{X}_{n}}$? This is in fact very simple: all we need to do is draw with replacement n observations from the original sample. The bootstrap procedure consists in generating B such samples \boldsymbol{x}_{b}^{*} and use them as illustrated in the above example. The R function sample() is used for the draw with replacement operation.

We return to the example from Section 10.4.4, where we tried to estimate the bias and variance of the estimator \hat{P} (frequency of the number 4 for n throws of a die) of the parameter $p=\theta$ of the random variable X which represents whether we get a 4 when throwing a die.

```
> n <- 20 ; xvec <- throw.die(n) ; sum(xvec==4)/n
[1] 0.15
```

Draw with replacement a sample of length n from xvec:

```
> sample(xvec,n, replace=TRUE)
    [1] 6
> B <- 10000
> vec.theta.star <- replicate(B,sum(
+ sample (xvec,n, replace=TRUE)==4)/n)
> mean(vec.theta.star) - sum(xvec==4)/n
[1] 0.00009
> ((B-1)/B)*var(vec.theta.star) ; sd(vec.theta.star)
[1] 0.006377992
[1] 0.07986632
```

In this very simple case, theory states that the bias is zero and the variance is $p(1-p) / n=0.00694$.

SECTION 10.7

Standard and less standard distributions

10.7.1 Standard distributions

Standard probability distributions are implemented in R. In Tables 10.1 and 10.2, we give the functions to compute the density (or mass probability function), the cumulative distribution function and the quantile function of these distributions. We also give the instruction to generate pseudo-random numbers from these distributions.

Table 10.1: Standard discrete distributions. \mathbf{R} functions for the mass function ($\mathrm{d}-\mathrm{-}$), cumulative distribution function ($\mathrm{p}--$) and quantile function ($\mathrm{q}--$). Instruction to generate ($\mathrm{r}-\mathrm{-}$) pseudo-random numbers from these distributions.

Discrete distributions	R functions	Expected value Variance	Probability mass functions $P(\mathrm{X}=x)$
$\operatorname{Binomial}(m, \alpha)$	$\begin{aligned} & \text { dbinom }(\mathrm{x}, \text { size }=m, \text { prob }=\alpha) \\ & \text { pbinom }(\mathrm{q}, \text { size }=m, \text { prob }=\alpha) \\ & \text { qbinom }(\mathrm{p}, \text { size }=m, \text { prob }=\alpha) \\ & \text { rbinom }(\mathrm{n}, \text { size }=m, \text { prob }=\alpha) \end{aligned}$	$\begin{gathered} m \alpha \\ m \alpha(1-\alpha) \end{gathered}$	$\binom{m}{x} \alpha^{x}(1-\alpha)^{m-x}$
Poisson(λ)	$\begin{aligned} & \text { dpois }(\mathrm{x}, \text { lambda }=\lambda) \\ & \text { ppois }(\mathrm{q}, \operatorname{lambda}=\lambda) \\ & \text { qpois }(\mathrm{p}, \operatorname{lambda}=\lambda) \\ & \operatorname{rpois}(\mathrm{n}, \operatorname{lambda}=\lambda) \end{aligned}$	λ λ	$e^{-\lambda} \frac{\lambda}{x} \frac{x^{x}}{x!}$
Geometric (α)	$\begin{aligned} & \text { dgeom }(\mathrm{x}, \operatorname{prob}=\alpha) \\ & \text { pgeom }(\mathrm{q}, \text { prob }=\alpha) \\ & \text { qgeom }(\mathrm{p}, \operatorname{prob}=\alpha) \\ & \text { rgeom }(\mathrm{n}, \operatorname{prob}=\alpha) \end{aligned}$	$\begin{gathered} \frac{1}{\alpha} \\ \frac{1-\alpha}{\alpha^{2}} \end{gathered}$	$(1-\alpha)^{x-1} \alpha$
Hypergeometric (m, n, k)	$\begin{aligned} & \operatorname{dhyper}(\mathrm{x}, \mathrm{~m}=m, \mathrm{n}=n, \mathrm{k}=k) \\ & \operatorname{phyper}(\mathrm{q}, \mathrm{~m}=m, \mathrm{n}=n, \mathrm{k}=k) \\ & \operatorname{qhyper}(\mathrm{p}, \mathrm{~m}=m, \mathrm{n}=n, \mathrm{k}=k) \\ & \operatorname{rhyper}(\mathrm{nn}, \mathrm{~m}=m, \mathrm{n}=n, \mathrm{k}=k) \end{aligned}$	$\begin{gathered} \frac{n m}{N}(\text { with } N=n+m) \\ \frac{n(m / N)(1-(m / N))(N-n)}{(N-1)} \end{gathered}$	
$\begin{gathered} \text { Negative } \\ \operatorname{binomial}(m, \alpha) \end{gathered}$	```dnbinom(x,size=m,prob= }\alpha\mathrm{) pnbinom(q,size=m,prob=\alpha) qnbinom(p,size=m,prob=\alpha) rnbinom(n,size=m,prob= }\alpha\mathrm{)```	$\begin{aligned} & m \frac{1-\alpha}{\alpha} \\ & m \frac{1-\alpha}{\alpha^{2}} \end{aligned}$	$\binom{x+m-1}{m-1} \alpha^{m}(1-\alpha)^{x}$
Discrete $\text { uniform }\{1, \ldots, m\}$	$\begin{aligned} & (\mathrm{x} \% \text { in\% } 1 m) / m \\ & \operatorname{sum}(1 m<=\mathrm{q}) / m \\ & \operatorname{match}(1,1 m / m>=\mathrm{p}) \\ & \operatorname{sample}(\mathrm{x}=1 m, \text { size=}, \mathrm{n}, \text { TRUE }) \end{aligned}$	$\begin{gathered} \frac{m+1}{2} \\ \frac{m^{2}-1}{12} \end{gathered}$	$\frac{1}{m} \mathbb{1}_{\{1, \ldots, m\}}(x)$

406A better understanding of random variables, distributions and simulations using R specificities

Table 10.2: Standard continuous distributions. \mathbf{R} functions for the density function (d--), cumulative distribution function ($\mathrm{p}--$) and quantile function ($\mathrm{q}--$). Instruction to generate ($\mathrm{r}--$) pseudo-random numbers from these distributions (notations: $B(\cdot, \cdot)$: beta function; $I(\cdot)$: modified Bessel function; $\Gamma(\cdot)$: gamma function; $P(\cdot ; \lambda)$: mass function of a Poisson $(\lambda) ; I_{x}^{\prime}(\cdot, \cdot)$: derivative of an incomplete beta function; $\left.\operatorname{sech}(x)=\frac{2}{e^{x}+e^{-x}}\right)$.

| Continuous distributions | \quad R functions |
| :---: | :--- | :---: | :---: | \(\left.\begin{array}{c}Expected value

Variance\end{array}\right]\)

10.7.2 \dagger Less standard distributions

In the next tables, we give formulae to generate a sample from a few less standard distributions.

Table 10.3 presents the following distributions: Rademacher Rad, Irwin-Hall $\operatorname{Irw}(n)$, Kumaraswamy $\operatorname{Kum}(a, b)$, inverse normal $\operatorname{GI}(\mu, \lambda)$, Lévy Levy (c), Log-logistic $\log -\operatorname{Logis}(\alpha, \beta)$, Rayleigh $\operatorname{Ray}\left(\sigma^{2}\right)$, Rice Rice (σ, v), multinomial $\mathcal{M}\left(n, p_{1}, \ldots, p_{k}\right)$.

Table 10.3: Less standard distributions (notations: $B_{1 / 2} \sim \operatorname{Bernoulli}(1 / 2), \mathrm{Y}_{1, b} \sim$ $\mathcal{B e t a}(1, b), \mathrm{Z} \sim \mathcal{N}(0,1), \mathrm{U}_{k}, \mathrm{U} \sim \mathcal{U}(0,1), \mathrm{G}(\alpha, \beta) \sim \operatorname{Gamma}(\alpha, \beta), L_{1 / 2}(x)=$ $e^{x / 2}\left[(1-x) I_{0}\left(\frac{-x}{2}\right)-x I_{1}\left(\frac{-x}{2}\right)\right], I_{\alpha}(\cdot)$: modified Bessel functions, $B(\alpha, \beta)$: beta function).

Distribution	Density	Generation	Expected value Variance
Rad	$1 / 2$ if $k= \pm 1$	$2 B_{1 / 2}-1$	$\overline{0}$
$\operatorname{Irw}(n)$	$\begin{gathered} \frac{1}{2(n-1)!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \\ \times(x-k)^{n-1} \operatorname{sgn}(x-k) \end{gathered}$	$\sum_{k=1}^{n} \mathrm{U}_{k}$	$\begin{gathered} n / 2 \\ n / 12 \end{gathered}$
$\operatorname{Kum}(a, b)$	$a b x^{a-1}\left(1-x^{a}\right)^{b-1}$	$\mathrm{X}_{a, b}=\mathrm{Y}_{1, b}^{1 / a}$	$\begin{array}{c\|} b B(1+1 / a, b) \\ b B\left(1+\frac{2}{a}, b\right)-b^{2} B^{2}\left(1+\frac{1}{a}, b\right) \\ \hline \end{array}$
$\mathrm{GI}(\mu, \lambda)$	$\left[\frac{\lambda}{2 \pi x^{3}}\right]^{1 / 2} \exp \left(\frac{-\lambda(x-\mu)^{2}}{2 \mu^{2} x}\right)$	$\begin{gathered} \mathrm{X}=\mu+\frac{\mu^{2}}{2 \lambda}\left[\mathrm{Z}^{2}-\frac{\mathrm{Z}_{l}}{\mu} \sqrt{4 \mu \lambda+\mu^{2} \mathrm{Z}^{2}}\right. \\ \mathrm{X} \text { if } \mathrm{U} \leq \frac{\mu}{\mu+\mathrm{X}}, \text { else } \frac{\mu^{2}}{\mathrm{X}} \end{gathered}$	$\begin{gathered} \mu \\ \frac{\mu^{3}}{\lambda} \end{gathered}$
Levy(c)	$\sqrt{\frac{c}{2 \pi}} \frac{e^{-c / 2 x}}{x^{3 / 2}}$	$\mathrm{X}=\frac{1}{\mathrm{G}(1 / 2, c / 2)}$	∞
Log-Logis (α, β)	$\frac{(\beta / \alpha)(x / \alpha)^{\beta-1}}{\left[1+(x / \alpha \alpha]^{\beta}\right.}$	$\mathrm{X}=\exp (\operatorname{Logistic}(\log (\alpha), \beta))$	$\begin{gathered} \frac{\alpha \pi / \beta}{\sin (\pi / \beta)} \text { if } \beta>1 \\ \alpha^{2}\left(\frac{2 b}{\sin 2 b}-\frac{b^{2}}{\left.\sin ^{2} b\right)} \text { if } \beta>2\right. \end{gathered}$
$\operatorname{Ray}\left(\sigma^{2}\right)$	$\frac{x}{\sigma^{2}} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)$	$\mathrm{X}=\sigma \sqrt{-2 \log (\mathrm{U})}$	$\begin{aligned} & \sigma \sqrt{\frac{\pi}{2}} \\ & \frac{4 \pi}{2} \sigma^{2} \\ & \hline \end{aligned}$
$\operatorname{Rice}(\sigma, v)$	$\left\|\frac{x}{\sigma^{2}} \exp \left(\frac{-\left(x^{2}+\nu^{2}\right)}{2 \sigma^{2}}\right) I_{0}\left(\frac{x v}{\sigma^{2}}\right)\right\|$	$\begin{gathered} \mathrm{R}=\sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}} \text { with } \\ \mathrm{X} \sim \mathcal{N}\left(1, \sigma^{2}\right) \text { and } \mathrm{Y} \sim \mathcal{N}\left(0, \sigma^{2}\right) \end{gathered}$	$\begin{gathered} \sigma \sqrt{\pi / 2} L_{1 / 2}\left(-v^{2} / 2 \sigma^{2}\right) \\ 2 \sigma^{2}+v^{2}-\frac{\pi \sigma^{2}}{2} L_{1 / 2}^{2}\left(\frac{-v^{2}}{2 \sigma^{2}}\right) \end{gathered}$
$\mathcal{M}\left(n, p_{1}, \ldots, p_{k}\right)$	$\begin{aligned} & \frac{n!}{x_{1}!!x_{1}} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}} \ldots \\ & \text { if } \sum_{i=1}^{k} x_{i}=n \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Y}_{j}=\arg \min _{j^{\prime}=1}^{k}\left(\sum_{i=1}^{j^{\prime}} p_{i} \geq \mathrm{U}\right) \\ \mathrm{X}=\sum_{j=1}^{n} \mathrm{Y}_{j}\left(\mathrm{Y}_{j} \mathrm{i} . \mathrm{i} . \mathrm{d}\right) \end{gathered}$	$\begin{gathered} \mathbb{E}\left(X_{i}\right)=p_{i} \\ \operatorname{Var}\left(X_{i}\right)=n p_{i}\left(1-p_{i}\right) \end{gathered}$

Table 10.4 gives formulae to generate a sample from the following less standard distributions: skew-normal $S N\left(\xi, \omega^{2}, \alpha\right)$, Laplace Lp (μ, b), shifted exponential $S E(l, b)$, generalized Pareto $G P(\mu, \sigma, \xi)$, generalized error distribution $G E D(\mu, \sigma, p)$, Johnson $\operatorname{SU} J S U(\mu, \sigma, v, \tau)$, symmetrical Tukey TU(l), scale contaminated $S C(p, d)$, location contaminated LC (p, m), Johnson SB S B (g, d), stable $S(a, b)$.

408 A better understanding of random variables, distributions and simulations using R specificities

Table 10.4: Less standard distributions (notations: $\mathrm{U} \sim \mathcal{U}(0.1), \mathrm{Z} \sim \mathcal{N}(0,1)$, $\mathrm{Z}_{\mu} \sim \mathcal{N}(\mu, 1), \mathrm{V}_{d} \sim \mathcal{N}(0, d), \mathrm{E} \sim \mathcal{E}(1), \mathrm{B}_{p} \sim \operatorname{Bernoulli}(p), \mathrm{G}_{p} \sim \operatorname{Gamma}(1 / p, p)$, $\left.F_{\lambda}^{-1}(p)=p^{\lambda}-(1-p)^{\lambda}, \Theta=\pi\left(\mathrm{U}-\frac{1}{2}\right), \Theta_{\beta}=\frac{\pi}{2}+\beta \Theta\right)$.

Distribution	Density	Generation	Expected value Variance
$S N\left(\xi, \omega^{2}, \alpha\right)$	$\frac{2}{\omega \sqrt{2 \pi}} e^{-\frac{(x-\xi)^{2}}{2 \omega^{2}}} \int_{-\infty}^{\alpha\left(\frac{x-\xi}{\omega}\right)} \frac{e^{-\frac{t^{2}}{2}}}{\sqrt{2 \pi}} d t$	$\begin{gathered} \mathrm{X}=\xi+\omega \mathrm{Y} \\ \mathrm{Y}=\mathrm{W} \text { if } \mathrm{Z}_{0} \geq 0 ;-\mathrm{W} \text { else } \\ \mathrm{W}=\delta \mathrm{Z}_{0}+\sqrt{1-\delta^{2}} \mathrm{~V}_{1} \\ \delta=\alpha / \sqrt{1+\alpha^{2}} \end{gathered}$	$\begin{gathered} \xi+\omega \sqrt{2 / \pi} \delta \\ \omega^{2}\left(1-2 \delta^{2} / \pi\right) \end{gathered}$
$L p(\mu, b)$	$\frac{1}{2 b} \exp \left(-\frac{\|x-\mu\|}{b}\right)$	$\mathrm{X}=\mu-b \cdot \operatorname{sgn}\left\{\mathrm{U}-\frac{1}{2}\right\} \ln \left(1-2 \left\lvert\, \mathrm{U}-\frac{1}{2} \mathrm{I}\right.\right)$	μ $2 b^{2}$
$S E(l, b)$	$b \exp \{-(x-l) b\}, x \geq l$	$\mathrm{X}=\frac{-\ln \mathrm{U}}{b}+l$	$\begin{gathered} l+\frac{1}{b} \\ \frac{1}{b^{2}} \\ \hline \end{gathered}$
$G P(\mu, \sigma, \xi)$	$\begin{gathered} \frac{1}{\sigma}\left(1+\frac{\xi(x-\mu)}{\sigma}\right)^{\left(-\frac{1}{\xi}-1\right)} \\ x \geq \mu \text { if } \xi \geq 0 \\ x \leq \mu-\frac{\sigma}{\xi} \text { if } \xi<0 \end{gathered}$	$\mathrm{X}=\mu+\frac{\sigma\left(\mathrm{U}^{-\xi}-1\right)}{\xi}$	$\begin{gathered} \mu+\frac{\sigma}{1-\xi}(\xi<1) \\ \frac{\sigma^{2}}{(1-\xi)^{2}(1-2 \xi)},\left(\xi<\frac{1}{2}\right) \end{gathered}$
$G E D(\mu, \sigma, p)$	$\frac{1}{2 p^{1 / / \Gamma} \Gamma(1+1 / p) \sigma} e^{\left[-\frac{1}{p \sigma^{T}}\|x-\mu\|^{p}\right]}$	$\mu+\sigma \mathrm{G}_{p}^{1 / p} \operatorname{sgn}(\mathrm{U}-1 / 2)$	μ
$J S U(\mu, \sigma, v, \tau)$	$\begin{gathered} \frac{1}{c \sigma} \frac{1}{\sqrt{z^{2}+1}} \frac{1}{\sqrt{2 \pi}} e^{-r^{2} / 2} \\ r=-v+\tau \sinh ^{-1}(z) \\ z=\frac{x-(\mu+c \sigma \sqrt{w} \sinh (\Omega)}{c \sigma} \\ c=\sqrt{((w-1)(w \cosh (2 \Omega)+1) / 2)} \\ w=e^{1 /\left(\tau^{2}\right)} \text { and } \Omega=-v / \tau \end{gathered}$	$\begin{gathered} \mathrm{X}=\mu+c \sigma \times \\ {\left[\sqrt{w} \sinh (\Omega)+\sinh \left(\frac{\mathrm{Z}_{0}+v}{\tau}\right)\right]} \end{gathered}$	μ σ^{2}
$T U(\lambda)$	$\frac{1}{F_{d}(x)^{\lambda-1}+\left(1-F_{\lambda}(x)\right)^{\text {d-1 }}}$	$\mathrm{X}=\mathrm{U}^{\lambda}-(1-\mathrm{U})^{\lambda}$	$\begin{gathered} 0 \\ \frac{2}{2 \lambda+1}-2 \frac{\Gamma^{2}(\lambda+1)}{\Gamma(2 \lambda+2)} \\ \hline \end{gathered}$
$S C(p, d)$	$\frac{1}{\sqrt{2 \pi}}\left[\frac{p}{d} e^{-\frac{x^{2}}{2 d^{2}}}+(1-p) e^{-\frac{x^{2}}{2}}\right]$	$\mathrm{B}_{p} \mathrm{~V}_{d}+\left(1-\mathrm{B}_{p}\right) \mathrm{Z}_{0}$	$\begin{gathered} 0 \\ p d^{2}+1-p \\ \hline \end{gathered}$
$L C(p, m)$	$\frac{1}{\sqrt{2 \pi}}\left[p e^{-\frac{(x-m)^{2}}{2}}+(1-p) e^{-\frac{x^{2}}{2}}\right]$	$\mathrm{B}_{p} \mathrm{Z}_{\mu}+\left(1-\mathrm{B}_{p}\right) \mathrm{Z}_{0}$	$\begin{gathered} m p \\ 1-(m p)^{2} \\ \hline \end{gathered}$
$S B(g, d)$	$\frac{d}{\sqrt{2 \pi}} \frac{1}{x(1-x)} e^{-\frac{1}{2}\left(g+d \log \frac{x}{1-x}\right)^{2}}, d>0$	$\mathrm{X}=\left(1+e^{-\frac{\mathrm{Z}_{0}-\underline{g}}{d}}\right)^{-1}$	No explicit formula
$\begin{gathered} S(\alpha, \beta) \\ \text { with } \\ -1 \leq \beta \leq 1 \\ 0<\alpha \leq 2 \end{gathered}$	No analytical form	$\begin{gathered} \theta_{0}=-\frac{\pi}{2} \beta(\alpha-1+\operatorname{sgn}(1-\alpha)) / \alpha \\ \mathrm{X}_{1}=\sin \left\{\alpha\left(\Theta-\theta_{0}\right)\right\} \\ \mathrm{X}_{2}=\{\cos (\Theta)\}^{1 / \alpha} \\ \mathrm{X}_{3}=\left[\frac{\cos \left\{(\alpha-1) \Theta-\alpha \theta_{0}\right)}{\mathrm{E}}\right]^{\frac{11-\alpha}{\alpha}} \end{gathered}$ If $\alpha \neq 1: \mathrm{X}=\left(\mathrm{X}_{1} / \mathrm{X}_{2}\right)\left(\mathrm{X}_{3}\right)$, else: $\mathrm{X}=\Theta_{\beta} \tan \Theta-\beta \log \left(\frac{\mathrm{E} \cos \theta}{\Theta_{\beta}}\right)$	$\begin{gathered} \text { Undefined if } \alpha \leq 1 \\ 0 \text { if } 1<\alpha \leq 2 \end{gathered}$ Undefined

- SECTION 10.8
 Modelling a phenomenon

Suppose we observe the following $n=500$ values produced by some phenomenon.

```
> xvec
    [1] 11 1 1 1 2 2 0 0}0
    [30] 11 1 0 0 0 3 1 1 2 2 2 3 3 2 1 1 1 1 0 0 0 0 2 2 1 1 0 0
    [59] 11 1 0 0 0 1 1 1 2 2 2 1 1 1 1 0 0 0}0
    [88] 11 0
[117] 11 2 1 1 2 0 0 1 1 1 1 0
[146] 2
[175] 4
[204] 2 0 0 2 2 2 4 4 1 1 2 2 2 2 2 2 1 1 0 2 2 2 < 1 1 2 0
```

```
[233] 2 0 2 1 2 2 1 2 2 2 1 1 1 1 0 1 1 2 0 2 2 2 2 2 0 2 1 1 0 0 2 2 1 1 0 0 2 3
[262] 11 2 1 0 1 1 1 1 1 1 2 0 4 4 2 0 2 4 4 2 2 2 0
[291] 2 3 2 2 4 1 1 1 3 0 1 0 1 1 0 1 1 1 2 2 2 0 0 1 0 2 2 0 1 1 2 1 1 2 0 0 0 0 0
[320] 11 2 1 1 1 4 2 1 1 1 1 1 1 3 1 1 1 2 0 0 0 2 1 1 2 0 3 3 0 2 1 0 0 1 0 2 2
[349] 11 2 3 3 3 1 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 2 1 1 0 0 2 1 1 1 2 3 3 3 1 1 1 0 1 1 1 2
[378] 1 1 1 0 1 1 1 2 2 2 1 1 1 0 1 0 0 0 1 2 2 0 2 0 0 2 0 0 1 0 3 2 2 2 1 2 3 1
[407] 2
[436] 0 1 1 1 0 2 1 1 4 1 0 0 2 1 1 1 3 1 0 0 2 3 3 1 0 0 3 1 2 1 1 3 0 1 0 0 1
[465] 1 1 1 1 4 4 2 1 1 2 2 0 0 1 0 2 2 0 1 0
[494] 1 1 1 1 1 2 1
```

Given these data, a statistician will try to describe (mathematically) the generative process which led to these values. The observed values seem to arise in an unpredictable fashion, and it seems difficult to find a logical (and deterministic) sequence which would explain them. But can they be described?

Inductive inferential statistics can be used to go from observed facts about the sample to the probability distribution in the population. To this end, a statistician will (for example) first assume that each of these observations is a realization of a single random variable X and that these observations are produced independently of one another. Mathematically, this can be stated as "Let $\boldsymbol{x}_{n}=\left(x_{1}, \ldots, x_{n}\right)$ be an (observed) sample of the random vector $\mathbf{X}_{n}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)$ made of $n=500$ independently and identically distributed (i.i.d.) random variables". The statistician is thus assuming that "Mother Nature" owns a random number generator X, known to her alone, and that the statistician obviously does not know. The statistician's aim is to guess what the generator is, as far as possible. This process is called statistical modelling.

The statistician then searches within its toolbox of models and starts with the model which seems most simple (parsimony principle) and adequate. The random variables at play are discrete, so he has the following probabilist models at its disposal:

- \quad the $\operatorname{Binomial}$ distribution $\operatorname{Bin}(m, \alpha)$;
- the Poisson distribution $\mathcal{P}(\lambda)$;
- and so on.

Given the observations (numbers between 0 and 4), the binomial distribution is most appropriate.

The statistician now needs to estimate the unknown parameters of this model, i.e. plausible values for the parameters of the chosen distribution (here, m and α). This is the parameter estimation phase, which was described in Section 10.4.1.

Note

As you may have guessed, the 500 data above were simulated with a computer. We let ourselves on the other side of the fence (the side of "Mother Nature") to generate these data. We can now reveal that we used the following generator:

X <- function() rbinom(500,5,1/4)
One of the main advantages of computers is that we can be simultaneously on either side of the fence, to better understand the phenomena around us. This is of course not possible when working with real data.

The many distributions we have introduced in this chapter can be used to model other types of phenomena. The reader should be able to find a distribution among those we have listed to model a specific phenomenon.

Note

For example, the following remarks are worth noting:

- the Bernoulli distribution $(\operatorname{rbinom}(\mathrm{n}, 1, \mathrm{p}))$ is used when a random experiment has only two possible outcomes: success, with probability p, and failure with probability $1-p$;
- the negative binomial (k, p) distribution (rnbinom($\mathrm{n}, \mathrm{k}, \mathrm{p}$)) models the number of observations until the k-th success (included);
- the Poisson (λ) distribution (rpois (n, λ)) is the distribution of a variable X which counts the number of realizations of a rare event, for example per unit of time or per unit of area;
- the exponential (λ) distribution $(\operatorname{rexp}(\mathrm{n}, \lambda))$ is used to model the time at which a system breaks down or, equivalently, the lifespan of a system;
- the Pareto distribution is often used to describe the distribution of incomes;
- the Cauchy distribution describes the points of impact of particles emitted in a beam;
- the beta distribution is used to fit distributions with known support.

It is also worth noting that the website http://en.wikipedia.org/wiki/ List_of_probability_distributions describes many other distributions.

Warning

We only modeled phenomena involving several independent copies of the same random variable. In Chapter 12, we will present a statistical tool to model some phenomema involving several interacting random variables.

Memorandum

d--: mass or density function (e.g.: dnorm())
$\mathrm{p}--$: cumulative distribution function (e.g.: pchisq())
q--: quantile function (e.g.: qt (), qf())
$r--$: pseudorandom number generation (e.g.: runif())

Exercises

10.1- Which R function would you use to generate numbers from a $\mathcal{N}(0,1)$ distribution?
10.2- Which R function would you use to generate numbers from a $\mathcal{N}(2,10)$ distribution?
10.3- Which \mathbf{R} function would you use to calculate the quantiles of a χ^{2} distribution?
10.4- Which R function would you use to calculate the density of a Fisher distribution?
10.5- Which R function would you use to calculate the quantiles of a Student distribution?
10.6- How would you compute the probability that X lays between 3 and 5 given that $\mathrm{X} \sim \mathcal{N}(4,2)$?
10.7- How would you calculate the quantile of order $p=0.95$ of a $\mathcal{N}(0,1)$?
\square Worksheet

Simulations

A- Study of the distribution $f(x)=\frac{3}{2} \sqrt{x}$ on $[0,1]$
10.1- Check that $f(x)$ is a density, using the function integrate().
10.2- Simulate a sample of size 1,000 from the distribution defined by the density $f(x)=\frac{3}{2} \sqrt{x}$ over $[0,1]$.
10.3- Calculate the empirical mean and variance.
10.4- Compare with the theoretical values.
10.5- Calculate and compare the theoretical and empirical probabilities of the following classes:
[$0,0.30], ~] 0.30,0.50], ~] 0.50,0.70], ~] 0.70, ~ 0.85], ~] 0.85,1]$.

B- Study of the generalized Pareto distribution

Let X be a random variable following a generalized Pareto distribution $G P(\mu, \sigma, \xi)$. The density of this distribution is

$$
f_{\mathrm{X}}(x)=\frac{1}{\sigma}\left(1+\frac{\xi(x-\mu)}{\sigma}\right)^{-\frac{1}{\xi}-1}
$$

with

$$
x \geq \mu \text { if } \xi \geq 0 \quad \text { and } \quad x \leq \mu-\sigma / \xi \text { if } \xi<0 .
$$

It is given that

$$
\mathbb{E}(\mathrm{X})=\mu+\frac{\sigma}{1-\xi} \quad(\xi<1)
$$

and

$$
\operatorname{Var}(\mathrm{X})=\frac{\sigma^{2}}{(1-\xi)^{2}(1-2 \xi)} \quad(\xi<1 / 2) .
$$

We can simulate from X with the following formula:

$$
\mathrm{X}=\mu+\frac{\sigma\left(\mathrm{U}^{-\xi}-1\right)}{\xi}
$$

where U is a uniform random variable over $[0,1]$.
10.1- Propose an R code to generate a sample of size n from a $G P(\mu, \sigma, \xi)$ distribution. Your source code should use the following variables: n , mu, sigma and xi.
10.2- Simulate a sample of size $n=1,000$ from the distribution $G P(0,1,1 / 4)$.
10.3- Calculate the empirical mean and variance.
10.4- Compare with the theoretical values.
10.5- Repeat questions 2 to 3 with $n=10,000$.
10.6- Plot in red the density histogram of your sample. Take 500 equidistant classes and limit the display of the histogram to the interval $[0,10]$ on the x -axis.
10.7- Overlay the density plot of the $G P(0,1,1 / 4)$ distribution (in blue). Note that the plot is close to the histogram.

C- Uniform distribution on a square

10.1- Simulate 1,000 observations from $\left(X_{1}, X_{2}\right)$ which follow the uniform distribution over the square $[0,1] \times[0,1]$.
10.2- Get an approximation of the probability that the distance between $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ and the nearest edge is less than 0.25
10.3- Same question for the distance to the nearest vertex
10.4- Try to identify the theoretical distribution of the variable distance to the nearest edge: expected value, variance, density.

D- Towards modelling

A statistician believes that the world around us and the phenomena that occur are a large entanglement of random events, which can be modelled in a simplified way by random variables.
10.1- Start with the simple, and classical, example, of a coin toss. The outcome of this experiment is the observation of HEAD or TAIL at each toss. This can be modelled by a random variable X with distribution a Bernoulli with parameter $1 / 2$. This experiment can be reproduced with a computer. Create a function X which simulates a coin toss. You can toss your virtual coins a few times.
10.2- We can also propose a modelling of the throw of a die. The outcome of this experiment is the observation of the number on the upper side of the die at each throw. If the die is not weighted, this can be modelled by a random variable X with distribution a discrete uniform over $\{1,2,3,4,5,6\}$. This experiment can be reproduced with a computer. Create a function throw.die() using the function sample(). You can throw your virtual die a few times.
10.3- To simulate the game of Yahtzee, we shall create a function yahtzee() which throws five virtual dice. Create this function using the parameters size and replace of the function sample().
10.4- Estimate the probability of getting a yahtzee, i.e. five identical dice in one throw (hint: use the functions apply(), replicate() and unique()). You should get a value close to $\frac{1}{6^{4}}$.

E-Box-Muller theorem

Let U_{1} and U_{2} be two independent random variables uniform over the interval $[0,1]$. The variables

$$
\begin{aligned}
& \mathrm{Z}_{1}=\sqrt{-2 \log \left(\mathrm{U}_{1}\right)} \cos \left(2 \pi \mathrm{U}_{2}\right) \\
& \mathrm{Z}_{2}=\sqrt{-2 \log \left(\mathrm{U}_{1}\right)} \sin \left(2 \pi \mathrm{U}_{2}\right)
\end{aligned}
$$

are then two independent standard normal random variables.
10.1- Generate $n=1,000$ pairs of observations $\left(z_{1}, z_{2}\right)_{1}, \ldots,\left(z_{1}, z_{2}\right)_{n}$ using this algorithm.
10.2- Use the function kde2d() from package MASS to estimate the bivariate density of these data.
10.3- Use the functions spheres3d() and surface3d() from the package rgl to plot these observations and the surface of the estimated bivariate density of these data. Also plot the surface of the density of a bivariate standard normal distribution. Note that you get a bell plot, typical of the bivariate normal.

Chapter 11
 Confidence intervals and hypothesis testing

Goals of this chapter

This chapter is a catalogue of R functions commonly used to get confidence intervals for usual parameters: mean, proportion, variance, median and correlation. We also present a catalogue of \mathbf{R} functions to perform standard hypothesis testing. Furthermore, a few practical worksheets will help the reader understand how to interpret confidence intervals, as well as the various errors related to hypothesis testing.
$[$ Notations

Table 11.1 gives the notation we need to define the confidence intervals and hypothesis tests we introduce later in the chapter. Table 11.2 gives the notation of quantiles we shall use.

Table 11.1: Some notation for standard parameter estimation.

Parameter	Notation	Estimator	Estimate	R function
mean	μ	$\overline{\mathrm{X}}$	\bar{x}	mean()
variance	σ^{2}	$\hat{\sigma}^{2}$	$\hat{\sigma}^{2}$	$\operatorname{var}()$
median	m_{e}	$\widehat{\mathrm{~m}_{e}}$	$\widehat{m_{e}}$	median()
correlation	ρ	$\hat{\rho}$	$\hat{\rho}$	$\operatorname{cor}()$
proportion	p	$\hat{\mathrm{p}}$	\hat{p}	mean()

Table 11.2: Notation of various quantiles of order p.

Distribution	Notation	R function
Normal: $\mathcal{N}(0,1)$	u_{p}	$\mathrm{qnorm}(p)$
Student with n d.f.: $\mathcal{T}(n)$	t_{p}^{n}	$\mathrm{qt}(p, \mathrm{df}=n)$
Chi-squared with n d.f.: $\chi^{2}(n)$	q_{p}^{n}	$\mathrm{qchisq}(p, \mathrm{df}=n)$
Fisher with n and m d.f.: $\mathcal{F}(n, m)$	$f_{p}^{n, m}$	$\mathrm{q} f(p, \mathrm{df} 1=n, \mathrm{df} 2=m)$
degrees of freedom		

SECTION 11.2

Confidence intervals

We are given a sample $\mathbf{X}_{n}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right)^{\boldsymbol{\top}}$ of random variables which depend on an unknown parameter θ which we wish to estimate. A random confidence interval with level (of confidence) $1-\alpha$ for θ consists in two random variables A :=a($\left.\mathbf{X}_{n} ; \alpha\right)$ and $\mathrm{B}:=b\left(\mathbf{X}_{n} ; \alpha\right)$ such that

$$
P[\mathrm{~A} \leq \theta \leq \mathrm{B}]=1-\alpha .
$$

The random variables A and B are the boundaries of this random confidence interval, usually noted

$$
\mathrm{CI}_{1-\alpha}(\theta)=[\mathrm{A}, \mathrm{~B}] .
$$

When the sample is observed and we are given the data $\left(x_{1}, \ldots, x_{n}\right)$, we note

$$
c i_{1-\alpha}(\theta)=[a, b]
$$

the resulting realization of the confidence interval, where $a=a\left(x_{1}, \ldots, x_{n} ; \alpha\right)$ and $b=b\left(x_{1}, \ldots, x_{n} ; \alpha\right)$. In the remainder of this chapter, by abuse of language, we shall not distinguish between a random confidence interval and its realization.

Finally, note that the correct way of interpreting a (random or realized) confidence interval will be given in the practical section. For now, we only give a catalogue of classical confidence intervals for the usual parameters: mean, proportion, variance, median and correlation.

11.2.1 Confidence intervals for the mean

- Case of a large sample $(n>30)$ or of a small sample under the assumption of normality
- Definition: A confidence interval at level $(1-\alpha)$ for the mean μ is:

$$
c i_{1-\alpha}(\mu)=\left[\bar{x}-t_{1-\alpha / 2}^{n-1} \frac{\hat{\sigma}}{\sqrt{n}} ; \bar{x}+t_{1-\alpha / 2}^{n-1} \frac{\hat{\sigma}}{\sqrt{n}}\right] .
$$

- Example of use: Using the nutrition study, we wish to build a confidence interval of the mean of the weight of elderly people living in Bordeaux.
> t.test (weight, conf. level=0.9) \$conf. int
[1] 65.1602467 .80436
attr(, "conf.level")
[1] 0.9
We get the confidence interval $[65.16,67.80]$ with confidence level 0.9 .

- Case of small samples

- Definition: When no assumption is made about the data, we suggest using a bootstrap approach. Several bootstrap confidence intervals are given in [14].
- \quad R instruction: The functions boot () and boot.ci() from package boot can be used.
- Example of use: We are given a sample of cholesterol levels (in g / l) of ten women. This sample is representative of women living in France: > chol.levels <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6) Without the assumption of normality, we propose a confidence interval at the 95% level of the mean cholesterol level of women living in France. > require (boot)
> mymean <- function(x,indices) mean(x[indices])
> level.boot <- boot(chol.levels, mymean, $R=999$, stype = "i",
+ sim = "ordinary")
> boot.ci(level.boot, conf = 0.95,type = c("norm","basic", + "perc","bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL:
boot.ci(boot.out $=$ chol.levels.boot, conf $=0.95$, type $=$ c("norm", "basic", "perc", "bca"))
Intervals:

```
Level Normal Basic
95% (1.787, 2.366) (1.770, 2.340)
Level Percentile BCa
95% (1.82, 2.39) (1.83, 2.41)
Calculations and Intervals on Original Scale
```


11.2.2 Confidence intervals for a proportion p

- Case of large samples $(n p \geq 5$ and $n(1-p) \geq 5)$
- $\frac{\text { Definition: }}{p \text { is: }}$ A confidence level at level $(1-\alpha)$ for the unknown proportion

$$
i c_{1-\alpha}(p)=\left[\hat{p}-u_{1-\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} ; \hat{p}+u_{1-\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] .
$$

- Conditions for validity: The required conditions ($n p \geq 5$ and $n(1-p) \geq$ 5) can be "checked" a posteriori by replacing p with the boundaries of the confidence interval. If the conditions are not verified, use the exact method given for the case of small samples.
- R instruction: The function binom.approx () from package epitools can be used.
- Example of use: We wish to build a confidence interval for the proportion of men (coded 2 below) amongst elderly people in Bordeaux, from the nutrition study.

```
> require(epitools)
> table(gender) # Sampling distribution of the gender
                                    # variable.
gender
    12
    85141
> binom.approx(141,226)[c("lower","upper")] # Calculating
                                    # the CI
                                    # with n=226.
```

 lower upper
 10.56073930 .6870483

Warning

The function prop.test () also gives a confidence interval for the proportion, based on the score statistic.

- Case of small samples: exact calculation

- Definition: A confidence interval at level $(1-\alpha)$ for proportion p comes from

$$
n \hat{\mathrm{p}} \sim \operatorname{Bin}(n, p)
$$

- R instruction: You can use the function binom.test ().
- Example of use: We return to the previous example to compute exactly the confidence interval for the proportion of men amongst elderly people in Bordeaux.
> binom.test $(141,226)$ \$conf \# Computing the CI with
\# $n=226$.
[1] 0.55723210 .6872590
attr(, "conf.level")
[1] 0.95

Tip

The function binom.exact () from the package epitools returns the same confidence interval.

11.2.3 Confidence intervals for a variance

- Case of samples under the assumption of normality
- Definition: A confidence interval at level $(1-\alpha)$ for the variance σ^{2} is:

$$
i c_{1-\alpha}\left(\sigma^{2}\right)=\left[\frac{(n-1) \hat{\sigma}^{2}}{q_{1-\alpha / 2}^{n-1}} ; \frac{(n-1) \hat{\sigma}^{2}}{q_{\alpha / 2}^{n-1}}\right] .
$$

- \quad R instruction: The relevant function is sigma2.test(). This function is included in the package associated with this book.
- Example of use: We wish to build a confidence interval for the variance of the weight of elderly people living in Bordeaux, using the nutrition study.

```
> sigma2.test(weight,conf.level=0.9)$conf
[1] 124.8330 170.3277
attr(,"conf.level")
[1] 0.9
```

- Case of samples without the assumption of normality

When no assumption is made about the data, we suggest using a bootstrap method, as for the mean.

- Rinstruction: You can use the functions boot () and boot.ci() available in package boot.
- Example of use: We return to the data about women's cholesterol levels and compute a confidence interval for the cholesterol level without assuming normality of the data.
> chol.levels <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6)
$>$ require (boot) \# Load package boot.
> variance <- function(x,indices) var(x[indices])
> level.boot <- boot(chol.levels, variance, R=999,
+ stype="i",sim="ordinary")
> boot.ci(level.boot,conf=0.95,type=c("norm",
+ "basic", "perc","bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL:
boot.ci (boot. out=level.boot, conf=0.95, type=
c("norm", "basic", "perc", "bca"))
Intervals:
Level Normal Basic
95\% ($0.1060,0.4412$) ($0.1026,0.4448$)
Level Percentile BCa 95\% ($0.0521,0.3943$) ($0.1201,0.4670$)
Calculations and Intervals on Original Scale Some BCa intervals may be unstable

Note that for large samples where you cannot assume normality, you can use an asymptotic approach. This is available in the package asympTest. Here is an example computing a confidence interval for the weight of elderly people living in Bordeaux using the nutrition study.

```
> require(asympTest)
> asymp.test (weight,par="var")$conf
[1] 121.6842 167.9196
attr(,"conf.level")
[1] 0.95
```


11.2.4 Confidence intervals for a median

- Definition: A confidence interval at level $(1-\alpha)$ for the median m_{e} is:

$$
i c_{1-\alpha}\left(m_{e}\right)=\left[x_{\left(m_{1}\right)} ; x_{\left(m_{2}+1\right)}\right]
$$

where the $x_{(i)}$ are the ordered values of the sample of size n, m_{1} is the smallest value such that $P\left(\mathrm{~L} \leq m_{1}\right) \geq \alpha / 2$, and m_{2} is the largest value such that $P\left(\mathrm{~L} \geq m_{2}\right)>\alpha / 2$ with $\mathrm{L} \sim \operatorname{Bin}(n, 0.5)$.

- \quad R instruction: A confidence interval for the median can be computed with the function qbinom().
- Example of use: We return to the example of cholesterol levels and wish to build a 95% confidence interval for the median cholesterol level of women living in France.

```
> chol.levels <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6)
> m1 <- qbinom(0.025,length(chol.levels),0.5)
> m2 <- qbinom(1-0.025,length(chol.levels),0.5)
> median.ci <- c(sort(chol.levels)[m1],sort(chol.levels[m2+1]))
> median.ci
[1] 1.6 2.0
```


Note

It is always possible to build a bootstrap confidence interval. For this example, the percentile method returns:

```
> chol.levels <- c(3,1.8,2.5,2.1,2.7,1.9,1.5,1.7,2,1.6)
> require(boot)
> mymedian <- function(x,indices) median(x[indices])
> levels.boot <- boot(chol.levels,mymedian, R=999,
+ stype="i",sim="ordinary")
> levels.int <- boot.ci(levels.boot,conf=0.95,type="perc")
> levels.int$perc[4:5]
[1] 1.7 2.6
```

Also note that a non parametric confidence interval is implemented in the function wilcox.test().

```
> wilcox.test(chol.levels,conf.int=TRUE) $conf
[1] 1.70 2.45
attr(,"conf.level")
[1] 0.95
```


11.2.5 Confidence intervals for a correlation coefficient

- Definition: A confidence interval at level $(1-\alpha)$ for the correlation coefficient ρ is:

$$
i c_{1-\alpha}(\rho)=\left[\frac{\exp \left(2 \hat{\theta}_{\text {min }}\right)-1}{\exp \left(2 \hat{\theta}_{\text {min }}\right)+1} ; \frac{\exp \left(2 \hat{\theta}_{\text {max }}\right)-1}{\exp \left(2 \hat{\theta}_{\text {max }}\right)+1}\right]
$$

where $\hat{\theta}_{\min }=\frac{1}{2} \ln \left(\frac{1+\hat{\rho}}{1-\hat{\rho}}\right)-u_{1-\alpha / 2} \frac{1}{\sqrt{n-3}}$ and $\hat{\theta}_{\max }=\frac{1}{2} \ln \left(\frac{1+\hat{\rho}}{1-\hat{\rho}}\right)+u_{1-\alpha / 2} \frac{1}{\sqrt{n-3}}$.

- $\quad \mathrm{R}$ instruction: You can use the function cor.test().
- Example of use: We now wish to build a confidence interval for the correlation coefficient between the weight and height of elderly people living in Bordeaux, based on the nutrition study.

```
> cor.test(weight, height) $conf
[1] 0.5450122 0.7032775
attr(,"conf.level")
[1] 0.95
```


Warning

This confidence interval is only valid under the assumption of joint normality of the pair of variable, here (weight,height). If this assumption is not verified, you can always use bootstrap.

11.2.6 Summary table for confidence intervals

Table 11.3: Summary for confidence intervals.

Type	Condition for validity	R function
proportion	$n p \geq 5$ and $n(1-p) \geq 5$	prop.test (x)\$conf
mean	none	binom. test (x)\$conf
variance	$n>30$ or normality	t.test (x)\$conf
median	normality	sigma2.test (x)\$conf
correlation	none	wilcox.test (x)\$conf

- SECTION 11.3

Standard hypothesis testing

We present briefly the philosophy of hypothesis testing.
Hypothesis tests propose a tool to aid decision or to validate an assertion of interest \mathcal{H}_{1} (often called the "alternative hypothesis"). This statistical decision will be made based on a decision rule, which is intuitively built from a test statistic T (which depends on an observed sample). This decision may be wrong, so it is important to measure the risk of accepting \mathcal{H}_{1} for each of the situations which are described by not- \mathcal{H}_{1}. These risks of wrongly accepting \mathcal{H}_{1} are called risks of the first kind and are defined under not $-\mathcal{H}_{1}$. We then aim at controlling the worse (largest) of these risks, which is defined for a specific situation of not- \mathcal{H}_{1}, usually noted \mathcal{H}_{0}
and called the "null hypothesis". Thus any decision rule is associated with a maximum risk. Amongst potential decision rules, we choose the one which guarantees a low maximum risk α, specified in advance (usually 5%). This is called the level of significance α of the test.

When we apply this decision rule to an oberved data set, it is interesting to know what is the smallest significance level that would have led to accepting \mathcal{H}_{1}. In both cases, the answer is what is called the p-value, defined as the (maximal) risk level that would lead to accepting \mathcal{H}_{1}. The p-value is given by any statistical software, and the user can then compare this risk to a significance level α (fixed by the user or by some custom). Its interpretation is extremely simple: the smaller the p-value, the more reliable the decision (to accept the assertion of interest \mathcal{H}_{1}).

In the same context, it is worth mentioning the concept of power of a test: this function measures the probability of accepting \mathcal{H}_{1} under any situation. These concepts will be explained and detailed, using the power of \mathbf{R}, in the practical section. The remainder of this section gives a catalogue of classical statistical testing procedures and of R instructions to put them to use. Unless specified otherwise, the significance level of all tests presented hereafter is fixed at $\alpha=5 \%$.

Advanced users

Although we prefer our approach of hypothesis testing, which insists on the assertion of interest \mathcal{H}_{1}, we present a mathematical curiosity which explains why some authors (often mathematicians) use the notation \mathcal{H}_{0} to designate not- \mathcal{H}_{1}. This makes sense from a mathematical point of view, since the logic of hypothesis testing is similar to proof by contradiction. Consider the simplistic example where we wish to prove $\mathcal{H}_{1}: \mu_{\mathrm{X}}>\mu_{0}$ based on a sample $\mathbf{X}_{n}=$ ($\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$) of i.i.d. r.v.s following the distribution $\mathcal{N}\left(\mu_{\mathrm{X}}, 1\right)$.
(1) We reason by contradiction and suppose our hypothesis \mathcal{H}_{1} is wrong. We are then in the contrary of \mathcal{H}_{1}, which is noted here $\mathcal{H}_{0}: \mu_{\mathrm{x}} \leq \mu_{0}$. For example, this corresponds to the situation where $\mu_{\mathrm{X}}=\tilde{\mu}$ for some value $\tilde{\mu}$ lesser than or equal to μ_{0}.
(2) We then wish to measure the plausibility of the contradiction hypothesis \mathcal{H}_{0}. To this end, we shall measure how negative is the unknown spread $d=\mu_{\mathrm{X}}-\mu_{0}$, estimated by the test statistic $\mathrm{T}=\hat{\mu}_{\mathrm{X}}-\mu_{0}=\widetilde{\mathrm{T}}+\left(\tilde{\mu}-\mu_{0}\right)$, where $\widetilde{\mathrm{T}}=\left(\hat{\mu}_{\mathrm{X}}-\tilde{\mu}\right) \sim \mathcal{N}(0,1 / n)$.
(3) The data, which carry information about the value of μ_{X} since they were generated from a distribution with this expectation, give a realization $t_{o b s}$ of the statistic T . If \mathcal{H}_{0} were true, then the random variable $\mathrm{T}=\hat{\mu}_{\mathrm{X}}-\mu_{0}$, which measures the spread between μ_{X} and μ_{0}, would be unlikely to produce large values. Thus:

$$
\begin{aligned}
p(\tilde{\mu}):=P_{\mu_{\mathrm{x}}=\tilde{\mu}}\left[\mathrm{T} \geq t_{o b s}\right]= & P_{\mu_{\mathrm{x}}=\tilde{\mu}}\left[\widetilde{\mathrm{T}}+\tilde{\mu}-\mu_{0} \geq t_{o b s}\right] \\
= & P_{\mu_{\mathrm{x}} \tilde{\mu}\left[\widetilde{\mathrm{~T}} \geq t_{o b s}-\left(\tilde{\mu}-\mu_{0}\right)\right]} \\
& \text { from (1) } \\
\leq & P_{\mu_{\mathrm{x}}=\tilde{\mu}}\left[\widetilde{\mathrm{T}} \geq t_{o b s}\right]:=\tilde{p} \\
& \text { (independent from } \tilde{\mu} \text { here). }
\end{aligned}
$$

Note that $p(\tilde{\mu})$ (of which we do not know the numerical value) can be seen as an extension of the p-value for the situation $\tilde{\mu}$ and that \tilde{p} is only a computable upper bound, used to control this extended p-value. If the value $\tilde{p}=P\left[\mathcal{N}(0,1 / n)>t_{\text {obs }}\right]$ is very small (and thus the probability $p(\tilde{\mu})$ is even smaller), we get a (quasi) contradiction since the event $\left\{\mathrm{T} \geq t_{\text {obs }}\right\}$ with probability $p(\tilde{\mu})$ did occur, even though we expected it to almost never happen under \mathcal{H}_{0}. By contradiction, our hypothesis \mathcal{H}_{1} is certainly true and \tilde{p} (smallest upper bound of the $p(\tilde{\mu}), \tilde{\mu} \leq \mu_{0}$, attained when $\tilde{\mu}=\mu_{0}$) expresses the strength of the contradiction (or of conviction) of not $-\mathcal{H}_{1}$, or the risk of being wrong when deciding \mathcal{H}_{1}. The probability \tilde{p} is nothing else than the p-value we defined earlier.

11.3.1 Parametric tests

11.3.1.1 Tests of the mean

- Comparing the theoretical mean and a reference value (case with one sample)
- Description of the test: Let X be a quantitative variable with theoretical mean μ and variance σ^{2}. Using a sample of size n, we wish to compare the theoretical mean μ to a reference value μ_{0}. The hypotheses of the test are $\mathcal{H}_{0}: \mu=\mu_{0}$ and $\mathcal{H}_{1}: \mu|\underset{<}{\mid>}| \mu_{0}$. Under \mathcal{H}_{0}, the test statistic is:

$$
\mathrm{T}=\sqrt{n}\left(\frac{\overline{\mathrm{X}}-\mu_{0}}{\hat{\sigma}}\right) \sim \mathcal{T}(n-1) .
$$

- Conditions for validity: Normally distributed data or large sample size ($n>30$).
- \quad Rinstruction: Use the function t. test ().
- Example of use: In the data set Intima-media, we wish to know whether people with a Body Mass Index (BMI) above 30 have thicker intimamedia on average than the population from which the sample is taken. We make the assumption that the theoretical mean of intima-media thickness in this population is 0.58 mm .

```
> BMI <- weight/((height/100)^2)
> measure1 <- measure[BMI>30]
> t.test (measure1,mu=0.58, alternative="greater")
    One Sample t-test
data: measure1
t = 1.5272, df = 8, p-value = 0.08262
alternative hypothesis: true mean is greater than 0.58
9 5 \text { percent confidence interval:}
    0.5715358 Inf
sample estimates:
mean of x
0.6188889
```

We cannot give a positive answer to the question, at the specified risk level $\alpha=5 \%$.

- Comparing two theoretical means (case with two samples)

- Description of the test: Let X_{1} and X_{2} be two quantitative variables (measuring the same quantity, but in two different populations). We assume that X_{1} has theoretical mean μ_{1} and variance σ_{1}^{2} and that X_{2} has theoretical mean μ_{2} and variance σ_{2}^{2}. Using estimations computed from two samples of respective size n_{1} and n_{2} from the two populations, we wish to compare μ_{1} and μ_{2}. The hypotheses of the test are $\mathcal{H}_{0}: \mu_{1}=\mu_{2}$ and $\mathcal{H}_{1}:\left.\mu_{1}\right|_{\ll} ^{>} \mid \mu_{2}$. Under \mathcal{H}_{0}, the test statistic is:

$$
\mathrm{T}=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{\hat{\sigma} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim \mathcal{T}\left(n_{1}+n_{2}-2\right)
$$

where $\hat{\sigma}^{2}=\frac{\left(n_{1}-1\right) \hat{\sigma}_{1}^{2}+\left(n_{2}-1\right) \hat{\sigma}_{2}^{2}}{n_{1}+n_{2}-2}, \hat{\sigma}_{1}$ and $\hat{\sigma}_{2}$ are estimators of the variance in the two populations.

- Conditions for validity: Normally distributed variables X_{1} and X_{2} and equal variance.
- R instruction: Use the function t.test().
- Example of use: We wish to see whether there is a significant difference of intima-media thickness between women with a physical activity and women with no such activity.

```
> measure.SPORT.1 <- measure[SPORT==1&GENDER==2]
> measure.SPORT.0 <- measure[SPORT==0&GENDER==2]
> t.test(measure.SPORT.1,measure.SPORT.0,var.equal=F)
    Welch Two Sample t-test
data: measure.SPORT.1 and measure.SPORT.0
t = -1.4693, df = 53.179, p-value = 0.1476
alternative hypothesis: true difference in means is not
                                    equal to 0
9 5 \text { percent confidence interval:}
    -0.07488130 0.01155649
sample estimates:
mean of x mean of }
0.5130435 0.5447059
```

We cannot give a positive answer to the question, at the specified risk level $\alpha=5 \%$.

Warning

However, we need to check the hypothesis of equal variances (see the next section). Thus the value of the argument var. equal in the function t.test() should be set depending on the result of the test of equal variances. The test statistic is then:

$$
\mathrm{T}^{*}=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{\sqrt{\frac{\hat{\sigma}_{1}^{2}}{n_{1}}+\frac{\hat{\sigma}_{2}^{2}}{n_{2}}}}
$$

This statistic follows a Student distribution; the number of degrees of freedom can be computed using Satterthwaite's approximation. For large samples, the statistic T^{*} follows a $\mathcal{N}(0,1)$ distribution.

- Case of paired samples
- Description of the test: We wish to compare the theoretical means of two random variables X_{1} and X_{2} based on two paired samples. To this end, we use the difference random variable $\mathrm{D}=\mathrm{X}_{1}-\mathrm{X}_{2}$, and we compare the theoretical mean $\delta=\mu_{1}-\mu_{2}$ of D with the reference value 0 . We are thus back to the case of a test of the mean for one sample. The hypotheses of the test are $\mathcal{H}_{0}: \mu_{1}-\mu_{2}=0$ and $\mathcal{H}_{1}: \mu_{1}-\mu_{2}|\underset{<}{>}| 0$. Under \mathcal{H}_{0}, the test statistic is:

$$
\mathrm{T}=\sqrt{n} \frac{\overline{\mathrm{D}}}{\hat{\sigma}} \sim \mathcal{T}(n-1) .
$$

- Conditions for validity: Normally distributed data or large sample size ($n>30$).
- $\underline{\mathrm{R} \text { instruction: }}$ Use the function t . test () with the argument paired=TRUE.
- Example of use: We wish to compare the results from two labs for a specific examination. Both labs made the necessary measurement on fifteen patients.

```
> dose.lab1 <- c(22,18,28,26,13,8,21,26,27,29,25,24,
+ 22,28,15)
> dose.lab2 <- c(25,21,31,27,11,10,25,26,29,28,26,23,
+ 22,25,17)
> t.test(dose.lab1,dose.lab2,paired=TRUE)
    Paired t-test
data: dose.lab1 and dose.lab2
t = -1.7618, df = 14, p-value = 0.0999
alternative hypothesis: true difference in means is not
                                    equal to 0
95 percent confidence interval:
    -2.0695338 0.2028671
sample estimates:
mean of the differences
    -0.9333333
```

At the specified risk level $\alpha=5 \%$, we cannot decide that the two labs give different results on average.

This test is valid when n is large or when the data can be assumed to be normally distributed. Otherwise, we advise you to use a non-parametric test such as the sign test or Wilcoxon's test (see the section on nonparametric tests).

11.3.1.2 Tests of variance

- Comparing the theoretical variance with a reference value (case with one sample)
- Description of the test: Let σ^{2} be the variance of a quantitative variable x from population \mathcal{P}. The hypotheses of the test are $\mathcal{H}_{0}: \sigma^{2}=\sigma_{0}^{2}$ and $\mathcal{H}_{1}: \sigma^{2}|\underset{<}{>}| \sigma_{0}^{2}$. Under \mathcal{H}_{0}, the test statistic is:

$$
\mathrm{T}=\frac{(n-1) \hat{\sigma}^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1) .
$$

- Conditions for validity: Variable X must follow a normal distribution.
- \quad R instruction: You can use the function sigma2.test() from the package associated with this book.
- Example of use: A factory makes cans of weight μ with precision $\sigma^{2}=$ 10 . We wish to show that the production line is faulty (the precision is not $\sigma^{2}=10$). Here are the weights from a series of twenty cans.
> weights <- c(165.1,171.5,168.1,165.6,166.8,170.0,168.8,
$+\quad 171.1,168.8,173.6,163.5,169.9,165.4,174.4,171.8$,
$+\quad 166.0,174.6,174.5,166.4,173.8)$
> sigma2.test(weights, var0=10)
One-sample Chi-squared test for given variance data: weights
x-squared $=24.2045, d f=19, p$-value $=0.3768$
alternative hypothesis: true variance is not equal to 10
95 percent confidence interval:
7.36768227 .176225
sample estimates:
var of x

12. 73924

We cannot give a positive answer to the question at the specified risk level $\alpha=5 \%$.

If the data are not normally distributed, and for large samples, you can use the function asymp.test(x,parameter= "var",reference=10). This function is included in the package asympTest.

- Comparing two theoretical variances (case with two samples)
- Description of the test: This test is often useful as a prerequisite for other tests, such as the comparison of two means in the case with small samples. Indeed, in this case, the statistic is not the same depending on whether the variances of X_{1} (variable for the first sample) and X_{2} (variable for the second sample) can be considered as equal or not. The hypotheses of the test are $\mathcal{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ and $\mathcal{H}_{1}: \sigma_{1}^{2}\left|{ }_{\ll}^{>}\right| \sigma_{2}^{2}$. Under \mathcal{H}_{0}, the test statistic is:

$$
\mathrm{T}=\frac{\hat{\sigma}_{1}^{2}}{\hat{\sigma}_{2}^{2}} \sim \mathcal{F}\left(n_{1}-1, n_{2}-1\right) .
$$

- Conditions for validity: X_{1} and X_{2} must be normally distributed.
- R instruction: You can use the function var.test().
- Example of use: In the data set Intima-media, we wish to know whether within the population of women, there is a significant difference of variance of intima-media thickness between women who have a physical activity and those who do not.
> measure.SPORT. 1 <- measure[SPORT==1\&GENDER==2]
> measure.SPORT. 0 <- measure[SPORT==0\&GENDER==2]
> var.test (measure.SPORT.1,measure.SPORT.0)
F test to compare two variances
data: measure.SPORT. 1 and measure.SPORT. 0
$F=0.303$, num $d f=22$, denom $d f=33, p$-value $=$
0.00468
alternative hypothesis: true ratio of variances is not
equal to 1
95 percent confidence interval:
0.14319080 .6815918
sample estimates:
ratio of variances
0.3029910

We can conclude that there is a significant difference in the variance of intima-media thickness between women who have a physical activity and those who do not, at the $\alpha=5 \%$ risk level.

Tip

Remember to use the function asymp. test () for large samples without the assumption of normality.

See also

For the comparison of more than two variances, see Bartlett's test, which will be presented in the section on analysis of variance, page 514.

11.3.1.3 Tests of proportion

- Comparing a theoretical proportion to a reference value (case with one sample)
- Description of the test: Let p be the unknown frequency of a trait in a given population. We observe data of presence/absence of this trait on individuals in a sample of size n in this population. The hypotheses of

$$
\mathrm{U}=\frac{\hat{\mathrm{p}}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}} \sim \mathcal{N}(0,1) .
$$

- Conditions for validity: The sample must be large enough: check that $n p_{0} \geq 5$ and $n\left(1-p_{0}\right) \geq 5$.
- \quad instruction: You can use the function prop.test().
- Example of use: Assume (and this really is no more than an assumption) that a case study called "Study of pregnant women in Abidjan" led to data collection after a large campaign of information and prevention of HIV infection, which aimed at reducing the proportion of people infected by HIV, especially amongst people aged 18 to 25 . Assume that the first aim is that the prevalence rate for pregnant women aged 18 to 25 be reduced to less than 10%. Using the subsample of pregnant women aged 18 to 25 , we therefore wish to know whether the HIV prevalence rate is less than $p_{0}=0.1$. The data set is available at the URL http://www. biostatisticien.eu/springeR/aidsafrica.xls.
> table(HIV[age<=25])
01
13710
> prop.test (10,147,0.1, alternative="less", correc=FALSE)
1-sample proportions test without continuity
correction
data: 10 out of 147 , null probability 0.1
X-squared $=1.6697, d f=1, p$-value $=0.09815$
alternative hypothesis: true p is less than 0.1
95 percent confidence interval:
0.00000000 .1105720
sample estimates:
p
0.06802721

We cannot give a positive answer to the question at the specified $\alpha=5 \%$ risk level.

- Case of small samples: In that case, the function binom.test() can be used for an exact calculation based on the binomial distribution.
> binom.test (10,147,0.1, alternative="less")
Exact binomial test
data: 10 and 147
number of successes $=10$, number of trials $=147$,
p-value $=0.1208$
alternative hypothesis: true probability of success is
less than 0.1
95 percent confidence interval:
0.00000000 .1126571
sample estimates:
probability of success
0.06802721

Once again, we cannot give a positive answer to the question, at the specified $\alpha=5 \%$ risk.

- Comparing two theoretical proportions (case with two samples)

- Description of the test: Let p_{1} (respectively p_{2}) be the unknown proportion of individuals with a given trait within a population \mathcal{P}_{1} (respectively \mathcal{P}_{2}). We wish to compare p_{1} and p_{2}. To this end, we use the frequencies $\hat{\mathrm{p}}_{1}$ and $\hat{\mathrm{p}}_{2}$ of this trait in two representative samples of the two populations, of respective sizes n_{1} and n_{2}. The hypotheses of the test are: $\mathcal{H}_{0}: p_{1}=p_{2}$

$$
\mathrm{U}=\frac{\hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2}}{\sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{n_{1}}+\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{n_{2}}}} \sim \mathcal{N}(0,1)
$$

with $\hat{\mathrm{p}}=\frac{n_{1} \hat{p}_{1}+n_{2} \hat{\mathrm{p}}_{2}}{n_{1}+n_{2}}$.

- Conditions for validity: Large samples: check that $n_{1} \hat{p} \geq 5, n_{1}(1-\hat{p}) \geq 5$, $\overline{n_{2} \hat{p}} \geq 5$ and $n_{2}(1-\hat{p}) \geq 5$.
- \quad instruction: Use the function prop.test ().
- Example of use: In the therapeutic test "Ditrame", the underlying question is whether the treatment has an effect on the HIV status of the child. If not, then the HIV status of the child is independent of the treatment followed by the mother. To answer this question, we use the table of crossed variables Mother's treatment group (TTTGRP) and Child's HIV status (HIVSTATUS). We give the observed contingency table of these two variables. The data set is available at the URL http://www.biostatisticien. eu/springeR/TME_Africa.xls.
> table(TTTGRP,HIVSTATUS)
HIVSTATUS
TTTGRP $0 \quad 1 \quad 9$

0	139	59	3

$\begin{array}{llll}1 & 152 & 41 & 7\end{array}$
> mytable <- as.matrix (table (TTTGRP, HIVSTATUS) [, c (2, 1)])
> prop.test (mytable, correc=FALSE)
2-sample test for equality of proportions without
continuity correction
data: mytable
X-squared $=3.7574, d f=1$, p-value $=0.05257$
alternative hypothesis: two.sided
95 percent confidence interval:
-0.0004122543 0.1715013839
sample estimates:
prop 1 prop 2
0.29797980 .2124352

With a risk of being wrong less than 5%, we can assert that the theoretical proportion p_{1} of children with HIV in the non-treated group is greater than the theoretical proportion p_{2} of children with HIV in the treated group.

11.3.1.4 Tests of correlation

- Comparing a theoretical correlation coefficient with a reference value (case with one sample)
- Description of the test: Let ρ be the correlation coefficient of two quantitative variables X and Y . We wish to test the hypotheses $\mathcal{H}_{0}: \rho=\rho_{0}$ and $\mathcal{H}_{1}:\left.\rho\right|_{\neq} ^{\neq} \mid \rho_{0}$. Under \mathcal{H}_{0}, the test statistic is:

$$
\mathrm{U}=\frac{\mathrm{Z}-\mu_{\mathrm{Z}}}{\sigma_{\mathrm{Z}}} \sim \mathcal{N}(0,1)
$$

with $Z=\frac{1}{2} \ln \left(\frac{1+\hat{\rho}}{1-\hat{\rho}}\right), \mu_{Z}=\frac{1}{2} \ln \left(\frac{1+\rho_{0}}{1-\rho_{0}}\right), \sigma_{Z}^{2}=\frac{1}{n-3}$.
If we are interested in the linear association between X and Y (tested by taking $\rho_{0}=0$), then the test statistic under \mathcal{H}_{0} is:

$$
\mathrm{T}=\frac{\hat{\rho} \sqrt{n-2}}{\sqrt{1-\mathrm{R}^{2}}} \sim \mathcal{T}(n-2)
$$

- Conditions for validity: The pair (X, Y) follows a joint normal distribution.
- R instruction: You can use the function cor.test() if you are testing the linear association between X and Y . For a value other than $\rho_{0}=0$, you can use the function cor0. test() available in the package associated with this book.
- Example of use: In the data set BMI-child, we are interested in the linear association between height and weight.

```
> cor.test(weight,height)
```

 Pearson's product-moment correlation
 data: weight and height
$t=13.4327, d f=150, p$-value $<2.2 e-16$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.65705270 .8036174
sample estimates:
cor
0.7389562

At the 5% risk level, we can assert that there is a linear association between height and weight.

- Comparing two theoretical correlation coefficients (case with two samples)
- Description of the test: We are given two independent populations. Let ρ_{1} be the correlation coefficient between X and Y in population 1, and ρ_{2} the correlation coefficient between X and Y in population 2 . We wish to test whether these two correlation coefficients are equal, based on two samples of size n_{1} and n_{2}. The hypotheses of the test are $\mathcal{H}_{0}: \rho_{1}=\rho_{2}$ and $\mathcal{H}_{1}: \rho_{1}|\underset{<}{\neq}| \rho_{2}$. Under \mathcal{H}_{0}, the test statistic is:

$$
\mathrm{U}=\frac{\mathrm{Z}_{1}-\mathrm{Z}_{2}}{\sqrt{1 /\left(n_{1}-3\right)+1 /\left(n_{2}-3\right)}} \sim \mathcal{N}(0,1)
$$

with $Z_{1}=\frac{1}{2} \ln \left(\frac{1+\hat{\rho}_{1}}{1-\hat{\rho}_{1}}\right)$ and $Z_{2}=\frac{1}{2} \ln \left(\frac{1+\hat{\rho}_{2}}{1-\hat{\rho}_{2}}\right)$, where $\hat{\rho}_{1}$ and $\hat{\rho}_{2}$ are the estimators of the correlation coefficients.

- Conditions for validity: In both populations, the pair (X, Y) must follow a joint normal distribution.
- R instruction: You can use the function cor.test.2.sample() available in the package associated with this book.
- Example of use: In the data set BMI-child, we wish to compare the intensity of the relation height-weight between the group of girls and the group of boys.

```
> indg <- which(GENDER=="F") # To get the indices of girls.
> indb <- which(GENDER=="M") # To get the indices of boys.
> cor.test.2.sample(height[indg],weight[indg],
+ height[indb],weight[indb])
$statistic
[1] -1.67379
$p.value
[1] 0.09417185
```

At the 5% risk level, we cannot show a significant difference between the two coefficients of linear correlation.

11.3.2 Independence tests

11.3.2.1 χ^{2} test for independence

- Description of the test: Let X_{1} and X_{2} be two qualitative variables (or variables made qualitative by grouping): X_{1} has l modalities and X_{2} has c modalities. We wish to know whether these two variables are dependent, i.e. whether the modalities of variable X_{2} are not distributed in the same way in each of the l sub-populations made of individuals taking each of the l modalities of variable X_{1}. We know the value of these modalities for n individuals; these data are usually given in a contingency table (or table of observed frequencies) and we compare this table to the theoretical contingency table for n individuals calculated under the assumption of independence of the two variables. The hypotheses are \mathcal{H}_{0} : variables X_{1} and X_{2} are independent and \mathcal{H}_{1} : the variables are not independent. Under \mathcal{H}_{0}, the test statistic is

$$
\mathrm{x}^{2}=\sum_{i=1}^{c} \sum_{j=1}^{l} \frac{\left(\mathrm{~N}_{i j}-t_{i j}\right)^{2}}{t_{i j}^{2}} \sim \chi^{2}((c-1)(l-1))
$$

where $\mathrm{N}_{i j}$ is the observed value and $t_{i j}$ is the theoretical value calculated under \mathcal{H}_{0}.

- Conditions for validity: The theoretical values $t_{i j}$ must be greater than 5 ; otherwise, you can use Yates' χ^{2} (if the values are greater than 2.5 and only for 2×2 tables), or Fisher's exact test.
- \quad instruction: Use the function chisq. test () with the argument correct=FALSE.
- Example of use: We return to the example of the "Ditrame" study, where the underlying question is to know whether treatment has an effect on the HIV status of the child.

```
> mytable
    HIVSTATUS
TTTGRP 1 0
    O 59139
    141152
> chisq.test(mytable,correct=FALSE)
        Pearson's Chi-squared test
data: mytable
X-squared = 3.7574, df = 1, p-value = 0.05257
```

At the 5% risk level, we cannot show that treatment has an effect on the HIV status of the child.

You can also use the command summary (table(HIVSTATUTS, TTTGRP)) to get the result of the χ^{2} independence test.

Note

You can perform a χ^{2} test of mutual independence for $d \geq 2$ qualitative variables (see [5]). The χ^{2} statistic is then

$$
\mathrm{X}^{2}=\sum_{A \in I_{d}} \mathrm{~T}_{A} \text { with }\left\{\begin{array}{l}
\mathrm{T}_{A}=\mathrm{X}_{A}^{2} \text { if }|A|=2 \\
\mathrm{~T}_{A}=\mathrm{X}_{A}^{2}-\sum_{\{B \subset A ; 1<|B|<|A|\}} \mathrm{T}_{B} \text { if }|A|>2
\end{array}\right.
$$

In the last equation, I_{d} is the family of all subsets of $\{1, \ldots, d\}$ of size strictly greater than 1 . Furthermore, if we are given the contingency array M of the d quantitative variables, then $\mathrm{X}_{A}^{2}(|A| \geq 2)$ can be obtained with the instruction summary (margin.table(M, A)) \$statistic where A is the vector of indices of elements in A. Another advantage of this (orthogonal) decomposition of X^{2}, obtained by induction, is that each term T_{A} describes the mutual dependence of variables indexed by the set A.
The R function which performs this operation is A.dep.tests(). It is included in the package IndependenceTests.

11.3.2.2 Yates' χ^{2} test

- Description of the test: The χ^{2} test with Yates' correction (or Yates' χ^{2}) should be used when you wish to perform a χ^{2} independence test for a 2×2 table, but at least one of the theoretical counts is less than 5; the theoretical counts should not be too small (> 2.5). The general setting is the same as the χ^{2} independence test. Under \mathcal{H}_{0}, the test statistic is

$$
\mathrm{X}^{2}=\sum_{i=1}^{c} \sum_{j=1}^{l} \frac{\left(\left|\mathrm{~N}_{i j}-t_{i j}\right|-0.5\right)^{2}}{t_{i j}^{2}} \sim \chi^{2}(1)
$$

- \quad instruction: You can use the function chisq. test().
- Example of use: In the data set Intima-media, we select people aged 50 or more and we wish to test whether their smoking habits are linked to gender.

```
> table.cont <- as.matrix(table(GENDER[AGE>=50],
+ tobacco[AGE>=50]))
> chisq.test(table.cont)$expected # Table of theoretical counts.
```

```
            0 1 2
    1 2.88 0.48 2.64
    2 9.12 1.52 8.36
> table.cont1 <- cbind(table.cont[,1],table.cont[,2]+
+ table.cont[,3])
> chisq.test(table.cont1)
    Pearson's Chi-squared test with Yates' continuity
    correction
data: table.cont1
X-squared = 1.6732, df = 1, p-value = 0.1958
```

We cannot give a positive answer to the question at the 5% risk level.

11.3.2.3 Fisher's exact test

- Description of the test: Fisher's exact test is used when the conditions for the χ^{2} independence test and Yates' χ^{2} test are not verified, i.e. for small theoretical counts. Fisher's test can be used for tables with more than two rows or columns.
- \quad Rinstruction: Use the function fisher.test ().
- Example of use: The definition of obesity is that an individual with BMI greater than $30 \mathrm{~kg} / \mathrm{m}^{2}$ is obese. We make the hypothesis that obesity is more common in people less than 50 years old. This means that the BMI variable is linked to age. We wish to answer this question using the "Intima-media" study. To this end, we study the joint distribution of the following variables: under 50 / over 50 and $\mathrm{BMI}<30$ / BMI >30. We get the following distribution:

```
> bmi <- weight/(height/100)^2
> obesity <- factor(bmi<30)
> levels(obesity) <- c("BMI>30","BMI<30")
> age50 <- factor(AGE>=50)
> levels(age50) <- c("under 50","over 50")
> table(age50,obesity)
    obesity
age50 BMI>30 BMI<30
    under 50 8 77
    over 50 1 24
> bmi.table <- as.matrix(table(obesity,age50))
> fisher.test(bmi.table,alternative="greater")
    Fisher's Exact Test for Count Data
data: bmi.table
p-value = 0.3478
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
    0.3830018 Inf
```

```
sample estimates:
odds ratio
    2.477058
```

We cannot show that obesity is significantly more frequent amongst people under the age of 50 .

```
Note
```

Fisher's exact test makes it possible to have a unilateral alternative hypothesis.

Tip

The function CrossTable() from the package gmodels calculates independance tests (chi-square, Fisher exact and McNemar). It also produces outputs similar to those provided by SAS or SPSS.

11.3.3 Non-parametric tests

11.3.3.1 Goodness-of-fit tests

- Shapiro-Wilk test
- Description of the test: The Shapiro-Wilk test is built specifically to test whether a continuous variable X is normally distributed. It is the most powerful test of normality. The hypotheses are: $\mathcal{H}_{0}:$ x follows a normal distribution and $\mathcal{H}_{1}: \mathrm{X}$ does not follow a normal distribution. The test statistic is

$$
\mathrm{W}=\frac{\mathrm{T}^{2}}{\hat{\sigma}^{2}}
$$

where $\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}$ and $\mathrm{T}^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{[n / 2]} a_{i}\left(\mathrm{X}_{(n-i+1)}-\mathrm{X}_{(i)}\right)\right]^{2}$.
The a_{i} are the coefficients of the Shapiro-Wilk table available in most books of statistical tables.

- \quad instruction: You can use the function shapiro.test().
- Example of use: We return to the Intima-media data set used in the case "mean comparison with one sample". We wish to invalidate the assumption of normality of intima-media thickness for people with BMI above 30.

```
> measure1
```



```
> shapiro.test(measure1)
    Shapiro-Wilk normality test
data: measure1
W = 0.8835, p-value = 0.1708
```

We cannot show that the data are not normal, at the 5% risk level.

- $\quad \chi^{2}$ test for fit to a distribution

The χ^{2} test for fit to a distribution is used to check whether a qualitative variable follows a given theoretical distribution. It can be used to check whether a quantitative variable follows a given theoretical distribution, but in that case, it must first be grouped into classes to make it qualitative.

- Description of the test: Let X be a qualitative random variable with k modalities. We assume that X follows the distribution where modality i has probability p_{i}. Given a sample of size n, we test whether X follows the distribution defined by the p_{i}. The hypotheses of the test are $\mathcal{H}_{0}: \mathrm{X}$ follows the distribution defined by the p_{i} and $\mathcal{H}_{1}: \mathrm{X}$ does not follow this distribution. The test statistic is:

$$
\sum_{i=1}^{k} \frac{\left(\mathrm{~N}_{i}-n p_{i}\right)^{2}}{n p_{i}} \sim \chi^{2}(k-1)
$$

where N_{i} is the observed count for modality i.

- Conditions for validity: All theoretical counts $n p_{i}$ are greater than or equal to 5 .
- $\underline{\mathrm{R} \text { instruction: } \text { You can use the function chisq. test (). } ~}$
- Example of use: A study on hypertension was performed, and we wish to check whether the sample of patients is representative of the general population from an ethnic point of view. We know that in the general population of Mauritius, the ethnic distribution is: Hindu 51%, Muslim 17%, Creole 27%, Chinese 3% and Other 2%. The data are available in the file http://www.biostatisticien.eu/springeR/HTAen.xls.
> table (ETHNIC)
ETHNIC

```
1 2 3 4
225
> ni <- cbind(t(as.vector(table(ETHNIC))),0)
> chisq.test(ni,p=c(0.51,0.17,0.27,0.03,0.02))
    Chi-squared test for given probabilities
data: ni
X-squared = 22.0659, df = 4, p-value = 0.0001945
```

At the 5% risk level, we can conclude that the sample of patients is significantly not representative of the general population from an ethnic point of view.

- Kolmogorov-Smirnov test for one sample

- Description of the test: The aim of this test is the same as the χ^{2} test for fit to a distribution. We wish to compare an empirical distribution to a completely specified theoretical distribution. Let F_{0} be the specified cumulative distribution function and F the cumulative distribution function of X. We are interested in the point at which the difference between the two cumulative distribution functions is greatest in absolute value, and we compare this value to the critical value given by the Kolmogorov-Smirnov table for one sample. The hypotheses of the test are: $\mathcal{H}_{0}: F=F_{0}$ and $\mathcal{H}_{1}: F|\underset{\ll}{>}| F_{0}$. The test statistic is

$$
\mathrm{D}=\sup _{x}\left|\hat{\mathrm{~F}}_{\mathbf{X}_{n}}(x)-F_{0}(x)\right|
$$

where $\hat{\mathrm{F}}_{\mathbf{X}_{n}}(\cdot)$ is the empirical c.d.f. of the sample \mathbf{X}_{n}.

- \quad instruction: Use the function ks.test().
- Example of use: We return to the can factory example and try to invalidate the assumption of normality, which is necessary for the variance test. The cans are made with average weight $\mu=170 \mathrm{~g}$ and precision $\sigma^{2}=10$. We test the normality of the series of twenty cans made by the factory. $>$ weights <- c(165.1,171.5,168.1,165.6,166.8,170.0,168.8, $+\quad 171.1,168.8,173.6,163.5,169.9,165.4,174.4$, $+\quad 171.8,166.0,174.6,174.5,166.4,173.8)$
> ks.test (weights, "pnorm",170,sqrt(10))
One-sample Kolmogorov-Smirnov test data: weights
$D=0.1942$, p-value $=0.4376$
alternative hypothesis: two-sided
At the 5% risk level, we cannot show that the data are not normally distributed.

- Kolmogorov-Smirnov test for two samples

- Description of the test: The aim of this test is to compare two distributions F_{1} and F_{2}. We are interested in the point at which the difference between the two empirical cumulative distribution functions ($\hat{\mathrm{F}}_{\mathbf{X}_{n, 1}}$ and $\hat{\mathrm{F}}_{\mathbf{X}_{n, 2}}$) is greatest and we compare this value to the critical value given by the Kolmogorov-Smirnov table for two samples. The hypotheses of the
test are: $\mathcal{H}_{0}: F_{1}=F_{2}$ and $\mathcal{H}_{1}: F_{1} \left\lvert\, \begin{aligned} & > \\ & \underset{<}{ } \mid F_{2} \text {. The test statistic is }\end{aligned}\right.$

$$
\mathrm{D}=\sup _{x}\left|\hat{\mathrm{~F}}_{\mathbf{X}_{n, 1}}(x)-\hat{\mathrm{F}}_{\mathbf{X}_{n, 2}}(x)\right| .
$$

- R instruction: You can use the function ks.test().
- Example of use: Using the data set Intima-media, we wish to see whether men who have quit smoking are younger that men who smoke. In the sample, there are twelve smokers and nine former smokers. The sample size is small; we do not know the distribution of the age variable in this population and therefore cannot use a Student test to compare the means. The test is unilateral, since the hypothesis is that smokers are younger than former smokers.

```
> table(tobacco,GENDER)
    GENDER
tobacco 1 }
    0 3240
    1 9}
    2 12 8
> ks.test (AGE[GENDER==1&tobacco==1], AGE [GENDER==1&tobacco==2],
+ alternative="greater")
            Two-sample Kolmogorov-Smirnov test
data: AGE[GENDER == 1& tobacco == 1] and AGE[GENDER == 1&
        tobacco == 2]
D^+ = 0.6389, p-value = 0.01502
alternative hypothesis: the CDF of x lies above that of }
```

In the population under study, we have shown at the 5% risk level that men who have quit smoking are younger than men who smoke.

11.3.3.2 Tests of position

- \quad Sign test or test of the median for one sample
- Description of the test: We wish to compare the theoretical median of a quantitative variable X (denoted by m_{e}) to a reference value m_{0}, with no assumption about the data. The hypotheses of the test are $\mathcal{H}_{0}: m_{e}=m_{0}$ or equivalently $P\left(X-m_{0}>0\right)=0.5$ and $\mathcal{H}_{1}: m_{e}\left|\begin{array}{c}\underset{~}{\mid} \\ <\end{array}\right| m_{0}$ or equivalently $\left.P\left(X-m_{0}>0\right)\right|_{\neq} ^{>} \mid 0.5$. Under \mathcal{H}_{0}, the test statistic is:

$$
K \sim \operatorname{Bin}(n, 0.5)
$$

where K is the number of values strictly greater than m_{0}. This test is therefore equivalent to a test of proportion.

- R instruction: You can use the functions prop.test() or binom.test().
- Example of use: The median price of one bedroom flats in the Grenoble region in 2008 was 130 . We are given a sample of size $n=32$ of prices of one bedroom flats (in thousands of euros), from the free monthly magazine L'Offre Immobilière, issue number 91 (January 2009). We wish to know whether prices are increasing.

```
> m0 <- 130
```

> prices <- c(230.00,148.00,126.00,134.62,155.00,157.70,

+ 160.00,225.00,125.00,109.00,157.00,115.00,
$+\quad 125.00,225.00,118.00,179.00,176.00,125.00$,
$+\quad 123.00,180.00,151.00,120.00,143.00,170.00$,
$+\quad 190.00,233.00,148.72,189.00,121.00,149.00$,
$+\quad 225.00,240.00)$
> sum(prices-m0>0)
[1] 22
> median(prices)
[1] 153
> prop.test ($22,32,0.5$,"greater")
1-sample proportions test with continuity
correction
data: 22 out of 32, null probability 0.5
X-squared $=3.7812, d f=1$, p-value $=0.02591$
alternative hypothesis: true p is greater than 0.5
95 percent confidence interval:
0.52669651 .0000000
sample estimates
p
0.6875

We can conclude, at the 5% risk level, that prices are increasing.

- Sign test or median test for two independent samples

- Description of the test: The median test is a test which compares the medians $m_{e_{1}}$ and $m_{e_{2}}$ of two quantitative variables X_{1} and X_{2} using data from two independent samples of these variables. The hypotheses of the test are $\mathcal{H}_{0}: m_{e_{1}}=m_{e_{2}}$ and $\mathcal{H}_{1}:\left.m_{e_{1}}\right|_{\mid \ll} ^{>} \mid m_{e_{2}}$. Under \mathcal{H}_{0}, we compute the common median $\widehat{\mathrm{m}_{e}}$ for the two samples joined together. We then build a 2×2 table of counts of values which are smaller or greater than the median in the samples. This table is used as a χ^{2} contingency table. We can then perform a χ^{2} test, or (depending on the sample size), a χ^{2} test with Yates' correction or an exact Fisher test.
- R instruction: You can use the functions chisq.test() or fisher.test().
- Example of use: We return to the data set Intima-media and wish to test whether women who have quit smoking are younger than women who smoke. In this example, there are nine smokers and eight former smokers. The sample size is small and we cannot assume that the age variable is normally distributed in this population. We therefore cannot compare the means; it becomes interesting to perform a median test.

```
> Me <- median (AGE [GENDER==2&tobacco>0])
> tab.obs <- table(tobacco[tobacco>0&GENDER==2&AGE!=Me],
+ AGE[GENDER==2&tobacco>0&AGE! =Me] >Me)
> rownames(tab.obs) <- c("Former smoker","Smoker")
> colnames(tab.obs) <- c("AGE<ME","AGE>ME")
> tab.obs
```

 \(A G E<M E\) AGE>ME
 Former smoker 6
 Smoker 26
 > fisher.test (tab.obs, alt="greater")
Fisher's Exact Test for Count Data
data: tab.obs
p-value $=0.06597$
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0.878644 Inf
sample estimates:
odds ratio
7.613556

At the 5% risk level, we cannot assert that women who have quit smoking are younger than women who smoke.

- \quad Sign test for two paired samples
- Description of the test: We wish to compare two paired quantitative series. We use the series of differences. We delete all concordant pairs (pairs for which the two values are equal) and keep only the n discordant pairs (non-zero difference between the two values). The sign test only takes into account the sign of the difference of discordant pairs. Let N^{+}be the number of positive pairs and N^{-}the number of negative pairs. The test statistic is :

$$
\mathrm{S}=\min \left(\mathrm{N}^{+}, \mathrm{N}^{-}\right) \sim \operatorname{Bin}(n, 0.5)
$$

- R instruction: You can use the functions prop.test() or binom.test() after calculating the realization of S. Note that when $n \geq 20$, the distribution of S can be approximated by $\mathcal{N}\left(\frac{n}{2}, \frac{n}{4}\right)$.
- Example of use: We return to the example of results from two labs, which we previously analysed using a test of comparison of means under the assumption of normality. The sign test does not require any assumption. > dose.lab1 <- c(22, 18, 28, 26, 13, 8, 21, 26, 27, $+\quad 29,25,24,22,28,15)$
> dose. lab2 <- c $(25,21,31,27,11,10,25,26,29$,
$+\quad 28,26,23,22,25,17)$
> dif <- (dose.lab1-dose.lab2)
$>$ nminus <- sum(dif<0)
> nplus <- sum (dif>0)
> binom.test (min(nplus,nminus), nplus+nminus)
Exact binomial test
data: min(nplus, nminus) and nplus + nminus
number of successes $=4$, number of trials $=13$, p-value
$=0.2668$
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.09092040 .6142617
sample estimates:
probability of success

$$
0.3076923
$$

At the 5% risk level, we cannot conclude that the two labs give different results.

- Wilcoxon or Mann-Whitney test for two independent samples

- Description of the test: The Wilcoxon rank test is a non-parametric test which tests whether two distributions F_{1} and F_{2} are equal. The hypotheses of the test are: $\mathcal{H}_{0}: F_{1}=F_{2}$ and $\mathcal{H}_{1}: F_{1}|\underset{<}{>}| F_{2}$. The idea of the test is as follows: we merge the two series and sort the values from smallest to largest; we assign rank 1 to the smallest value, rank 2 to the next value, and so on. We then calculate the score of each series by summing the ranks of the values from that series. Using the appropriate table, we then decide whether the scores are compatible with the hypothesis \mathcal{H}_{0} of equal distributions. By convention, the test statistic S is the score of the sample with the smallest size. The statistic $\mathrm{W}=\mathrm{S}-\frac{n_{0}\left(n_{0}+1\right)}{2}$ is also used sometimes.
- Conditions for validity: If $n_{0}=\min \left(n_{1}, n_{2}\right) \leq 10$, then the statistic W does not follow a standard distribution, but the corresponding probabilities are given in the Mann-Whitney/Wilcoxon table (function pwilcox()).
If $\min \left(n_{1}, n_{2}\right) \geq 10$, we can consider that
$\mathrm{W} \sim \mathcal{N}\left(\mu_{W}=\frac{n_{1} n_{2}}{2} ; \sigma_{W}^{2}=n_{1} n_{2} \frac{n_{1}+n_{2}+1}{12}\right)$. If there are ties in the ranks, we also use a normal approximation, but with
$\sigma_{W}^{2}=\frac{n_{1} n_{2}}{12} \times\left[\left(n_{1}+n_{2}+1\right)-\sum_{j=1}^{g} \frac{t_{j}^{3}-t_{j}}{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-1\right)}\right]$ where g is the number
of groups of tied values and t_{j} the number of tied values in group j.
- \quad R instruction: You can use the function wilcox.test (). Use the argument exact=FALSE for an approximate calculation using the normal approximation.
- Example of use: Using the dataset Intima-media, we would like to know whether men who smoke are older than men who have quit smoking. In this sample, there are nine smokers and twelve former smokers.

```
> wilcox.test(AGE [GENDER==1&tobacco==2], AGE[GENDER==1&
+ tobacco==1],exact=FALSE,alternative="greater")
            Wilcoxon rank sum test with continuity correction
data: AGE[GENDER == 1& tobacco == 2] and AGE[GENDER == 1&
    tobacco == 1]
W = 88.5, p-value = 0.007756
alternative hypothesis: true location shift is greater
than 0
```

At the 5% risk level, we can conclude that men who smoke are older than men who have quit smoking.

Warning

To get the statistic W , you need to put the smallest sample first in the function wilcox.test().

- Wilcoxon test for two paired samples
- Description of the test: We wish to compare two paired quantitative series. We use the series of paired differences. We discard all concordant pairs (pairs for which the two values are equal) and keep only the discordant pairs (non-zero difference). Let n be the number of discordant pairs. We sort the values according to their absolute value and rank them. In case of a tie, we use the mean of the corresponding ranks. Let S^{+}be the score of the series of positive differences and S^{-}the score of the series of negative differences. The scores are calculated in the same way as for the Wilcoxon test. The hypotheses of the test are: $\mathcal{H}_{0}: F_{1}=F_{2}$ and $\mathcal{H}_{1}: F_{1}|\underset{<}{>}| F_{2}$. We can use either S^{+}or S^{-}as the test statistic.
- Conditions for validity: If $n \leq 30$, then the test statistic does not follow a standard distribution, but the corresponding probabilites can be found in the Wilcoxon table for paired series
If $n \geq 30$, then S^{+}and S^{-}follow a $\mathcal{N}\left(\frac{n(n+1)}{4} ; \frac{n(n+1)(2 n+1)}{24}\right)$ distribution.
- Rinstruction: By default, R uses the statistic $\mathrm{V}=\mathrm{S}^{+}$in the function wilcox.test() with argument paired=TRUE. Use the argument exact=FALSE
to use the normal approximation.
- Example of use: We return to the example of the results from two labs, which we analysed with the sign test. This test is more powerful than the sign test, since it also takes into account the absolute value of the differences.

```
> dose.lab1 <- c(22, 18, 28, 26, 13, 8, 21, 26, 27,
+ 29, 25, 24, 22, 28, 15)
> dose.lab2 <- c(25, 21, 31, 27, 11, 10, 25, 26, 29,
+ 28, 26, 23, 22, 25, 17)
> wilcox.test(dose.lab1,dose.lab2,paired=T,
> exact=FALSE)
            Wilcoxon signed rank test with continuity
                correction
data: dose.lab1 and dose.lab2
V = 22, p-value = 0.1047
alternative hypothesis: true location shift is not
                    equal to 0
```

At the 5% risk level, we cannot conclude that the two labs give different results.

11.3.4 Memorandum of standard tests

This table lists all the tests we have introduced.

Table 11.4: Standard tests.

Nature	Data	Conditions for validity	R function
Parametric tests:			
mean	1 sample 2 samples 2 samples 2 paired samples	$n>30$ or normality normality and equal variances normality $n>30$ or normality	```t.test(x,...) t.test(x,y,\ldots) t.test(x,y,var.equal=F) t.test(x,y,paired=T)```
variance	$\begin{aligned} & \hline 1 \text { sample } \\ & 2 \text { samples } \\ & 2 \text { samples } \\ & \hline \end{aligned}$	normality normality large sample size	$\begin{aligned} & \text { sigma2.test }(x, \ldots) \\ & \text { var.test }(x, y, \ldots) \\ & \text { asymp.test }(x, y, \ldots) \\ & \hline \end{aligned}$
correlation	1 sample 2 samples	normality, $\mathcal{H}_{0}: \rho=\rho_{0}$ normality	```cor.test(x,y..) cor.test.2.sample(x,y,\ldots.)```
proportion	1 sample 1 sample 2 samples	$n p \geq 5 \text { and } n(1-p) \geq 5$ large sample size	$\begin{aligned} & \text { prop.test }(x, \ldots) \\ & \text { binom.test }(x, \ldots) \\ & \text { prop.test }(x, y, \ldots) \end{aligned}$
Independence tests:			
$\begin{gathered} \chi^{2} \text { for independence } \\ \text { Yates' } \chi^{2} \\ \text { Fisher's exact test } \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered}\text { contingency table } \\ 2 \times 2 \text { table } \\ \text { contingency table }\end{gathered}\right.$	theoretical counts ≥ 5 theoretical counts ≥ 2.5	```chisq.test(.,correct=F) chisq.test() fisher.test()```
Tests of fit to a distribution:			
Shapiro-Wilk χ^{2} of fit to a distribution Kolmogorov-Smirnov	1 sample 1 sample 1 sample 2 samples	theoretical counts ≥ 5	```shapiro.test(x,...) chisq.test() ks.test(x,.) ks.test(x,y)```
Tests of position:			
median sign test Mann-Whitney Mann-Whitney Wilcoxon	1 sample 2 samples 2 paired samples 2 samples 2 samples 2 paired samples	$\begin{aligned} & \min \left(n_{1}, n_{2}\right) \geq 10 \\ & \min \left(n_{1}, n_{2}\right) \leq 10 \end{aligned}$	```binom.test(x,) fisher.test(x,y,) binom.test(x,y,paired=T) wilcox.test(x,y,exact=F) wilcox.test(x,y) wilcox.test(x,y,paired=T)```

SECTION 11.4

Other tests

Many other tests are available in R. For example, you can get a first list of tests with the following instruction:

```
> apropos(".test")
    [1] ".runRUnitTestsGdata" ".valueClassTest"
    [3] "ansari.test" "as.krandtest"
    [5] "as.randtest" "as.rtest"
    [7] "asymp.test" "bartlett.test"
    [9] "binom.test" "Box.test"
[11] "chisq.test" "cor.test"
13] "cor.test.2.sample" "cor0.test"
[15] "file_test"
[17] "fligner.test"
"fisher.test"
"friedman.test"
[19] "gpuTtest"
21] "ks.test"
[23] "mantel.rtest"
[25] "mauchley.test"
[27] "mcnemar.test"
[29] "multispati.randtest"
[31] "oneway.test" "ormidp.test"
```

```
[33] "pairwise.prop.test" "pairwise.t.test"
[35] "pairwise.wilcox.test" "plot.krandtest"
[37] "plot.randtest" "plot.rtest"
[39] "poisson.test" "power.anova.test"
[41] "power.prop.test" "power.t.test"
[43] "PP.test" "print.krandtest"
[45] "print.randtest" "print.rtest"
[47] "procuste.randtest" "procuste.rtest"
[49] "prop.test" "prop.trend.test"
[51] "quade.test" "randtest"
[53] "randtest.amova" "randtest.between"
[55] "randtest.cca" "randtest.coinertia"
[57] "randtest.discrimin" "randtest.pcaiv"
[59] "randtest.pcaivortho" "randtest.rlq"
[61] "rate2by2.test" "rtest"
[63] "rtest.between" "rtest.discrimin"
[65] "rtest.niche" "RV.rtest"
[67] "RVdist.randtest" "shapiro.test"
[69] "sigma2.test" "t.test"
[71] "tab2by2.test" "var.test"
[73] "var0.test" "wilcox.test"
```


Note

Other tests are available in packages. For example, package nortest includes various tests of fit to normality. The functions associated with these tests are:

```
> require(nortest)
> ls("package:nortest")
[1] "ad.test" "cvm.test" "lillie.test"
[4] "pearson.test" "sf.test"
```


Memorandum

```
t.test(): test and confidence interval for the mean
var.test(): test for equality of variances
prop.test(): approximate confidence interval for a proportion
binom.test(): exact confidence interval for a proportion
cor.test(): test and confidence interval for correlation
chisq.test(): }\mp@subsup{\chi}{}{2}\mathrm{ test
fisher.test(): Fisher's test of independence
ks.test(): Kolmogorov-Smirnov test of fit to a distribution
shapiro.test(): Shapiro-Wilk test of normality
med.test(): median test
wilcox.test(): Wilcoxon test of position
boot: package for bootstrap
```


Exercises

11.1- Which function would you use to get the quantiles of a binomial distribution?
11.2- What is the use of the function pnorm()?
11.3- Give the R instruction to get a confidence interval for the mean using a sample of size 50 .
11.4- Explain the difference between the functions prop.test() and binom.test().
11.5- Name two functions which compare two cumulative distribution functions using two samples.
11.6- Which function is used to test whether a sample follows a normal distribution?
11.7- Which functions are used to test the dependence of qualitative variables?
11.8- Which package includes functions to compute confidence intervals using bootstrap?
11.9- Which formal argument of the function t.test() is used for a paired test?
11.10- What is the difference between a χ^{2} for independence and a χ^{2} for fit to a distribution? How would you perform these two tests in R?

A- Study of confidence intervals

The aim of this practical is to understand how to interpret a confidence interval. Indeed, for a confidence interval at level $1-\alpha$ of an unknown parameter, it is incorrect to say that there is a $100 \times(1-\alpha) \%$ chance that the parameter lies in the realized interval. The unknown parameter has a unique value which does not change: the probability that it lies in the realized interval is either 0 or 1 . However, it is correct to say that there is a 5% risk of being wrong by stating that the parameter lies in the realized confidence interval.

- Study of the confidence interval for the mean
11.1- Simulate $M=50,000$ samples of size $n=20$ from a normal distribution with mean $\mu=-1.2$ and variance $\sigma^{2}=2$.
11.2- For each sample, compute a 90% confidence interval of the mean μ.
11.3- Calculate the proportion of intervals which contain the value $\mu=-1.2$. What do you observe?
11.4- Repeat this procedure for the value $\mu=1$, with samples of size $n=100$ from a $\chi^{2}(1)$ distribution.
11.5- Same question with $n=10$ and a $\chi^{2}(1)$ distribution. What do you observe? How do you explain this?
11.6- Simulate a sample of size $n=20$ from a normal distribution with mean $\mu=$ -1.2 and variance $\sigma^{2}=2$. Calculate a 95% confidence interval for μ.
11.7- Repeat this operation for samples of increasing size: $n=50 ; 100 ; 1,000$; 10,$000 ; 100,000$. What do you observe?
11.8- For each of the six samples above, calculate the observed value of the statistic for a Student test of hypothesis $\mathcal{H}_{1}: \mu \neq 0$, as well as the p-value of the test (at significance level 5%). What do you observe? How do you explain this?
11.9- For a sample of size $n=100,000$, calculate a 95% confidence interval and compute the p-value of the test of hypothesis $\mathcal{H}_{1}: \mu \neq-1$.1. Compare this p-value to the one you found in the previous question with $n=50$. What do you conclude?
- Study of confidence intervals from bootstrap
11.1- Simulate $M=500$ samples of size $n=20$ from an exponential distribution with expectation $1 / \lambda=10$.
11.2- For each sample, calculate a 90% confidence interval of the mean $1 / \lambda$ using the bootstrap method.
11.3- Using the method described above, check the level of the confidence interval.
11.4- Compare this level to the one you get with a standard confidence interval for the mean (procedure t.test()).

B- Study of risks in hypothesis testing

The aim of this practical is to explore the risks associated with hypothesis testing:

- $\quad P$ [accept $\mathcal{H}_{1} \mid \mathcal{H}_{0}$ is true $]=\alpha$, the risk of deciding \mathcal{H}_{1} when in reality \mathcal{H}_{0} is true;
- $\quad P$ reject $\mathcal{H}_{1} \mid \mathcal{H}_{1}$ is true $]=\beta$, the risk of not deciding \mathcal{H}_{1} when in reality \mathcal{H}_{1} is true.
- Study of risk of the first kind
11.1- Simulate $M=500$ samples of size $n=20$ following a normal distribution with mean $\mu=4$ and variance $\sigma^{2}=1.2$.
11.2- For each sample, perform a Student test for hypotheses $\mathcal{H}_{0}: \mu=4$ and $\mathcal{H}_{1}: \mu \neq 4$ at level $\alpha=5 \%$.
11.3- Count how many times you decide \mathcal{H}_{1}. What result did you expect?
11.4- Increase the number M of simulations.
11.5- Repeat this procedure for the value $\mu=1$, with samples of size $n=100$ from a $\chi^{2}(1)$ distribution.
11.6- Same question with $n=10$. What do you observe? How do you explain this?
11.7- In fact, for each of the $M=500$ samples, we make the decision either to accept \mathcal{H}_{1}, or to reject it. Let $\mathrm{d}_{j}(1 \leq j \leq M)$ be the random variable which takes the value 1 if we decide to accept \mathcal{H}_{1} and 0 otherwise (based on the j th sample). The variable d_{j} follows a Bernoulli distribution with parameter $p=P\left[\mathrm{~d}_{j}=1\right]=P$ accept $\left.\mathcal{H}_{1}\right]$. The variables d_{j} are independent, hence the variable $\mathrm{d}=\sum_{j=1}^{M} \mathrm{~d}_{j}$ follows a binomial distribution $\mathcal{B} \operatorname{in}(M, p)$. It counts how many times we accept \mathcal{H}_{1}. If \mathcal{H}_{0} is true, and the test is well constructed (well chosen critical value), then we should have $p=P$ [accept $\mathcal{H}_{1} \mid \mathcal{H}_{0}$ is true $]=\alpha$. Calculate a 95% confidence interval for parameter p and conclude.
- Study of power
11.1- Simulate $M=500$ samples of size $n=20$ from a normal distribution with mean $\mu=5$ and variance $\sigma^{2}=1.2$.
11.2- On each sample, perform a Student test between $\mathcal{H}_{0}: \mu=4$ and $\mathcal{H}_{1}: \mu \neq 4$ at level $\alpha=5 \%$.
11.3- Count the number of times you accept \mathcal{H}_{1}. Estimate the power of the test for the situation in \mathcal{H}_{1} where $\mu=5$.
11.4- Increase the size of the sample to $n=100$ and estimate the power of the test. What do you observe?
11.5- Repeat the procedure for the test $\mathcal{H}_{0}: \mu=1$ and $\mathcal{H}_{1}: \mu \neq 1$, with samples of size $n=100$ from a $\chi^{2}(2)$ distribution.
11.6- Same question with $n=10$. What do you observe? How do you explain this?

C- A few practical examples

- Cow study

The quantity of bacteria per cm^{3} of milk from eight different cows is estimated after milking and 24 hours later. We wish to test whether the quantity of bacteria significantly increases with time.

Cow Just after milking 24 h after milking		
1	12,000	11,000
2	13,000	20,000
3	21,500	31,000
4	17,000	28,000
5	15,000	26,000
6	22,000	30,000
7	11,000	16,000
8	21,000	29,000

11.1- Answer the question under the assumption of normality of the data.
11.2- Answer the question using a sign test.
11.3- Answer the question using a Mann-Whitney test.

- East German athletes

In the 1970s, female athletes from East Germany were well known for their corpulence. The Olympic ethics committee of the time, intrigued by this "masculinity", required the services of Dr Volker Fischbach. He selected nine female athletes with identical morphological characteristics, then measured the quantity of androgens (hormones which stimulate male characteristics) per litre of blood. The results are: 3.223 .073 .172 .913 .403 .583 .233 .11 3.62.
11.1- Given that for women who do not use performance-enhancing drugs, the mean quantity of androgens is 3.1 , propose a way to test whether East German athletes used such drugs (assume normality of data).
11.2- What was Dr Fischbach conclusion?

- Drinking and driving

To study the effect of alcohol on reflexes, fourteen subjects went through a test of dexterity before and after drinking 100 ml of wine. The before and after scores are given in the following table (these are reaction times: a higher score means slower reflexes).

| Subject | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Before | 57 | 54 | 62 | 64 | 71 | 65 | 70 | 75 | 68 | 70 | 77 | 74 | 80 | 83 |
| After | 55 | 60 | 68 | 69 | 70 | 73 | 74 | 74 | 75 | 76 | 76 | 78 | 81 | 90 |

Propose a way to test whether alcohol has an effect on reflexes (assume normality of the data).

- Speed of light

In 1879, American physicist Michelson performed several experiments to check the speed of light c proposed by French physicist Cornu in 1876. Cornu proposed a value of $299,990 \mathrm{~km} / \mathrm{s}$. Michelson got the 20 following measures (we subtracted 299,990 from Michelson's values, to avoid having to handle large numbers):

850740900 1,070 930850950980980880 1,000 98093010509608101,000 1,000 960960.

These twenty observations can be considered as the observed values of twenty random variables with identical but unknown mean μ. If the conditions to measure the speed of light are satisfactory, then it is reasonable to assume that μ is the true speed of light.
11.1- Plot the data. Comment.
11.2- Test the normality of the data.
11.3- Perform a Student test to check whether Michelson's measures invalidate the value of c proposed by Cornu.
11.4- What value for the speed of light could Michelson propose after these twenty experiments?

- Cholesterol levels

Seventeen people with the same illness I are randomly assigned to two groups. The first group receives a placebo A and the second group receives a treatment B containing a vitamin. The relevant measure is capillary resistance. We get the following measurements:
Group A: $46.3 ; 42.5 ; 43.0 ; 43.9 ; 42.0 ; 41.5 ; 41.6 ; 44.4 ; 40.7$
Group B: $47.1 ; 44.5 ; 45.8 ; 49.0 ; 44.6 ; 43.7 ; 44.5 ; 47.4$
Assuming that the measure of capillary resistance is normally distributed, what can you conclude?

- Treatment-death independence

Two small groups of animals are infected by a virulent germ. The first group receives chemotherapy; the second group is not treated. We measure mortality after eight days in both groups.

	With treatment	Without treatment	Total
Dead	0	9	9
Survived	8	3	11
Total	8	12	20

Is mortality independent of treatment?

- Number of patients in the emergency ward

To study the variation of the number of emergency cases in a hospital, the number of patients was counted for the months of June, July and August. The results are:

	June	July	August
Number on patients	1,500	1,600	1,450
Number of emergency patients	675	720	610

Can we conclude that the proportion of emergency cases is the same every month?

Chapter 12
 Simple and multiple linear regression

Goals of this chapter

This chapter is a brief introduction to simple and multiple linear regression, and how to use this method in a real context (see [41] for a more complete presentation). We present the relevant \mathbf{R} commands and use a real data set as a connecting thread as we present the key concepts for this method. We treat the case of qualitative explanatory variables, as well as interaction of explanatory variables. We discuss model validation with a study of residuals, and mention the issue of collinearity. We also present a few methods for variable selection.
$[$ SECTION $12.1 \longrightarrow$ Introduction

In most situations, we study the relationship between a variable of interest Y (often quantitative) and one or several variable(s) $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{k}$, with the aim of explaining the variations of the variable of interest. Variable Y is called the explained variable (or dependent variable, or response variable). Variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{k}$ are called explanatory variables (or independent variables); in epidemiology, they represent risk or confounding factors. Thus, multivariate analysis models, and specifically linear regression models, allow us to:

- take into account simultaneously several factors which could explain the variation or the distribution of variable Y ;
- study the role of effect modification or confusion of one or several factor(s);
- predict the value or distribution of the explained variable knowing the value of the explanatory variables.

To introduce the key concepts of linear regression, we shall first introduce simple linear regression: we consider a quantitative explained variable Y and a single quantitative explanatory variable X , though in principle, X could also be qualitative. In the second part, we shall introduce multiple linear regression, which is used to study the relation between a dependent quantitative variable Y and several (quantitative or qualitative) explanatory variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{k}$.

Connecting thread example: "weight at birth" study:

We return to the dataset Birth-weight which we presented in Chapter B. We wish to explain the variability of child weight at birth as a function of characteristics of the mother, of family history and of behaviour during pregnancy. The explained variable is weight at birth (quantitative variable BWT, expressed in grammes); the explanatory variables are described in Chapter B.

- Loading the data

```
> fichier <- "http://www.biostatisticien.eu/springeR/Weight_birth.csv"
> mydata <- read.table(fichier,header=TRUE,sep="\t")
```

The weight of the mother is expressed in pounds. We first transform the data.frame to recode this variable in kilogrammes (1 pound $=0.45359237 \mathrm{~kg}$).

```
> mydata <- transform(mydata,LWT=LWT*0.4535923)
> attach(mydata) # Access variable names.
```


Simple linear regression

12.2.1 Aim and model

- Aim

We wish to "explain" the variations of a quantitative variable Y (for example child weight at birth, noted BWT) using an explanatory variable X , also quantitative (for example weight of the mother, noted LWT).

- Model

It is written

$$
\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}+\epsilon
$$

where ϵ represents the noise of the model, which is assumed to be normally distributed, with expectation zero and variance $\operatorname{Var}(\epsilon \mid \mathrm{X})=\sigma^{2}$. The (unknown) parameters of the regression model are β_{0}, β_{1} and σ^{2}.

Warning

The assumption of normality of the noise ϵ is necessary to get the distribution of the estimators, and thus perform hypothesis testing on the parameters of the model. However, this assumption is not very important, since it is not necessary when the data size is large.

12.2.2 Fitting data

- Graphical inspection

To study the relationship between child weight at birth and weight of the mother, we first draw the scatterplot of the points (child weight; mother weight) using the instruction plot (BWT~LWT).

Fig. 12.1: Scatter plot of child weight (in grammes) against mother weight (in kilogrammes).

We observe a slight increase in child weight when mother weight increases, although this relationship is not very clear.

- Parameter estimation

We now study the following model:

$$
\mathrm{BWT}_{i}=\beta_{0}+\beta_{1} \mathrm{LWT}_{i}+\epsilon_{i}, \quad i=1, \ldots n
$$

where the ϵ_{i} are independent random variables with expectation zero and constant variance σ^{2}, for all i.

The estimates $\hat{\beta}_{0}$ of β_{0} and $\hat{\beta}_{1}$ of β_{1} are obtained by minimizing the least squares criterion:

$$
S\left(\alpha_{0}, \alpha_{1}\right)=\sum_{i=1}^{n}\left(\mathrm{bwt}_{i}-\alpha_{0}-\alpha_{1} \mathrm{lwt}_{i}\right)^{2} .
$$

The relevant \mathbf{R} function for this operation is $\operatorname{lm}()$ (abbreviation of linear models). The main parameter of this function is a formula, symbolized by a tilde \sim, used to specify the relationship between BWT and LWT.

```
> model1 <- lm(BWT ~ LWT,data=mydata) # We get an object
    # of class "lm".
> model1
Call:
lm(formula = BWT ~ LWT, data = mydata)
Coefficients:
(Intercept) LWT
    2369.672 9.765
```

The above \mathbf{R} output gives the least squares estimates of β_{0} and β_{1}. For the above example, we get $\hat{\beta}_{0}=2369.672$ and $\hat{\beta}_{1}=9.765$.

We can now draw the regression line on the scatter plot, using the function abline():

```
> plot(BWT~
> abline(model1,col="blue")
```


Fig. 12.2: Least squares regression line on the scatter plot of child weight (in grammes) against mother weight (in kilogrammes).

- Tests on parameters

Note that the function $\operatorname{lm}()$ performs a complete analysis of the linear model and that you can get a summary of the calculations related to the data set with the function summary ().

```
> res <- summary(model1) # Results
> res
Call:
lm(formula = BWT ~ LWT, data = mydata)
Residuals:
    Min 1Q Median 3Q Max
-2192.184 -503.627 -3.910 508.250 2075.529
Coefficients:
                    Estimate Std. Error t value Pr(>/t|)
(Intercept) 2369.672 228.431 10.374 <2e-16 ***
LWT 9.765 3.777 2.586 0.0105 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 718.2 on 187 degrees of freedom
Multiple R-squared: 0.03452, Adjusted R-squared: 0.02935
F-statistic: 6.686 on 1 and 187 DF, p-value: 0.01048
```

Here is a description of the information in this output.

- Call: formula used in the model.
- Residuals: descriptive analysis of residuals $\hat{\epsilon}_{i}=\hat{y}_{i}-y_{i}$. Later in this chapter, we shall see that residuals are used to validate the assumptions of the regression model.
- Coefficients: this table has four columns:
- Estimate gives the estimates of the parameters of the regression line;
- Std. Error gives the estimate of the standard deviation of the estimators of the regression line;
- $\quad \mathrm{t}$ value gives the realization of Student's test statistic associated with the hypotheses $\mathcal{H}_{0}: \beta_{i}=0$ and $\mathcal{H}_{1}: \beta_{i} \neq 0$;
- $\operatorname{Pr}(>|\mathrm{t}|)$ gives the p-value of Student's test.
- Signif. codes: codes for significance levels.
- Residual standard error: an estimate of the standard deviation of the noise σ, and the associated degree of freedom $n-2$.
- Multiple R-Squared: coefficient of determination r^{2} (percentage of variation explained by the regression).
- Adjusted R-Squared: adjusted r_{a}^{2} (of limited interest for simple linear regression).
- $\quad \mathrm{F}$-Statistic: realization of Fisher's test statistic associated with the hypotheses $\mathcal{H}_{0}: \beta_{1}=0$ and $\mathcal{H}_{1}: \beta_{1} \neq 0$. The associated degrees of freedom (1 and $n-2)$ are given, as is the p-value.

Note

Note that the values of all these fields can be extracted. For example, to get the four columns of the field Coefficients, use

```
> res$coefficients
                                    Estimate Std. Error t value Pr(>/t|)
(Intercept) 2369.672063 228.430647 10.373705 3.328580e-20
LWT 9.764856 3.776573 2.585639 1.048072e-02
```

The other suffixes are given by

```
> names(res)
    [1] "call" "terms" "residuals"
    [4] "coefficients" "aliased" "sigma"
    [7] "df" "r.squared" "adj.r.squared"
[10] "fstatistic" "cov.unscaled"
```

Also, note that the function coefficients() gives $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ directly from model1.

```
> coefficients(model1)
(Intercept) LWT
2369.672063 9.764856
```


- Analysis of variance table

In simple linear regression, Fisher's test (the statistic of which is given in F -statistic) is equivalent to Student's test for the regression slope. The relationship F-statistic=t t^{2} holds and the p-values of the tests are equal. Fisher's test is often associated with an analysis of variance table, given by function anova().

```
> anova(model1)
Analysis of Variance Table
Response: BWT
    Df Sum Sq Mean Sq F value Pr (>F)
LWT 1 3448881 3448881 6.6855 0.01048 *
Residuals 187 96468171 515873
Signif. codes: 0 '***' 0.001 '**'0.01 '*' 0.05 '.' 0.1 ' ' 1
```


- Interpreting the results for the "Weight at birth" study

- The test associated with the intercept β_{0} of the model is significant (p-value; 0.05), it is therefore advised to keep the intercept $\left(\beta_{0}\right)$ in the model. However, the intercept in this regression has no meaning. It might be better to use a regression on the variable mother weight, centred beforehand. In that case, β_{0} would represent the mean child weight for mothers who have weight equal to the mean weight of observed mothers.

The instruction to perform linear regression without an intercept is $\operatorname{lm}(y \sim x-1)$ or equivalently $\operatorname{lm}(y \quad 0+x)$.

- The linear relationship between BWT and LWT is proven by the result of Student's test on coefficient β_{1}. The p-value 0.05 indicates a significant linear relationship between child weight and mother weight.
- The percentage of variance explained by the regression $\left(r^{2}\right)$ is 0.035 . Only 3.5% of the variability of child weight is explained by mother weight. We therefore need to add to the model other explanatory variables (multiple linear regression), to increase the model's predictive power.
- The estimate of the slope indicates that the difference between the average weights of babies whose mothers have weights different by one kilogramme is 9.765 g .

Tip

To get an estimate by confidence interval of the regression coefficients, you can use the function confint().
> confint (model1)
(Intercept) 1919.0398362820 .30429
LWT $\quad 2.314692 \quad 17.21502$
The 95% confidence interval for β_{1} is $c i_{95} \%\left(\beta_{1}\right)=[2.31,17.22]$.

12.2.3 Confidence and prediction intervals for a new value

- Definition

Consider a new observation x_{0} of variable X for which we have not observed the corresponding value y_{0} of the response variable Y. This value y_{0} is unknown, since it is not observed, and is a realization of the random variable $\mathrm{Y}_{0}=\beta_{0}+\beta_{1} \mathrm{X}_{0}+\epsilon_{0}$. The predictor of Y_{0} for the new value x_{0} is given by:

$$
\hat{\mathbf{Y}}_{0}^{p}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0} .
$$

We can also propose a prediction interval at level $1-\alpha$ for Y_{0}, by finding two random bounds such that the random variable Y_{0} falls in the interval with probability $1-\alpha$:

$$
P I_{1-\alpha}\left(\mathrm{Y}_{0} \mid x_{0}\right)=\left[\hat{\mathrm{Y}}_{0}^{p} \pm t_{1-\alpha / 2}^{(n-2)} \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right]
$$

Note that the realization $\hat{y}_{0}^{p}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}$ is called the prediction of the unobserved value $y_{0}=\beta_{0}+\beta_{1} x_{0}+\epsilon_{0}$.

Similarly, note that an estimator of the fixed and unknown value $\mathbb{E}\left(Y_{0} \mid \mathrm{X}=x_{0}\right)=$ $\beta_{0}+\beta_{1} x_{0}$ is given by:

$$
\hat{\mathbb{E}}\left(Y_{0} \mid \mathrm{X}=x_{0}\right):=\hat{\mathrm{Y}}_{0}=\hat{\beta}_{0}+\hat{\beta_{1}} x_{0}
$$

We can also give a confidence interval at level $1-\alpha$ for $\mathbb{E}\left(Y_{0} \mid \mathrm{X}=x_{0}\right)$:

$$
I C_{1-\alpha}\left(\beta_{0}+\beta_{1} x_{0}\right)=\left[\hat{\mathrm{Y}}_{0} \pm t_{1-\alpha / 2}^{(n-2)} \hat{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}\right]
$$

Warning

Note that $\hat{\mathrm{Y}}_{0}^{p}=\hat{\mathrm{Y}}_{0}$, but do not confuse the prediction interval for Y_{0} and the confidence interval for the mean value $\mathbb{E}\left(\mathrm{Y}_{0} \mid \mathrm{X}=x_{0}\right)=\beta_{0}+\beta_{1} x_{0}$.

- R instruction

The function to define the prevision interval and confidence interval for a new value x_{0} is predict().

- Example with the study "Weight at birth"

We calculate the prediction of the weight of a baby whose mother weighs lwt = 56 kg .

```
> lwt0 <- 56
> predict(modell,data.frame(LWT=lwt0), interval="prediction")
    fit lwr upr
1 2916.504 1495.699 4337.309
```

For the confidence interval of the mean value of the weight of babies with a mother weighing 56 kg :

```
> predict(model1,data.frame(LWT=lwt0), interval="confidence")
    fit lwr upr
1 2916.504 2811.225 3021.783
```

We now represent the confidence interval and prediction interval for a series of new values of the mother's weight:

```
> x <- seq(min(LWT),max(BWT), length=50)
> predint <- predict(model1,data.frame(LWT=x),interval=
+ "prediction")[,c("lwr","upr")]
> confint <- predict(model1,data.frame(LWT=x),interval=
+ "confidence")[,c("lwr","upr")]
> plot(BWT ~LWT,xlab="Mother weight",ylab="Child weight")
> abline(model1)
> matlines(x,cbind(confint,predint),lty=c(2,2,3,3),
+ col=c("red","red","blue","blue"), lwd=c(2,2,1,1))
> legend("bottomright",lty=c(2,3),lwd=c(2,1),
+ c("confidence","prediction"),col=c("red","blue"))
```


Fig. 12.3: Visualization of confidence and prediction intervals.

12.2.4 Analysis of residuals

- Checking model assumptions

Analysis of residuals consists in examining whether the underlying assumptions of the linear model are verified. Various plots of the residuals can be used to detect rather easily whether the assumptions on the errors ϵ_{i} are respected:

- Plotting the histogram of residuals to check for normality. The QQ-plot is another approach. You can also apply the Jarque-Bera test of normality on residuals (function jarque.bera.test() in package tseries).
- Plotting the residuals $\hat{\epsilon}_{i}$ as a function of the predicted values \hat{y}_{i}. When all the model assumptions are verified, residuals and predicted values are uncorrelated. This plot should have no particular structure. This plot also gives indications on the validity on the linearity assumption, and on the homogeneity of error variance. The plot of $\hat{\epsilon}_{i}$ against \hat{y}_{i} should show a uniform spread of the residuals following a horizontal line on either side of the x axis.
- For the assumption of independence of the Y_{i} : if the values Y_{i} are measured on different, unrelated individuals, the assumption of independence is in principle verified. However, if the values of Y_{i} represent measures of a quantity at different points in time (for example every month), the assumption of independence may not be verified. This assumption can be checked by examining the autocorrelation of the residuals, either graphically by plotting the residuals $\hat{\epsilon}_{i}$, or using statistical tests such as the Durbin-Watson test (function dwtest() in package lmtest).

- Example of analysis of residuals in study "Weight at birth"

We briefly present an analysis of residuals for the model under study, even though this is not very relevant given the low predictive power of the model ($r^{2}=3.5 \%$).

We first examine the assumption of normality:
> par(mfrow=c (1,2))
> hist (residuals (model1), main="Histogram")
> qqnorm(resid(model1), datax=TRUE) \# Caution: normalized \# quantiles on the y axis.

Fig. 12.4: Graphical inspection of normality of residuals.

```
> require(tseries)
> jarque.bera.test(residuals(model1)) # Jarque-Bera test of
                                    # normality.
    Jarque Bera Test
data: residuals(model1)
X-squared = 1.7877, df = 2, p-value = 0.4091
```

This test does not lead us to rejecting the assumption of normality of errors. The QQ-plot also suggests normal errors since the observed quantiles and theoretical quantiles (given by a normal distribution) form a straight line. We therefore accept the assumption of normality.

We now examine the plot of residuals as a function of predicted values. The next figure shows a scatter plot of residuals correctly spread, symmetrical about the x axis: the conditions of the model seem valid.
> plot(residuals(model1) ~fitted(model1),
$+\quad x l a b=" P r e d i c t e d$ values",ylab="Residuals")

Fig. 12.5: Plot of residuals as a function of predicted values.

Note

Some diagnostic plots can be obtained with the instructions:
$>\operatorname{par}(m f r o w=c(1,2))$
> plot (model1, 1:2,col.smooth="red")

Note that the instruction plot (model1) can draw six plots; some of these are for detection of outliers. We shall return to this topic in the section on multiple linear regression.

12.2.5 Student tests for means and linear model

It is interesting to note that the one sample t-test, as well as the classical or paired two samples t -tests, are special cases of simple linear regression models.

- One sample t-test.

Let $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{n}$ be i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$ random variables. We want to test

$$
\mathcal{H}_{0}: \mu=\mu_{0} \text { versus } \mathcal{H}_{1}: \mu \neq \mu_{0}
$$

for some given reference value μ_{0}. This can be performed by testing $\beta=0$ in the model

$$
\mathrm{Y}_{i}-\mu_{0}=\beta+\epsilon_{i}
$$

where the ϵ_{i} are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right), 1 \leq i \leq n$. Let us see this on an example.

```
> n <- 100
> y <- rnorm(n,mean=0)
> muO <- 0
> t.test(y,mu=mu0) [[3]]
[1] 0.08523596
> summary(lm(y-mu0 ~ 1)) [[4]][1,4]
[1] 0.08523596
> summary(lm(y ~ 1 + rep(mu0,n)))[[4]][1,4]
[1] 0.08523596
```

- Two samples t-test.

Let $\mathrm{X}_{1}^{(1)}, \ldots, \mathrm{X}_{n_{1}}^{(1)}$ be i.i.d. $\mathcal{N}\left(\mu_{1}, \sigma^{2}\right)$ random variables, and $\mathrm{X}_{1}^{(2)}, \ldots, \mathrm{X}_{n_{2}}^{(2)}$ be i.i.d. $\mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$ random variables. The two samples are supposed to be independent. We want to test

$$
\mathcal{H}_{0}: \mu_{1}=\mu_{2} \text { versus } \mathcal{H}_{1}: \mu_{1} \neq \mu_{2} .
$$

This can be done by testing $\beta_{1}=0$ in the model

$$
\mathrm{Y}_{i}=\mu_{1}+\beta_{1} \mathrm{~A}_{i}+\epsilon_{i},
$$

where the ϵ_{i} are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ random variables, and where we define $\mathrm{A}_{i}=$ $\left\{0 \quad\right.$ si $1 \leq i \leq n_{1}$,
$\left\{1\right.$ si $n_{1}+1 \leq i \leq n_{1}+n_{2}$,
and $\mathrm{Y}_{i}=\left\{\begin{array}{cc}\mathrm{X}_{i}^{(1)} & \text { si } 1 \leq i \leq n_{1}, \\ \mathrm{X}_{i-n_{1}}^{(2)} & \text { si } n_{1}+1 \leq i \leq n_{1}+n_{2} .\end{array}\right.$ Let us see this on an example.
> n1 <- 100 ; n2 <- 150
> x1 <- rnorm(n1,mean=0) ; x2 <- rnorm(n2,mean=0.1)
> y <- $c(x 1, x 2)$; a <- c(rep($0, n 1$),rep(1,n2))
> t.test (x1, x2, var.equal=TRUE) [[3]]
[1] 0.3996454

```
> summary(lm(y ~ a))[[4]][2,4]
[1] 0.3996454
```

- Two samples paired t-test.

Let $\mathrm{X}_{1}^{(1)}, \ldots, \mathrm{X}_{n}^{(1)}$ be i.i.d. $\mathcal{N}\left(\mu_{1}, \sigma^{2}\right)$ random variables, and $\mathrm{X}_{1}^{(2)}, \ldots, \mathrm{X}_{n}^{(2)}$ be i.i.d. $\mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$ random variables, measured on the same statistical units. We want to test

$$
\mathcal{H}_{0}: \mu_{1}=\mu_{2} \text { versus } \mathcal{H}_{1}: \mu_{1} \neq \mu_{2} .
$$

This can be done by testing $\beta=0$ in the model

$$
\mathrm{Y}_{i}=\beta+\epsilon_{i},
$$

where the ϵ_{i} are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ random variables, and where $\mathrm{Y}_{i}=\mathrm{X}_{i}^{(1)}-\mathrm{X}_{i}^{(2)}$, $1 \leq i \leq n$. Let us see this on an example.

```
> n <- 100
> x1 <- rnorm(n,mean=0) ; x2 <- rnorm(n,mean=0.1)
> t.test(x1,x2,var.equal=TRUE, paired=TRUE) [[3]]
[1] 0.4541976
> summary(lm(x1-x2 ~ 1))[[4]][1,4]
[1] 0.4541976
```


12.2.6 Summary

The table below presents the main functions to use for simple linear regression between the response variable Y and the explanatory variable X .

Table 12.1: Main \mathbf{R} functions for simple linear regression.

Rinstruction	Description
plot $(Y \sim X)$	scatter plot
$\operatorname{lm}(Y \sim X)$	estimation of the linear model
summary $(\operatorname{lm}(Y \sim X))$	description of results of the model
abline $(\operatorname{lm}(Y \sim X))$	draw the estimated line
confint $(\operatorname{lm}(Y \sim X))$	confidence interval for regression parameters
predict ()	function for predictions
plot $(\operatorname{lm}(Y \sim X))$	graphical analysis on residuals

- SECTION 12.3 Multiple linear regression

12.3.1 Aim and model

- Aim

We wish to study the variations of a quantitative variable Y (the explained or response variable, assumed to be random) as a function of $p(p>1)$ explanatory variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{p}$ (also called independent variables). The explanatory variables can be all quantitative, all qualitative (in which case we fall back on ANOVA, presented in Chapter 13), or a mixture of quantitative and qualitative variables. In this last case, the multiple linear regression model is also called ANCOVA.

- Model

The multiple linear regression model is written

$$
\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\ldots+\beta_{p} \mathrm{X}_{p}+\epsilon
$$

where ϵ is the random noise term of the model, often assumed to be normally distributed with expectation zero and variance σ^{2}, and independent of the X_{j}. The (unknown) parameters of the regression model are $\beta_{0}, \beta_{1} \ldots, \beta_{p}$ and σ^{2}.

12.3.2 Fitting data

Consider a data set from the following model:

$$
\mathrm{Y}_{i}=\beta_{0}+\beta_{1} \mathrm{X}_{i 1}+\beta_{2} \mathrm{X}_{i 2}+\ldots+\beta_{p} \mathrm{X}_{i p}+\epsilon_{i} \quad i=1, \ldots, n
$$

where $\mathrm{X}_{i j}$ is the j th explanatory variable for individual i and the errors ϵ_{i} are independent random variables such that $\mathbb{E}\left(\epsilon_{i}\right)=0$ and $\operatorname{Var}\left(\epsilon_{i} \mid \mathbf{X}\right)=\sigma^{2}$. The observed data from this model can be written in matrix form:

$$
y=X \beta+\epsilon
$$

with $\boldsymbol{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right), \boldsymbol{X}=\left(\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 p} \\ \vdots & \vdots & & & \vdots \\ 1 & x_{n 1} & x_{n 2} & \cdots & x_{n p}\end{array}\right), \boldsymbol{\beta}=\left(\begin{array}{c}\beta_{0} \\ \vdots \\ \beta_{p}\end{array}\right)$ and $\boldsymbol{\epsilon}=\left(\begin{array}{c}\epsilon_{1} \\ \vdots \\ \epsilon_{n}\end{array}\right)$.
The regression parameters β are estimated by minimizing the ordinary least squares:

$$
S(\boldsymbol{\alpha})=\sum_{i=1}^{n}\left(y_{i}-\alpha_{0}-\alpha_{1} x_{i 1}-\alpha_{2} x_{i 2}-\ldots-\alpha_{p} x_{i p}\right)^{2}=\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\alpha}\|^{2} .
$$

This gives the least squares estimator $\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$.

Warning

We assume that $\boldsymbol{\mathcal { X }}: n \times(p+1)$ is a full rank matrix $(\operatorname{rank}(\boldsymbol{X})=p+1<n)$. This implies that rank $\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)=p+1$ and thus that $\boldsymbol{X}^{\top} \boldsymbol{X}$ is invertible. This condition can be evaluated using R with the command $\mathrm{qr}(\mathrm{X}) \$$ rank. If this condition is not satisfied, it is possible to use other methods, not shown in this book, as ridge regression, lasso regression, regression on principal components or PLS regression.

- Graphical inspection

Connecting thread example: Regression of child weight at birth as a function of mother age, weight and smoking status during pregnancy.

In this study, we note X_{1} the age of the mother (variable AGE), X_{2} the weight of the mother (variable LWT), X_{3} the smoking status of the mother (variable SMOKE), and Y the child weight at birth (response variable BWT); we can write the following regression equation:

$$
\mathbb{E}(\mathrm{BWT} \mid \mathrm{AGE}, \mathrm{LWT}, \mathrm{SMOKE})=\beta_{0}+\beta_{1} \mathrm{AGE}+\beta_{2} \mathrm{LWT}+\beta_{3} \mathrm{SMOKE} .
$$

Before estimating the model, we present a scatter plot of all pairs of variables.

```
> add.cor <- function(x,y) {
+ usr <- par("usr"); on.exit(par(usr))
+ par(usr = c(0, 1, 0, 1))
+ text (0.5,0.5,round (cor (x,y),2))
+ }
```

> newdata <- cbind(BWT,LWT,AGE, SMOKE)
> pairs(newdata,lower.panel=panel.smooth, upper.panel=add.cor)

Fig. 12.6: Scatter plot of all pairs of variables.

The purpose of this plot is twofold. It is used to visualize the relationship between the response variable and each of the explanatory variables, but also the correlation between explanatory variables. This second point is useful, amongst other things, because it helps notice collinearity issues (see the section on this topic, Section 12.3.7).

- Parameter estimation

As for simple linear regression, the model is estimated using function $\operatorname{lm}()$:

```
> model2 <- lm(BWT ~AGE+LWT+as.factor (SMOKE))
> model2
Call:
lm(formula = BWT ~ AGE + LWT + as.factor(SMOKE))
Coefficients:
    (Intercept) AGE LWT
    2362.720 7.093 8.860
as.factor (SMOKE)1
    -267.213
```


- Tests on parameters

Tests on parameters are performed by function summary ().

```
> summary(model2)
Call:
lm(formula = BWT ~ AGE + LWT + as.factor(SMOKE))
```

```
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-2069.89 & -433.18 & 13.67 & 516.45 & 1813.75
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 2362.720 300.687 7.858 3.11e-13 ***
AGE 7.093 9.925 0.715 0.4757
LWT 8.860 3.791 2.337 0.0205 *
as.factor(SMOKE)1 -267.213 105.802 -2.526 0.0124 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 708.8 on 185 degrees of freedom
Multiple R-squared: 0.06988, Adjusted R-squared: 0.05479
F-statistic: 4.633 on 3 and 185 DF, p-value: 0.003781
```

The results output by summary () are presented in the same fashion as for simple linear regression. Parameter estimates are given in the column Estimate.

The realizations of Student's test statistics associated with the hypotheses \mathcal{H}_{0} : $\beta_{i}=0$ and $\mathcal{H}_{1}: \beta_{i} \neq 0$ are given in column t value; the associated p-values are in column $\operatorname{Pr}(>|\mathrm{t}|)$. Residual standard error gives the estimate of σ and the number of associated degrees of freedom $n-p-1$. The coefficient of determination r^{2} (Multiple R-squared) and an adjusted version (Adjusted R-squared) are given, as are the realization of Fisher's global test statistic (F-statistic) and the associated p-value.

- Analysis of variance table

The analysis of variance table is given by function anova():

```
> anova(model2)
Analysis of Variance Table
Response: BWT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Df & Sum Sq & Mean Sq & \(F\) value & Pr \((>F)\) & \\
\hline AGE & 1 & 806927 & 806927 & 1.6063 & 0.20661 & \\
\hline LWT & 1 & 2970564 & 2970564 & 5.9133 & 0.01598 & * \\
\hline as.factor (SMOKE) & 1 & 3204339 & 3204339 & 6.3787 & 0.01239 & * \\
\hline Residuals & 185 & 92935223 & 502353 & & & \\
\hline Signif. codes: & '** & *' 0.001 & '**' 0.01 & 01 '*' 0 & 05 '.' & . 1 \\
\hline
\end{tabular}
```


Note

Fisher's global F test is used to test the global joint contribution of all explanatory variables in the model to "explaining" the variations of Y. The null hypothesis is $\mathcal{H}_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{p}=0$ (under the linear model, the p explanatory variables give no useful information to predict Y). The assertion of interest is \mathcal{H}_{1} : at least one of the coefficients $\beta_{j}(j=1,2, \ldots, p)$ is significantly
different from zero (at least one of the explanatory variables is associated with Y after adjusting for the other explanatory variables).

- Interpreting results from study "Weight at birth"

Given the result of Fisher's global test (p-value $=0.003$ 781) , we can conclude that at least one of the explanatory variables is associated with child weight at birth, after adjusting for the other variables. The individual Student tests indicate that:

- mother weight is linearly associated with child weight, after adjusting for age and smoking status, with risk of error less than $5 \%(p$-value $=0.0205)$. At same age and smoking status, an increase of one kilogramme in mother weight corresponds to an increase of 8.860 g of average child weight at birth;
- the age of the mother is not significantly linearly associated with child weight at birth when mother weight and smoking status are already taken into account (p-value $=0.20661$);
- weight at birth is significantly lower for a child born to a mother who smokes, compared to children born to non-smoker mothers of same age and weight, with a risk of error less than 5% (p-value $=0.012$). At same age and mother weight, child weight at birth is 267.213 g less for a smoker mother than for a non-smoker mother.

Note

We could have got the same conclusions by looking at confidence intervals and checking whether zero lies in the interval. If zero does not lie in the confidence interval, then the variable has a significant contribution in the model, after adjusting for the other variables.

```
> confint(model2)
\)
(Intercept) 1769.504181 2955.93509
AGE -12.486773 26.67319
LWT 1.380732 16.34007
as.factor(SMOKE) 1 -475.945996 -58.48000
```


12.3.3 Confidence and prediction intervals for a new value

Suppose we wish to predict the weight at birth of a child whose mother is 23 years old, weighs 57 kg , and smokes. The function predict () gives a prediction, a prediction interval, and a confidence interval for the mean weight of children whose mothers have these characteristics.

```
> newdata <- data.frame(AGE=23,LWT=57,SMOKE=1)
> predict(model2,newdata,interval="pred")
    fit lwr upr
1 2763.693 1355.943 4171.444
> predict(model2,newdata,interval="conf")
    fit lwr upr
12763.693 2600.914 2926.472
```


12.3.4 Testing a linear sub-hypothesis: partial Fisher test

Fisher's partial test is used to test the contribution of a subset of explanatory variables in a model which already includes other explanatory variables. For example, consider the following two models:

- \quad model 1: $\mathrm{BWT}=\beta_{0}+\beta_{1} \mathrm{LWT}+\epsilon$;
- model 2: $\mathrm{BWT}=\beta_{0}+\beta_{1} \mathrm{LWT}+\beta_{2} \mathrm{AGE}+\beta_{3} \mathrm{SMOKE}+\epsilon$.

Fisher's test is used to test the joint contribution of variables AGE and SMOKE in model 2. The hypotheses of the test are: $\mathcal{H}_{0}: \beta_{2}=\beta_{3}=0$ and \mathcal{H}_{1} : at least one the coefficients β_{2} or β_{3} is non-zero. The following instructions are used for this test:

```
> anova(model1,model2)
Analysis of Variance Table
Model 1: BWT ~ LWT
Model 2: BWT ~ AGE + LWT + as.factor(SMOKE)
    Res.Df RSS Df Sum of Sq Fr Pr(>F)
1 187 96468171
2 185 92935223 2 3532949 3.5164 0.03171 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The p-value of the test $(\operatorname{Pr}(>F)=0.03171)$ indicates that at least one of the two variables AGE or SMOKE gives extra information to predict child weight at birth, when mother weight has already been taken into account.

Note

When comparing two nested models which only differ by one variable, Fisher's partial test is equivalent to the individual Student test.

```
> model3 <- lm(BWT LWT+SMOKE)
> anova(model3,model2)
Analysis of Variance Table
Model 1: BWT ~ LWT + SMOKE
Model 2: BWT ~ AGE + LWT + as.factor(SMOKE)
    Res.Df RSS Df Sum of Sq FPr(>F)
1 186 93191828
2
```

We get the same p-value as in the individual Student test associated with variable AGE in model 2.

12.3.5 Qualitative variables with more than two modalities

Binary explanatory variables are not an issue, as shown in the connecting thread example with variable SMOKE. Using such a variable in a regression model boils down to comparing the mean of the response variable Y in the two groups defined by the binary qualitative variable. This comparison is said to be adjusted on the other explanatory variables, meaning that we estimate the conditionnal mean of Y , for fixed values of all the explanatory variables but SMOKE.

However, for a qualitative variable with more than two modalities, we need to introduce dummy variables to compare the mean of Y in the groups defined by the modalities of the qualitative explanatory variable. A dummy variable for a group or modality is a variable that takes the value 1 in the group and 0 in all other groups.

Connecting thread example: Child weight at birth as a function of mother weight and race.

Variable RACE is coded with three modalities: 1 for white, 2 for black and 3 for other. In this example, we can therefore define three dummy variables RACE1, RACE2 and RACE3.

Categories RACE RACE1 RACE2 RACE3				
White	1	1	0	0
Black	2	0	1	0
Other	3	0	0	1

```
> RACE1 <- as.integer(RACE==1)
> RACE2 <- as.integer(RACE==2)
> RACE3 <- as.integer(RACE==3)
```

If we try to fit the following model

$$
\begin{equation*}
\mathrm{BWT}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}=\beta_{0} \mathbf{1}+\beta_{1} \mathrm{LWT}+\beta_{2} \mathrm{RACE} 1+\beta_{3} \mathrm{RACE} 2+\beta_{4} \mathrm{RACE} 3+\boldsymbol{\epsilon}, \tag{12.1}
\end{equation*}
$$

a problem will occur, as can be seen in the output below:

```
> summary(lm(BWT ~ LWT+RACE1+RACE2+RACE3))
Call:
lm(formula = BWT ~ LWT + RACE1 + RACE2 + RACE3)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-2094.9 & -420.8 & 40.1 & 478.2 & 1928.4
\end{tabular}
```

```
Coefficients: (1 not defined because of singularities)
    Estimate Std. Error \(t\) value Pr(>|t|)
(Intercept) 2245.097 226.805 9.899 < 2e-16 ***
LWT \(10.267 \quad 3.856 \quad 2.6620 .00844\) **
RACE1 243.667 113.826 2.141 0.03361 *
\(\begin{array}{lllll}\text { RACE2 } & -209.098 & 168.988 & -1.237 & 0.21752\end{array}\)
RACE3 NA NA NA NA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 702.7 on 185 degrees of freedom
Multiple R-squared: 0.08578, Adjusted R-squared: 0.07095
F-statistic: 5.786 on 3 and 185 DF, p-value: 0.0008399
```

This comes from the fact that the design matrix \mathcal{X} is not of full rank:

```
> head(model.matrix(summary(
+ lm(BWT~}\mp@subsup{L}{WT+RACE1+RACE2+RACE3)))) # First rows of the design}{
                        # matrix.
    (Intercept) LWT RACE1 RACE2 RACE3
82.55380 0 1 0
70.30681 0 0 1
47.62719 1 0 0
48.98797 1 0
48.53438 1 0
56.24545 0 0 1
```

Indeed, the sum of the last three columns gives the first column: the model is called non-identifiable. The least squares estimator of β is then no more unique (even if predictions based on any least squares estimator of β will be unique).

Note

We could think about using the least squares estimator $\hat{\boldsymbol{\beta}}^{\dagger}=\boldsymbol{X}^{+}$BWT, based on the (Moore-Penrose) generalized inverse \boldsymbol{X}^{+}de \boldsymbol{X}, defined on page 321 from Chapter 8.
> mpinv(model.matrix(summary (
$+\operatorname{lm}\left(\right.$ BWT $^{\sim}$ LWT+RACE1+RACE $2+$ RACE3)))) \% * \%as.matrix (BWT)

$$
[, 1]
$$

[1,] 1692.46453
[2,] 10.26709
[3,] 796.29883
[4,] 343.53360
[5,] 552.63210
But the trouble is that it is difficult to interpret the coefficients of this vector since non-controllable linear constraints on its components were used (in the sense that two of them are expressed in terms of all other).

We can see that the model (12.1) can be rewritten as:

$$
\begin{aligned}
\mathrm{BWT} & =\beta_{0}+\beta_{1} \mathrm{LWT}+\beta_{2} \mathrm{RACE} 1+\beta_{3} \mathrm{RACE} 2+\beta_{4} \mathrm{RACE} 3+\epsilon \\
& =\beta_{0}+\beta_{1} \mathrm{LWT}+\beta_{2}(1-\mathrm{RACE} 2-\mathrm{RACE} 3)+\beta_{3} \mathrm{RACE} 2+\beta_{4} \mathrm{RACE} 3+\epsilon \\
& =\underbrace{\left(\beta_{0}+\beta_{2}\right)}_{\gamma_{0}}+\underbrace{\beta_{1}}_{\gamma_{1}} \mathrm{LWT}+\underbrace{\left(\beta_{3}-\beta_{2}\right)}_{\gamma_{2}} \mathrm{RACE} 2+\underbrace{\left(\beta_{4}-\beta_{2}\right)}_{\gamma_{3}} \mathrm{RACE} 3+\epsilon .
\end{aligned}
$$

In this latter form, the model is now identifiable (γ_{i} 's can be estimated). This is easily verified on the following output:

```
> summary(lm(BWT~}\mp@subsup{L}{}{~
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 2488.76336 241.863663 10.289943 6.348821e-20
LWT 10.26709 3.856339 2.662393 8.442125e-03
RACE2 -452.76523 157.481809 -2.875032 4.513529e-03
RACE3 -243.66673 113.825910 -2.140697 3.360769e-02
```

This consists in taking as a reference the group RACE $=1$ (white race), i.e. to consider the linear regression model with only the dummy variables for the other groups (RACE2, RACE3).

To fit a model with qualitative covariates, you can use the function factor() in instruction $\operatorname{lm}()$, as can be seen below:

```
> model4 <- lm(BWT~ LWT+factor (RACE))
> summary(model4) $coeff
                    Estimate Std. Error t value Pr(>/t|)
(Intercept) 2488.76336 241.863663 10.289943 6.348821e-20
LWT 10.26709 3.856339 2.662393 8.442125e-03
factor(RACE)2 -452.76523 157.481809 -2.875032 4.513529e-03
factor(RACE) 3 -243.66673 113.825910 -2.140697 3.360769e-02
```

Note that in this output, R used as reference the group RACE $=1$.
In this context, the estimation $\gamma_{2}=\widehat{\beta_{3}-\beta_{2}}=-452.765 \mathrm{~g}$ represents the difference of child birth weight between black mothers (RACE $=2$) and white mothers (reference group), and this result is significantly different from zero (p-value $=0.00451$) in a model adjusted for mother weight. Similarly, the difference in average weight at birth between group RACE $=3$ and the reference group is $\widehat{\beta_{4}-\beta_{2}}=-243.667 \mathrm{~g}$ and is significantly different from zero (p-value $=0.03361$), adjusting for mother weight.

Note

It is possible to change the reference class using the function relevel().


```
relevel(factor(RACE), ref = 3)1 2.140697 3.360769e-02
relevel(factor(RACE), ref = 3)2 -1.237356 2.175232e-01
```


Note

To test the global contribution of variable RACE, use a partial Fisher test, as described in the previous section.

```
> anova(model1,model4)
Analysis of Variance Table
Model 1: BWT ~ LWT
Model 2: BWT ~ LWT + factor(RACE)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 187 96468171
2 185 91346474 2 5121697 5.1864 0.006434 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Warning

To resume, never add to the model the dummy variable for the reference group. For a qualitative variable with p modalities, only use $p-1$ dummy variables.

12.3.6 Interaction between variables

We say that there is interaction between two explanatory variables X_{1} and X_{2} if the association between one of the variables and the response variable Y is not the same depending on the values of the other variable. This corresponds to the notion of effect modification in epidemiology.

Suppose we are interested in the association between X_{1} and Y, and we wish to know whether the effect of X_{1} on Y is different depending on the values of X_{2}. We simply need to include in the model the variables X_{1} and X_{2} as well as a third variable X_{3} defined as the product of X_{1} and $X_{2}: X_{3}=X_{1} \times X_{2}$ (called the interaction term between X_{1} and X_{2}). To make things clearer, suppose we wish to determine whether the effect of quantitative variable X_{1} is modified by binary ($0 / 1$) variable X_{2}. We then consider the model:

$$
\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\beta_{2} \mathrm{X}_{2}+\beta_{3} \mathrm{X}_{1} \times \mathrm{X}_{2}+\epsilon
$$

In group $\mathrm{X}_{2}=0$, the model is: $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\epsilon$ and the effect of X_{1} is measured by β_{1}. In group $\mathrm{X}_{2}=1$, the model is $\mathrm{Y}=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) \mathrm{X}_{1}+\epsilon$ and the effect
of X_{1} is measured by $\beta_{1}+\beta_{3}$.
There is interaction between X_{1} and X_{2} (or modification of the effect of X_{1} by X_{2}) if the effect of X_{1} is different in groups $X_{2}=0$ and $X_{2}=1$, i.e. if $\beta_{3} \neq 0$. We therefore need to perform an individul Student test on $\beta_{3}\left(\mathcal{H}_{0}: \beta_{3}=0\right.$ versus $\mathcal{H}_{1}: \beta_{3} \neq 0$). If we accept \mathcal{H}_{1}, we keep the interaction term in the model: there is modification of effect.

Connecting thread example: Modification of the effect of mother age on child weight at birth by mother's smoking status.

We first consider the model

$$
\mathrm{BWT}=\beta_{0}+\beta_{1} \mathrm{AGE}+\beta_{2} \mathrm{SMOKE}+\epsilon .
$$

$>$ model5 <- lm (BWT ${ }^{\sim}$ AGE+SMOKE)
This model assumes that the effect of AGE is the same for smoker and non-smoker mothers. We can propose a more flexible model, allowing for different effects in the two groups SMOKE=0 and SMOKE=1:

$$
\mathrm{BWT}=\beta_{0}+\beta_{1} \mathrm{AGE}+\beta_{2} \mathrm{SMOKE}+\beta_{3} \mathrm{AGE} \times \mathrm{SMOKE}+\epsilon
$$

```
> model6 <- lm(BWT~AGE+SMOKE+AGE:SMOKE)
```


Tip

To introduce an interaction term between the two variables X_{1} and X_{2} in a linear model, simply type X1: X2. Note that X1*X2 in a formula corresponds to $\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 1$: X 2 . The previous call could have been replaced with:

```
> model6 <- lm(BWT~}~AGE*SMOKE
```

The difference between the two models can be visualized on the next two plots. The first plot shows two parallel lines; the slope represents the effect of AGE on BWT, which is the same for smokers and non-smokers.

```
> co <- coef(model5); a0 <- co[1] ; a1 <- co[1]+co[3]
> b <- co[2]
> fSMOKE <- as.factor(SMOKE)
> plot(BWT~}AGE, xlab="AGE in years", ylab
+ "Weight at birth (g)",main=expression(BWT~"="~
+ beta[0]+beta[1]*AGE+beta[2]*SMOKE+epsilon),
+ col = c('blue','red')[fSMOKE], pch=c(1,18)[fSMOKE])
> abline(a=a0,b,col="blue") ; abline(a=a1,b,col="red")
```

```
> legend("bottomright",c("SMOKE=0","SMOKE=1"),
+ col=c("red","blue"),lty=1)
```


Fig. 12.7: Effect of age on BWT in a model without interaction.

The next plot shows two different slopes, illustrating the notion of interaction.

```
> co <- coef(model6); a0 <- co[1] ; a1 <- co[1]+co[3]
> bO <- co[2] # Effect of age on non-smokers.
> b1 <- co[2]+co[4] # Effect of age on smokers.
> plot(BWT~AGE,xlab="AGE in years",ylab="Weight at birth (g)",
+ main=expression(BWT~"="~
+ beta[3]*AGE~"x"~SMOKE+epsilon))
> points(AGE[SMOKE==1],BWT[SMOKE==1],col="red",pch=18)
> points(AGE[SMOKE==0], BWT[SMOKE==0],col="blue")
> abline(a=a0,b0,col="blue") ; abline(a=a1,b1,col="red")
```

```
> legend("bottomright",c("SMOKE=0","SMOKE=1"),
+ col=c("red","blue"),lty=1)
```


Fig. 12.8: Effect of age on BWT in a model with interaction.

We can test the significance of the interaction term by analysing the results of model 6.

```
> summary(model6)
Call:
lm(formula = BWT ~ AGE * SMOKE)
Residuals:
    Min 1Q Median 3Q Max
-2187.8 -456.6 52.8 526.6 1522.2
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate Std. Error t value \(\operatorname{Pr}(>\mid t /)\) & \\
(Intercept) & 2408.38 & 292.24 & 8.241 & \(3.05 e-14\) *** \\
AGE & 27.60 & 12.15 & 2.271 & 0.0243 * \\
SMOKE & 795.38 & 484.42 & 1.642 & 0.1023 & \\
AGE:SMOKE & -46.36 & 20.45 & -2.267 & 0.0245 *
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 709.4 on 185 degrees of freedom
Multiple R-squared: 0.0683, Adjusted R-squared: 0.05319
F-statistic: 4.521 on 3 and 185 DF, p-value: 0.004378
```

The coefficient β_{3} is significantly different from zero (p-value $=0.024$). We therefore conclude that the effect of mother age on child weight at birth is not the same
depending on the smoking status of the mother. The results on association between mother age and child weight at birth must therefore be presented separately for the smoker and non-smoker groups.

For completeness sake, for non-smoker mothers, the effect of AGE is significant (p-value $=0.0243$). The mean child weight at birth increases with mother age, by $27.60 \mathrm{~g}\left(\hat{\beta}_{1}\right)$ for one extra year for the mother. A confidence interval is given by:

```
> confint (model6) [2,]
    2.5 % 97.5 %
    3.628108 51.573048
```

For smoker mothers, the mean child weight at birth decreases with mother age, by $18.762 \mathrm{~g}\left(\hat{\beta}_{1}+\hat{\beta}_{3}\right)$ for one extra year for the mother. To know whether this result is significant, we calculate the confidence interval for $\beta_{1}+\beta_{3}$. A clever way of doing this is to create a new variable SMOKE1 which reverses the coding of SMOKE, then to launch the instructions

```
> SMOKE1 <- 1-SMOKE
> confint(lm(BWT~AGE+SMOKE1+AGE:SMOKE1))[2,]
    2.5 % 97.5 %
-51.21423 13.68941
```

The value 0 lies in the confidence interval, thus the effect of AGE on BWT is not significant for smoker mothers.

12.3.7 Issues with collinearity

When several explanatory variables give the same kind of information, several phenomena can occur:

- disruption of estimate quality (very large variance);
- contradictory values of coefficients (opposite signs);
- non-significant coefficients.

These are collinearity issues.
The criterion used to quantify collinearity of explanatory variables is the variance inflation factor VIF: $\frac{1}{1-r_{j}^{2}}$ where r_{j}^{2} is the multiple coefficient of determination when we regress the j th explanatory variable \boldsymbol{x}_{j} on the set of other regressors.

The VIF plays an essential role in estimator variance since $\operatorname{Var}\left(\widehat{\beta}_{j} \mid \mathbf{X}=\boldsymbol{X}\right)=$ $\frac{\sigma^{2}}{n \times s_{j}^{2}} \times \frac{1}{1-r_{j}^{2}}$ where $s_{j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i j}-\bar{x}_{j}\right)$ is the variance of the sample \boldsymbol{x}_{j}. The more \boldsymbol{x}_{j} is collinear to the other regressors, the closer r_{j}^{2} is to 1 , hence the higher the term $\frac{1}{1-r_{j}^{2}}$; the variance of the estimator $\hat{\beta}_{j}$ is then very high. Conversely, the closer r_{j}^{2} is to 0 , the closer the associated VIF is to 1 (the minimum). Thus, the more \boldsymbol{x}_{j} is "independent" of the other regressors, the less the estimates are disrupted. Collinearity of regressors necessarily has an impact on estimator precision. We say there is strong
collinearity when $\mathrm{VIF}_{j}>10$ (i.e. $r_{j}^{2}>0.9$).
The R instruction to compute the VIF is vif(), available in package car.
We show how to use the function vif() in the very simple example of model

$$
\mathbb{E}[\mathrm{BWT} \mid \mathrm{LWT}, \mathrm{AGE}]=\beta_{0}+\beta_{1} \mathrm{LWT}+\beta_{2} \mathrm{AGE} .
$$

```
> model7 <- lm(BWT ~WT+AGE)
> vif(model7)
    LWT AGE
1.033513 1.033513
```

In this case, the VIFs are equal, since there are only two regressors. This is a very simple example: there are only two regressors and we could have analysed this collinearity graphically, but the usefulness of this method is clear when there is a large number of regressors.

12.3.8 Variable selection

Amongst the large number of possible explanatory variables, we wish to select those which explain Y the best. This way, we can decrease the number of predictors (giving a parsimonious model) and get good predictive power by eliminating redundant variables which increase the variance inflation factor (VIF).

The greater the number of parameters (large number of explanatory variables), the better the fit to the data (r^{2} close to 1). As a trade-off, parameter estimation is disrupted (variance of estimators increases) because of collinearity issues.

In this section, we briefly present a few methods for variable selection available in R. They are illustrated on a few variables from data set Birth-weight.

We consider the explanatory variables LWT, AGE, UI, SMOKE, HT and two recoded variables FTV1 and PTL1. We note FVT1 $=1$ if there was at least one visit to a physician, and FVT1 $=0$ otherwise. Similarly, we note PTL1 $=1$ if there is at least one preterm birth in the family history, and PTL1 $=0$ otherwise.

- Best subset method

When the number p of explanatory variables is not too large, we can study all possibilities. One efficient algorithm (see [18] and [19]) can go up to thirty variables: the leaps and bounds method. At fixed p, we choose the regression model
with the largest r^{2}. Fer two regression models with different numbers of explanatory variables, we can choose the one with largest adjusted r_{a}^{2}.

The relevant R function is leaps () available in package leaps.

```
> FVT1 <- FVT; FVT1 <- as.integer(FVT>=1)
> PTL1 <- PTL; PTL1 <- as.integer(PTL>=1)
```



```
> # Equivalent to: matx <- cbind(LWT,AGE,UI,SMOKE,HT,FVT1,PTL1)
> adjr2.leaps <- leaps(matx, BWT,nbest=1,method="adjr2")
> best.model.adjr2 <- adjr2.leaps$which[adjr2.leaps$adjr2==
+ max(adjr2.leaps$adjr2),]
> best.model.adjr2
    1 
true falSe true true true falSe true
```

The best model in the sense of the adjusted r_{a}^{2} is thus:

$$
\mathrm{BWT}=\beta_{0}+\beta_{1} \mathrm{LWT}+\beta_{2} \mathrm{UI}+\beta_{3} \mathrm{SMOKE}+\beta_{4} \mathrm{HT}+\beta_{5} \mathrm{PTL} 1+\epsilon .
$$

Note

You can use other selection criteria than the adjusted r_{a}^{2} with the argument method of function leaps(). For example, method="Cp" uses Mallows’ C_{p} criterion [27].

Another interesting function in package leaps is regsubsets(). For example, with its argument force.in, it can be used to specify one or several variables which must be included in all models considered. We give an example using the BIC (Bayesian information criterion) to choose the best model [37]):
> \# Force SMOKE to be included:
> best.model.bic <- regsubsets (matx, BWT, nbest=1, force.in=4)
$>$ summary (best.model.bic) \$bic \# BIC values of best models of \# each size (nbest=1).
$[1]-6.273748-7.607040-9.796126-7.865648-3.491572 \quad 1.544854$
> plot (best.model.bic)

Fig. 12.9: Selecting variables with the BIC.

The best model is the one with lowest BIC. The best model, in the sense of the BIC, is:

$$
\mathrm{BWT}=\beta_{0}+\beta_{1} \mathrm{LWT}+\beta_{2} \mathrm{UI}+\beta_{3} \mathrm{SMOKE}+\beta_{4} \mathrm{HT}+\epsilon .
$$

Other selection criteria can be used with argument scale in function plot () applied to an object of class regsubsets or using \$rsq, \$rss, $\$$ adjr2 and $\$ \mathrm{cp}$ (for r-squared, residual sum of squares, adjusted r-squared
and Mallows' Cp respectively), instead of \$bic, with the function summary () as shown above.

- Forward selection

The forward selection method is an iterative method. At each step, it selects the most significant explanatory variable (at level α) when we regress Y on all explanatory variables selected at previous steps and the newly chosen variable, as long as the marginal contribution of the new variable is significant

Watch this method in action with function add1() for level $\alpha=0.05$.

```
> add1(lm(BWT~1),BWT ~LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,test="F")
Single term additions
Model:
BWT ~ 1
Df Sum of Sq RSS AIC F value Pr(F)
<none> 99917053 2492.7
LWT 1 3448881 96468171 2488.0 6.6855 0.010481 *
AGE 1 806927 99110126 2493.1 1.5225 0.218790
UI 1 8028747 91888305 2478.8 16.3391 0.00007732 ***
SMOKE 1 3573406 96343646 2487.8 6.9359 0.009156 **
HT 1 2132014 97785038 2490.6 4.0772 0.044894 *
FVT1 1 1338322 98578731 2492.1 2.5387 0.112772
PTL1 1 4757523 95159530 2485.4 9.3491 0.002558 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1
```

UI is the most significant variable.

```
> add1(lm(BWT ~UI), BWT LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,test="F")
Single term additions
Model:
BWT ~ UI
    Df Sum of Sq RSS AIC F value Pr(F)
<none> 91888305 2478.8
LWT 1 2076990 89811315 2476.5 4.3015 0.03946 *
AGE 1 472355 91415950 2479.9 0.9611 0.32819
SMOKE 1 2949940 88938365 2474.7 6.1693 0.01388 *
HT 1 3162469 88725836 2474.2 6.6296 0.01081 *
FVT1 1 949028 90939278 2478.9 1.9411 0.16522
PTL1 1 2837049 89051257 2474.9 5.9257 0.01587 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

HT is the most significant variable.

```
> add1(lm(BWT UI+HT), BWT LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,test="F")
Single term additions
Model:
BWT ~ UI + HT
    Df Sum of Sq RSS AIC F value Pr(F)
```


LWT is the most significant variable.

```
> add1(lm(BWT~UI+HT+LWT),BWT ~ LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,
+ test="F")
Single term additions
Model:
BWT ~ UI + HT + LWT
        Df Sum of Sq RSS AIC F value Pr(F)
<none> 85165756 2468.5
AGE 1 1 94703 85071053 2470.3 0.2048 0.65138
SMOKE 1 2579898 82585858 2464.7 5.7480 0.01751 *
FVT1 1 509265 84656491 2469.3 1.1069 0.29414
PTL1 1 2127921 83037835 2465.7 4.7152 0.03118 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

SMOKE is the most significant variable.

```
> add1(lm(BWT ~UI+HT+LWT+SMOKE), BWT~ LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,
+ test="F")
Single term additions
Model:
BWT ~ UI + HT + LWT + SMOKE
    Df Sum of Sq RSS AIC F value Pr(F)
<none> 82585858 2464.7
AGE 1 65305 82520553 2466.5 0.1448 0.70397
FVT1 1 2 1 275436 82310423 2466.0 0.6124 0.43491
PTL1 1 1434298 81151560 2463.3 3.2344 0.07375
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

No further variable is significant. The method thus stops at the model with variables: UI, HT, LWT and SMOKE.

- Backward selection

This time, we start with the complete model and at each step, we delete the variable with lowest value of Student's test statistic (largest p-value) in absolute value, as long as it is not significant (at a specified level α).

Watch this method in action with function drop1() for level $\alpha=0.05$.

```
> drop1(lm(BWT~ LWT+AGE+UI+SMOKE+HT+FVT1+PTL1),test="F")
Single term deletions
Model:
```

```
BWT ~ LWT + AGE + UI + SMOKE + HT + FVT1 + PTLI
    Df Sum of Sq RSS AIC F value Pr(F)
<none> 80692151 2466.3
LWT 1 2475214 83167365 2470.0 5.5521 0.0195277 *
AGE 1 87708 80779859 2464.5 0.1967 0.6578974
UI 1 5431112 86123263 2476.6 12.1825 0.0006059 ***
SMOKE 1 1622617 82314768 2468.0 3.6397 0.0580009.
HT 1 3885141 84577292 2473.2 8.7147 0.0035749 **
FVT1 1 272400 80964551 2464.9 0.6110 0.4354262
PTL1 1 1601044 82293195 2468.0 3.5913 0.0596772
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We delete variable AGE.

```
> drop1(lm(BWT~LWT+UI+SMOKE+HT+FVT1+PTL1),test="F")
Single term deletions
Model:
BWT ~ LWT + UI + SMOKE + HT + FVT1 + PTLI
    Df Sum of Sq RSS AIC F value Pr(F)
<none> 80779859 2464.5
LWT 1 2740905 83520764 2468.8 6.1754 0.0138569 *
UI 1 5536620 86316478 2475.0 12.4742 0.0005228 ***
SMOKE 1 1644322 82424180 2466.3 3.7047 0.0558183,
HT 1 3954174 84734033 2471.5 8.9089 0.0032279 **
FVT1 1 371701 81151560 2463.3 0.8375 0.3613362
PTL1 1 1530564 82310423 2466.0 3.4484 0.0649284
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We delete variable FVT1.

```
> drop1(lm(BWT~LWT+UI+SMOKE+HT+PTL1),test="F")
Single term deletions
Model:
BWT ~ LWT + UI + SMOKE + HT + PTLI
    Df Sum of Sq RSS AIC F value Pr(F)
<none> 81151560 2463.3
LWT 1 2891443 84043002 2468.0 6.5203 0.0114803 *
UI I 5763232 86914792 2474.3 12.9963 0.0004023 ***
SMOKE 1 1886275 83037835 2465.7 4.2536 0.0405794 *
HT 1 4217585 85369145 2470.9 9.5108 0.0023592 **
PTL1 1 1434298 82585858 2464.7 3.2344 0.0737548.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We delete variable PLT1.
> drop1(lm(BWT~LWT+UI+SMOKE+HT), test="F")
Single term deletions
Model:
$B W T \sim L W T+U I+S M O K E+H T$
Df Sum of Sq RSS AIC F value Pr (F)
<none> 825858582464.7
LWT $1 \quad 331166885897527 \quad 2470.1 \quad 7.37830 .0072310$ **
UI $1 \quad 6955671895415302477.915 .49710 .0001171$ ***

```
SMOKE 1 2579898 85165756 2468.5 5.7480 0.0175082 *
HT 1 4443587 87029445 2472.6 9.9002 0.0019278 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The method stops at the model with variables: UI, HT, LWT and SMOKE.

- The stepwise method

This algorithm is an improvement upon the forward selection method. At each step, it performs Student or Fisher tests, or optimize some criterion, to not add a non-significant variable and possibly delete previously included variables which are no longer significant given the latest included variable. The algorithm stops when no variables can be added or deleted.

We present function step () to perform the stepwise method, using at each step a selection procedure based on the AIC criterion [2] (An Information Criterion). One can also use the well known BIC criterion (Bayesian Information Criterion) by means of the $\mathrm{k}=\log (\mathrm{n})$ argument of the step() function.

```
> step(lm(BWT ~1),BWT LWT+AGE+UI+SMOKE+HT+FVT1+PTL1,
+ direction="both")
Start: AIC=2492.66
BWT ~ 1
    Df Sum of Sq RSS AIC
+UI 1 8028747 91888305 2478.8
+ PTL1 1 4757523 95159530 2485.4
+ SMOKE 1 3573406 96343646 2487.8
+ LWT 1 3448881 96468171 2488.0
+HT 1 2132014 97785038 2490.6
+ FVT1 1 1338322 98578731 2492.1
<none> 99917053 2492.7
+ AGE 1 806927 99110126 2493.1
Step: AIC=2478.83
BWT ~ UI
    Df Sum of Sq RSS AIC
+ HT 1 3162469 88725836 2474.2
+ SMOKE 1 2949940 88938365 2474.7
+ PTL1 1 2837049 89051257 2474.9
+ LWT 1 2076990 89811315 2476.5
<none> 91888305 2478.8
+ FVT1 1 949028 90939278 2478.9
+ AGE 1 472355 91415950 2479.9
- UI 1 8028747 99917053 2492.7
Step: AIC=2474.21
BWT ~ UI + HT
    Df Sum of Sq RSS AIC
+ LWT 1 3560080 85165756 2468.5
+ SMOKE 1 2828310 85897527 2470.1
+ PTL1 1 2682800 86043036 2470.4
<none> 88725836 2474.2
+ FVT1 1 698035 88027801 2474.7
```

```
+AGE 1 415275 88310561 2475.3
-HT 1 3162469 91888305 2478.8
-UI 1 9059202 97785038 2490.6
Step: AIC=2468.47
BWT ~ UI + HT + LWT
    Df Sum of Sq RSS AIC
+ SMOKE 1 2579898 82585858 2464.7
+ PTL1 1 2127921 83037835 2465.7
<none> }851657562468.
+FVT1 1 509265 84656491 2469.3
+AGE 1 94703 85071053 2470.3
-LWT 1 3560080 88725836 2474.2
-HT 1 4645559 89811315 2476.5
-UI 1 7482463 92648219 2482.4
Step: AIC=2464.66
BWT ~ UI + HT + LWT + SMOKE
    Df Sum of Sq RSS AIC
+ PTL1 1 1434298 81151560 2463.3
<none> 82585858 2464.7
+FVT1 1 275436 82310423 2466.0
+AGE 1 65305 82520553 2466.5
- SMOKE 1 2579898 85165756 2468.5
-LWT 1 3311668 85897527 2470.1
-HT 1 4443587 87029445 2472.6
-UI 1 6955671 89541530 2477.9
Step: AIC=2463.35
BWT ~ UI + HT + LWT + SMOKE + PTLI
    Df Sum of Sq RSS AIC
<none> 81151560 2463.3
+FVT1 1 371701 80779859 2464.5
-PTL1 1 1434298 82585858 2464.7
+AGE 1 187009 80964551 2464.9
-SMOKE 1 1886275 83037835 2465.7
-LWT 1 2891443 84043002 2468.0
-HT 1 4217585 85369145 2470.9
-UI 1 5763232 86914792 2474.3
Cal1:
lm(formula = BWT ~ UI + HT + LWT + SMOKE + PTLI)
Coefficients:
(Intercept) UI HT LWT
    2631.45 -506.76 -633.15 9.33
        SMOKE PTL1
    -208.46 -247.66
```


Warning

The data set Birth-weight has been used here only to illustrate how te use R functions for automatic selection, even though the best strategy for this data set would have been to select "by hand".

Indeed, it should be noted that different methods of automatic selection may not lead to the same choice of variables in the final model. They have the ad-
vantage of being easy to use, and of treating the question of variable selection in a systematic manner. The main drawback is that variables are included or deleted based on purely statistical criteria, without taking into account the aim of the study. This usually leads to a model which may be satisfactory from a statistical point of view, but in which the variables are not the most relevant when it comes to understanding and interpreting the data in the study.

12.3.9 Analysis of residuals

We present here a few elements on analysis of residuals. This method is useful to check the assumptions of the model and to detect possible outliers. For further details, we recommend you read [41].

- Validating model assumptions

We have already mentioned that for simple linear regression, analysis of residuals can be used to check the assumptions of the regression model. We showed two plots to check the assumptions of normally distributed errors and homoscedasticity of errors.
Connecting thread example: Study "Child weight at birth".

We study the validity of the assumptions for the model

$$
\mathrm{BWT}=\beta_{0}+\beta_{1} \mathrm{SMOKE}+\beta_{2} \mathrm{AGE}+\beta_{3} \mathrm{LWT}+\beta_{4} \mathrm{RACE} 2+\beta_{5} \mathrm{RACE} 3+\beta_{6} \mathrm{UI}+\beta_{7} \mathrm{HT}+\beta_{8} \mathrm{SMOKE} \times \mathrm{AGE}+\epsilon .
$$

```
> finalmodel<-lm(BWT~}\mathrm{ SMOKE+AGE+LWT+factor (RACE) +UI+HT+SMOKE:AGE)
> par(mfrow=c(1:2))
> plot(finalmodel,1:2,col.smooth="red")
```


Fitted values

Theoretical Quantiles

Fig. 12.10: Checking the assumptions of homoscedasticity (left) and normality (right).

```
> res <- residuals(finalmodel)
> par (mfrow=c (2,3))
> plot (res ~}\mp@subsup{~}{\mathrm{ SMOKE) ; plot (res }\mp@subsup{}{~}{~}AGE) ; plot (res ~}{~}\mathrm{ LWT)
> plot (res ~RACE) ; plot (res ~UI) ; plot (res NHT)
```


SMOK

AGE

HT

Fig. 12.11: Residuals as a function of explanatory variables.

It can also be useful to plot the residuals as a function of each explanatory variable, as shown in the above figure. This plot is useful to check whether there is a relationship between the error term and the explanatory variables, which would invalidate the assumption of independence between errors and explanatory variables. This plot is also useful to detect outliers.

- Outliers and influential points

An outlier is a point with a large value of its residual. It is a point which is often distant from the others. It can be visualized on the plot of residuals against predicted values (or against an explanatory variable) as a point very far away. Several kinds of residuals can then be defined:

- standardized residuals $t_{i}=\frac{\hat{\epsilon}_{i}}{\hat{\sigma} \sqrt{1-h_{i i}}}$ where $h_{i i}$ is the "leverage" (defined later on). These residuals are given by function rstandard(). Standardized residuals are "mostly" between -2 and 2 , but they are dependent;
- \quad studentized residuals $t_{i}^{*}=\frac{\hat{\epsilon}_{i}}{\hat{\sigma}_{(-i)} \sqrt{1-h_{i i}}}=t_{i} \sqrt{\frac{n-p-2}{n-p-1-t_{i}^{2}}}$ where $\hat{\sigma}_{(-i)}$ is the residual estimated without observation i. Studentized residuals are given by function rstudent (). An observation is called an outlier when $\left|t_{i}^{*}\right|>$ $t_{0.975}^{(n-p-2)}$ (where $t_{0.975}^{(n-p-2)}$ is the 0.975 quantile of a Student distribution with $n-p-2$ degrees of freedom).

```
> res.stud <- rstudent(finalmodel) # Calculating studentized
                                    # residuals.
> threshold.stud <- qt(0.975,189-8-2) # Calculating the
                                    # threshold for the
                                    # Student distribution.
> cond <- res.stud<(-threshold.stud) | res.stud > threshold.stud
> # List of individuals who can be considered outliers.
> id.student <- ID[cond] # ID (identification number) is in
                        # first column of dataset.
> val.ajust <- fitted(finalmodel)
> plot(res.stud~val.ajust,xlab="Fitted values",
+ ylab="Studentized residuals",pch=20)
> abline(h=c(-threshold.stud,threshold.stud))
```


Fig. 12.12: Visualizing outliers: studentized residuals against fitted values.

Another way of studying outliers is the notion of "leverage points". The leverage for observation $i\left(\right.$ noted $\left.h_{i i}\right)$ is the value on the diagonal of matrix $\boldsymbol{\mathcal { H }}=\boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}$ (the hat matrix). This measure is mostly used for the variance of residuals: $\operatorname{Var}\left(\hat{\epsilon}_{i}\right)=$ $\sigma^{2}\left(1-h_{i i}\right)$. A leverage above $2(p+1) / n$ can be considered too large. Large $h_{i i}$ indicates that the i th observation is far from the centre of gravity.

The $h_{i i}$, stored in vector leverage, are given by:

```
> # Equivalent to hat(model.matrix(finalmodel)):
> leverage <- hatvalues(finalmodel)
> # We also could have used the following instructions:
```

```
> outl <- influence.measures(finalmodel)
> leverage <- outl$infmat[,"hat"]
```

To detect leverage points, you can type:

```
> threshold.leverage <- 2*(8+1)/189
> outl.leverage <- ID[leverage>threshold.leverage]
> # List of individuals with large leverage:
> outl.leverage
[1] 85 98 119 126 138 159 168 187 197 202 226 11 13 19
[15] }20028,75 83 84 
```

Other diagnostics can be used to inspect outliers and check their influence on the regression model:

- Cook's distance. It is used to measure the influence of observation i on the estimation of the regression parameters. It is defined as:

$$
\begin{aligned}
C_{i}=\frac{\sum_{j=1}^{n}\left(\hat{y}_{j}-\hat{y}_{j}^{(-i)}\right)^{2}}{\hat{\sigma}^{2}(p+1)} & =\left(\frac{1}{p+1}\right)\left(\frac{h_{i i}}{1-h_{i i}}\right) t_{i}^{2}=\left(\frac{1}{p+1}\right)\left(\frac{h_{i i}}{\left(1-h_{i i}\right)^{2}}\right) \frac{\hat{\epsilon}_{i}^{2}}{\hat{\sigma}^{2}} \\
& =\left(\frac{1}{p+1}\right)\left(\frac{h_{i i}}{1-h_{i i}}\right) \frac{\hat{\sigma}_{(-i)}^{2}}{\hat{\sigma}^{2}} t_{i}^{* 2}
\end{aligned}
$$

where $\hat{y}_{j}^{(-i)}$ is the prediction at point $\boldsymbol{x}_{j}=\left(1, x_{j 1}, \ldots, x_{j p}\right)^{\top}$ given by the model estimated without the i th observation.

A large value of C_{i} indicates that the i th observation is influential (1 is sometimes used as the threshold), Deleting this observation can lead to big modifications in the regression equation. The function to calculate Cook's distance is cooks.distance().

Here is a graphical representation:

```
> plot(cooks.distance(finalmodel),type="h")
> ## Or plot(finalmodel,4)
```


Fig. 12.13: Visualizing influential observations: Cook's distance.
According to Cook's distance, no value seems globally influential.

- Welsch-Kuh distance or Dffits. It is defined as:

$$
\text { Dffits }_{i}=\frac{\hat{y}_{i}-\hat{y}_{i}^{(-i)}}{\hat{\sigma}_{(-i)} \sqrt{h_{i i}}}=t_{i}^{*} \sqrt{\frac{h_{i i}}{1-h_{i i}}} .
$$

Large $\left|\mathrm{Dffits}_{i}\right|$ indicates that observation i has an influence on the estimate \hat{y}_{i}, which means that observation is influential on the regression results. In prac-
tice, an observation is considered influential if \mid Dffits $_{i} \left\lvert\, \geq 2 \sqrt{\frac{p+1}{n}}\right.$.
The R function to calculate the Dffits is dffits().

```
> threshold.dffit <- 2*sqrt((8+1)/189)
> ID[abs(dffits(finalmodel))>=threshold.dffit]
    [1] 108 119 187 188 197 202 210 226 4 4 10 11 13 13 18 20
```

- The Dfbetas measure. It is defined as:

$$
\operatorname{Dfbetas}_{j, i}=\frac{\hat{\beta}_{j}-\hat{\beta}_{j}^{(-i)}}{\hat{\sigma}_{(-i)} \sqrt{\left(\mathcal{X}^{\top} \boldsymbol{X}\right)_{j+1 ; j+1}^{-1}}}
$$

where $\hat{\beta}_{j}^{(-i)}$ is the estimate of β_{j} obtained without using the i th observation. This quantity measures the influence of observation i on the estimate of the j th coefficient. For small or medium-size datasets, a value larger than 1 is suspect. For large datasets, observation i is suspect if \mid Dfbetas $_{j, i} \mid>2 / \sqrt{n}$ for at least one j.

The R function to calculate the Dfbetas is dfbetas().

```
> threshold.dfbetas <- 1
> ID[apply(abs (dfbetas(finalmodel)) >threshold.dfbetas,
+ FUN=any,MARGIN=1)]
integer(0)
```

Here, no value seems suspect.

- Covariance ratio. It is defined, for the i th observation, as the ratio of the determinant of the estimated matrix of variances-covariances of $\widehat{\boldsymbol{\beta}}_{(-i)}$ (estimator of β obtained without using the i th observation) by the determinant of the estimated matrix of variances-covariances of $\widehat{\boldsymbol{\beta}}$ (estimator of $\boldsymbol{\beta}$):

If the ratio is near 1 , the i th observation does not significantly influence the covariance matrix.

```
> max(abs(covratio(finalmodel)-1))
```

[1] 0.2897528

For further details on these diagnostics, you can read [41], [4] or [11].

12.3.10 Polynomial regression

In a polynomial model, the relationship between the explained variable Y and an explanatory variable X is represented in a non-linear fashion, such as:

$$
\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}+\beta_{2} \mathrm{X}^{2}+\ldots+\beta_{p} \mathrm{X}^{p}+\epsilon
$$

This model is a multiple regression model with p regressors: the powers of the explanatory variable.

To perform regression in a polynomial model, you simply need to correctly specify the formula associated with the model in the function $\operatorname{lm}()$. Two R functions are useful: I() and poly(). The next table gives a few examples of formulae for polynomial models.

$$
\begin{array}{ll}
\hline \text { Model } & \text { R formula } \\
\hline \hline M_{1}: Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2} & \mathrm{Y} \sim \text { poly }(\mathrm{X}, 2, \text { raw=TRUE }) \\
M_{2}: Y=\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3} & \mathrm{Y} \sim-1+\mathrm{poly}(\mathrm{X}, 3, \text { raw=TRUE }) \\
M_{3}: Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{3} & \mathrm{Y} \sim \mathrm{X}+\mathrm{I}\left(\mathrm{X}^{\wedge} 3\right) \\
M_{4}: Y=\beta_{1} X+\beta_{2} X^{3}+\beta_{3} X^{4} \quad \mathrm{Y} \sim-1+\mathrm{X}+\mathrm{I}\left(\mathrm{X}^{\wedge} 3\right)+\mathrm{I}\left(\mathrm{X}^{\wedge} 4\right) \\
\hline
\end{array}
$$

12.3.11 Summary

This table lists the main functions useful for multiple linear regression.

Table 12.2: Main \mathbf{R} functions for multiple linear regression.

R instruction	Description
pairs ()	graphical inspection
$\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\ldots+\mathrm{X} 3)$	estimation of the multiple linear model
summary $(\operatorname{lm}())$	description of the results of the model
confint $(\operatorname{lm}())$	confidence interval for regression parameters
predict $)$	function for predictions
plot $(\operatorname{lm}())$	graphical analysis of residuals
anova $\bmod 1, \bmod 2)$	partial Fisher test
$\mathrm{X} 1: \mathrm{X} 2$	interaction between X_{1} and X_{2}
vif()	computation of VIF

Memorandum

$\operatorname{lm}()$: perform linear regression
summary $(\operatorname{lm}())$: results of the linear model
confint (): confidence interval for regression parameters
predict(): prediction of new values
residuals(): recover residuals of a linear model
plot $(\operatorname{lm}(())$: plots for model validation
pairs(): scatter plot
anova $(\operatorname{lm}())$: analysis of variance table of a linear model
X1X2: interaction term
rstantard(): standardized residuals
rstudent (): studentized residuals
vif() : calculation of VIF
cooks.distance(): Cook's distance
dffits(): Welsh-Kuh distance
dfbetas(): Dfbetas measure
step(): stepwise method with AIC
regsubsets(): selection by exhaustive search

12.1- Give the instruction to fit the model $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\epsilon$.
12.2- Give the instruction to fit the model $\mathrm{Y}=\beta_{1} \mathrm{X}_{1}+\epsilon$.
12.3- Give the instruction to fit the model $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\beta_{2} \mathrm{X}_{2}+\epsilon$.
12.4- Give the instruction to fit the model $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{1} \times \beta_{2} \mathrm{X}_{2}+\beta_{3} \mathrm{X}_{1}+\beta 4 \mathrm{X}_{2}+\epsilon$.
12.5- Give the instruction to fit the model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{1}^{2}+\beta_{3} X_{1}^{4}+\epsilon$.
12.6- Which instruction performs a partial Fisher test?
12.7- Which function recovers the residuals of a model?
12.8- Which function gives the estimates of a regression model?
12.9- Let Z be a qualitative variable. Which function should you use to fit a regression model with Z as the explanatory variable?
12.10- Give the instruction to fit the polynomial model $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}^{1}+\beta_{2} \mathrm{X}^{2}+\beta_{3} \mathrm{X}^{3}+\epsilon$.
12.11- Which function performs forward selection?
12.12- Which function performs backward selection?
\square Worksheet

A- Study of simple linear regression

- Study of synthetic data
12.1- Simulate a dataset $\left(x_{i}, y_{i}\right), i=1, \ldots, n$ from a simple linear regression model. To this end:
- choose the true parameters β_{0} and β_{1}, as well as $\sigma>0$;
- simulate the vector of errors e of size n from a normal distribution $\mathcal{N}\left(0, \sigma^{2}\right)$;
- simulate the vector of values of the explanatory variable x of size n from a uniform distribution over $[0, t]$ where t is a positive real number of your choosing;
- construct the vector of values of the explained variable y of size n from the linear regression model.
12.2- Plot the n points $\left(x_{i}, y_{i}\right)$.
12.3- Give an estimate of the regression parameters and of the error variance.
12.4- Analyse the residuals to validate the model:
- plot the residuals against the fitted values;
- plot the fitted values against the observed values;
- draw a plot to check the normality of residuals.
12.5- Change the values of n and σ to understand the consequences on the precision of the regression parameter estimates (in terms of variance).
- Study of intima-media

In the "Intima-media" study, we wish to study the relationship between intimamedia thickness and age.
12.1- Download the intima-media data file.
12.2- Plot variable measure as a function of variable AGE. Describe this scatter plot.
12.3- Is there a link between these variables? Explain how to measure the severeness of the link.
12.4- We now wish to fit a regression line on this scatter plot:

- propose a regression model and estimate the parameters of the model;
- draw the regression line over the scatter plot.
12.5- Analyse the residuals to validate the model.
12.6- Give a prediction interval for intima-media thickness for a 33 years old person.
12.7- Give a confidence interval for the average intima-media thickness of 33 years old people.
12.8- Propose a model to increase the predictive power of intima-media thickness, using only AGE as an explanatory variable.

B- Study of multiple linear regression

- Study of intima-media

In the previous practical, we looked at the relationship between intima-media thickness and age. We now wish to fit a regression model on all variables which may explain variations in intima-media thickness. The study will rely on the following variables: AGE, SPORT, alcohol, packyear and the variable BMI which you must create from variables height, weight.

We are mostly interested in tobacco, through the variable packyear as main exposure factor. We therefore decide to keep this variable in the model even if it is not significant.
12.1- Draw scatter plots of all pairs of variables (explained and explanatory). Do you suspect any issues with collinearity?
12.2- Perform a univariate analysis of intima-media thickness of each explanatory variable.
12.3- We only keep the explanatory variables associated with significance level $p<0.25$ in the univariate analysis. One by one, test all possible interactions between the selected explanatory variables and the main exposure variable packyear.
12.4- Estimate and analyse the model with all variables which were declared significant in the univariate analyses ($\alpha=25 \%$) and all interaction terms significant at the 10% level.
12.5- Are the interaction terms still significant? Remove interaction terms which are no longer significant at the 10% level.
12.6- Starting with the model from the previous question, remove one by one all variables which are not significant at the 5% level, making sure that the removals do not make a big difference on the estimate of the coefficient associated with tobacco status.
12.7- Interpret the final model.

- Study of unemployment rates

This practical studies unemployment rates from 1960 to 1993. The dataset unemployment is made of $n=34$ yearly observations (from 1960 to 1993). Here is a description of the variables:

- year: year;
- unemp: unemployment rate;
- gdprate: rate of variation of Gross domestic product (GDP), representing economic growth;
- govspend: ratio of government spending and GDP, representing the degree of intervention of the state in the economy;
- taxb: tax burden, to see whether taxation of businesses has an impact on hiring policy, and hence on unemployment rates;
- salav: ratio of salaries to added value, to know the influence of cost at hiring;
- infl: inflation rate, to verify the inverse relationship between unemployment and inflation, defined in the Philips curve.
12.1- We consider a linear model explaining variable unemp as a function of variable gdprate only. Download the dataset http://www.biostatisticien. eu/springeR/unemployment.RData. Perform a complete analysis of the underlying simple linear regression model.
12.2- We consider a multiple linear model explaining variable unemp as a function of all explanatory variables in the dataset (except variable year). Give the correlation matrix of all these variables.
12.3- Draw scatter plots of all pairs of variables.
12.4- Which explanatory variables seem to make the biggest contribution? Do you suspect collinearity between regressors?
12.5- Present the results of the multiple linear regression model with explanatory variables.
12.6- Calculate the VIF associated with each explanatory variable.
12.7- Perform backward variable selection with threshold $\alpha=0.2$.
12.8- Present the final model.
12.9- Suppose we do not know the value of unemp in 1993. Can you predict its value, and calculate a 95% prediction interval?
12.10- What is the observed value of unemp in 1993? Is this surprising?

C- Study of polynomial regression

- Study of synthetic data
12.1- Simulate a sample of size $n=100$ from the following model:

$$
Y=X+2 X^{2}+3.5 X^{3}-2.3 X^{4}+\epsilon
$$

where X follows a uniform distribution over $[-2,+2]$ and ϵ follows a $\mathcal{N}(0,1)$ distribution.
12.2- Draw the scatter plot and the simulated polynomial line.
12.3- Fit a simple linear regression model. Remember to analyse the residuals.
12.4- Fit a polynomial regression, using a polynomial of degree 4 . Draw the estimated model over the scatter plot.

- Fitting a scatter plot with a polynomial

Suppose you are asked to propose a model to predict a variable Y given an explanatory variable X. You are given a sample of size n.
12.1- Download the data file http://www.biostatisticien.eu/springeR/fitpoly. RData.
12.2- Draw a scatter plot of variable Y as a function of variable X.
12.3- Is there a linear relationship between these two variables? Fit a regression line on the previous plot.
12.4- Perform polynomial regression to fit the data better.
12.5- Draw the estimated polynomial over the scatter plot. Draw the confidence curve for the mean of Y for $\mathrm{X} \in[-3.5,3.5]$. Add the prediction interval of the model for $\mathrm{X} \in[-3.5,3.5]$.

Chapter 13
 Elementary analysis of variance

Prerequisites and goals of this chapter

- \quad Read Chapter 12.
- This chapter describes the various \mathbf{R} commands to perform analysis of variance. We present the standard cases of analysis of variance with 1 factor and 2 factors with or without interaction. We also introduce repeated measures analysis of variance.

- SECTION 13.1 Analysis of variance with one factor

13.1.1 Aims, data and model

- Aim: Analysis of variance (ANOVA) is a method to study the modification of the mean μ of a phenomenon under study Y (quantitative variable) under the influence of one or several qualitative experimental factors (treatments). In the case where the mean is only influenced by one factor (noted X), it is analysis of variance with one factor or one-way ANOVA. A factor is often a qualitative variable with a small number of modalities. The number of modalities (or levels) of factor X is noted I. We assume that Y follows a normal distribution $\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$ in each subpopulation i defined by the modalities of X . The aim is to test whether these I populations have equal means, i.e. to test the null hypothesis

$$
\mathcal{H}_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{I}
$$

against the assertion of interest

$$
\mathcal{H}_{1}: \exists i \neq i^{\prime} / \mu_{i} \neq \mu_{i^{\prime}} \text { ("there are at least two different means"). }
$$

- Data: For each sub-population i (or modality i of X, or group i), we are given a sample of n_{i} observations from the quantitative variable Y :

$$
y_{i, 1}, y_{i, 2}, \ldots, y_{i, n_{i}}
$$

The model is written

$$
\mathrm{Y}_{i k}=\mu_{i}+\epsilon_{i k}, \quad \text { for } k=1, \ldots, n_{i} \text { and } i=1, \ldots, I
$$

where the errors $\epsilon_{i k}$ are independent random variables following the distribution $\mathcal{N}\left(0, \sigma^{2}\right)$. We can also write μ_{i} as: $\mu_{i}=\mu+\alpha_{i}$ for $i=1, \ldots, I$. In this setting, μ is called the mean effect of the factor and $\alpha_{i}=\mu_{i}-\mu$ is called the differential effect for level i of the factor. The above model can therefore also be written as:

$$
\mathrm{Y}_{i k}=\mu+\alpha_{i}+\epsilon_{i k}, \quad \text { for } k=1, \ldots, n_{i} \text { and } i=1, \ldots, I
$$

This model is not identifiable (which means that some parameters cannot be estimated). We therefore have to impose a (linear) constraint to make it identifiable, for example $\sum_{i=1}^{I} \alpha_{i}=0$, which corresponds to taking the mean effect μ as the reference.

Warning

By default, R imposes the constraint $\alpha_{1}=0$. All comparisons are then made relatively to μ_{1}. The reference class is level 1 of the factor.

See also

The concept of a reference group has already been explained on page 478 of Chapter 12.

13.1.2 Example and graphical inspection

- Example of use: Fever buttons.

Five treatments $\left(T_{1}, \ldots, T_{5}\right)$ against fever buttons, including one placebo, were randomly assigned to thirty patients (six patients per treatment group). For each patient, the time (in days) between the apparition of the buttons and complete scarring was measured.

Treatments				
T_{1} (placebo)	T_{2}	T_{3}	T_{4}	T_{5}
5	4	6	7	9
8	6	4	4	3
7	6	4	6	5
7	3	5	6	7
10	5	4	3	7
8	6	3	5	6

The aim here is to compare the theoretical means of scarring times; these times were observed on five independent samples (treatment groups.)

- Graphical inspection: We first perform a brief descriptive analysis of the data, to see whether any probable patterns emerge.

```
> X<-data.frame(Placebo=c(5, 8, 7, 7, 10, 8),T2=c(4, 6, 6, 3, 5, 6),
+ T3=C(6,4,4,5,4,3),T4=C(7,4,6,6,3,5),T5=C(9,3,5,7,7,6))
> times <- stack(X)$values # stack() is used to stack vectors.
> treatment <- stack(X)$ind
> tapply(times,treatment, summary)
$Placebo
    Min. 1st Qu. Median Mean 3rd Qu. Max.
        5.0 [llllll
$T2
    Min. 1st Qu. Median Mean 3rd Qu. Max.
        3.00 4.25 5.50 5.00 6.00 6.00
$T3
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    3.000 4.000 4.000 4.333 4.750 6.000
$T4
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    3.000 4.250 5.500 5.167 6.000 7.000
$T5
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    3.000 5.250 6.500 6.167 7.000 9.000
```

> plot (times ${ }^{\sim}$ treatment)

Fig. 13.1: Box plot of scarring times for each treatment.

13.1.3 ANOVA table and parameter estimation

- $\quad \mathrm{R}$ instruction for the ANOVA table: Use the function aov(). As for regression models, ANOVA works with R formulae. You therefore have to specify the model.

```
> my.aov <- aov(times ~}\mp@subsup{}{}{~}reatment
> summary (my.aov)
Df Sum Sq Mean Sq F value Pr(>F)
treatment 4 36.467 9.1167 3.896 0.01359 *
Residuals 25 58.500 2.3400
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Warning

If it has not already been done, remember to declare your factor variable (in this case, the variable treatment) as an R object of type factor, using the function factor().

```
> class(treatment)
```

[1] "factor"

ANOVA is in fact a linear model, so note that it is also possible to perform analysis of variance of the underlying linear model:

```
> model <- lm(times~}\mp@subsup{}{}{~
> anova(model)
Analysis of Variance Table
Response: times
    Df Sum Sq Mean Sq F value Pr(>F)
treatment 4 36.467 9.1167 3.896 0.01359 *
Residuals 25 58.500 2.3400
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Tip

Note that you can also use the function Anova() from package car. This function is more complete and can handle more complex data.

The analysis of variance table outputs the result of Fisher's test for the hypotheses: $\mathcal{H}_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{I}$ and $\mathcal{H}_{1}: \exists i \neq i^{\prime} / \mu_{i} \neq \mu_{i^{\prime}}$ ("there are at least two different means"). The p-value $=0.013$ allows us to conclude that the effects of at least two treatments are different, although we do not know which ones.
Estimating the parameters of the model: Estimates are given by the function summary() for model lm(times \sim treatment). Recall that R imposes the constraint $\alpha_{1}=0$.

```
> summary(model)
Call:
lm(formula = times ~ treatment)
Residuals:
    Min 1Q Median 3Q Max
-3.16667 -0.87500 -0.08333 0.83333 2.83333
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.5000 0.6245 12.010 7.06e-12 ***
treatmentT2 -2.5000 0.8832 -2.831 0.00903 **
treatmentT3 -3.1667 0.8832 -3.586 0.00142 **
treatmentT4 -2.3333 0.8832 -2.642 0.01401 *
treatmentT5 -1.3333 0.8832 -1.510 0.14366
_--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.53 on 25 degrees of freedom
Multiple R-squared: 0.384, Adjusted R-squared: 0.2854
F-statistic: 3.896 on 4 and 25 DF, p-value: 0.01359
```

The intercept corresponds to the estimate of the mean time for the placebo (treatment 1 is the reference). The estimate associated with variable T2 corresponds to the differential effect between treatment T2 and the placebo. The same goes for the other variables. The assertions of interest and the two-
by-two Student tests performed in this model (with constraint $\alpha_{1}=0$) are summed up in the following table:

Intercept $\quad \mu_{1} \neq 0$
treatment T2 $\quad \alpha_{2} \neq 0 \Leftrightarrow \mu_{1} \neq \mu_{2}$
treatment T3 $\alpha_{3} \neq 0 \Leftrightarrow \mu_{1} \neq \mu_{3}$
treatment T4 $\alpha_{4} \neq 0 \Leftrightarrow \mu_{1} \neq \mu_{4}$
treatment T5 $\alpha_{5} \neq 0 \Leftrightarrow \mu_{1} \neq \mu_{5}$

The results output by \mathbf{R} show that there is a significant difference between the placebo and treatments 2,3 and 4 . In this setting, the placebo was the natural reference. However, it is possible to take another reference, or a linear constraint, using the instruction C() , as shown in the next example:

```
> summary(lm(times ~C(treatment,base=2)))
Call:
lm(formula = times ~ C(treatment, base = 2))
Residuals:
    Min 1Q Median 3Q Max
-3.16667-0.87500-0.08333 0.83333 2.83333
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate Std. Error t value \\
(Intercept) & 5.0000 & 0.6245 & 8.006 \\
C(treatment, base \(=2) 1\) & 2.5000 & 0.8832 & 2.831 \\
C(treatment, base \(=2) 3\) & -0.6667 & 0.8832 & -0.755 \\
C(treatment, base \(=2) 4\) & 0.1667 & 0.8832 & 0.189 \\
C(treatment, base \(=2) 5\) & 1.1667 & 0.8832 & 1.321
\end{tabular}
(Intercept) 0.0000000232 ***
C(treatment, base = 2)1 0.00903 **
C(treatment, base = 2)3 0.45739
C(treatment, base = 2)4 0.85184
C(treatment, base = 2)5 0.19847
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.53 on 25 degrees of freedom
Multiple R-squared: 0.384, Adjusted R-squared: 0.2854
F-statistic: 3.896 on 4 and 25 DF, p-value: 0.01359
```

Fisher's test does not change, since it does not depend on the linear constraint, but the estimates and the individual Student tests do change. With these results, we cannot show that treatment 2 is different to treatments 3,4 and 5, but we do get a significant Student test for the comparison of the placebo with treatment 2.

To get the constraint $\sum_{i=1}^{I} \alpha_{i}=0$, use C(treatment, sum).

Note that you can use the function model.matrix() on the fitted linear model to get the matrix of explanatory variables. In the ANOVA model with a constraint of the type $\alpha_{i}=0$, the matrix includes an intercept (a column of 1 s) and the $I-1$ indicator variables.

13.1.4 Validation of assumptions

- Validation of assumptions: The ANOVA model corresponds to a linear model with a qualitative explanatory variable. The assumptions of the model can be validated using the method of analysis of residuals we presented for the regression model. Recall that the plot of residuals is obtained with the instructions:
> par (mfrow=c $(2,2)$)
> plot(model, col.smooth="red")

Fig. 13.2: Analysing the residuals in single-factor ANOVA
In ANOVA, it is also possible to use a test of equality of variances to explore whether the assumption of homoscedasticity is admissible. Bartlett's test (under normality in the subpopulations) can be obtained by

```
> bartlett.test(times~}\mp@subsup{}{}{~
    Bartlett test of homogeneity of variances
data: times by treatment
Bartlett's K-squared = 2.4197, df = 4, p-value = 0.6591
```

However, this test is not robust to non-normality. In that case, use Levene's test [25]:

```
> levene.test(times,treatment) # Available in package car.
Levene's Test for Homogeneity of Variance (center = median)
    Df F value Pr(>F)
group 4 0.5851 0.6763
    25
```


13.1.5 Multiple comparisons and contrasts

- Multiple comparisons: If, after performing analysis of variance, we reject the hypothesis of equal means relative to a factor with I levels, an interesting question is which means are significantly different from the others. In the fever button example, we would like to select the most efficient treatment, i.e. the one which leads to the fastest scarring.
The individual Student test in the linear model is perfectly valid to compare two treatments chosen in advance. However, it cannot be used to compare (for example) the treatment which seems to give the best results with the treatment which seems to give the worse results. Indeed, this would be equivalent to comparing all pairs of treatments. Each test has probability α (the level of the test) of showing as present a difference which does not exist. Overall, out of the $I(I-1) / 2$ possible comparisons, the probability that one is declared significant "at random" becomes important. There are several methods to control the global risk for the $I(I-1) / 2$ pairwise comparisons.
The function pairwise.t.test() performs all pairwise comparisons and includes several methods to correct the risk α in order to take into account the problem of multiple tests.

```
> pairwise.t.test(times,treatment,p.adjust="bonf")
    Pairwise comparisons using t tests with pooled SD
data: times and treatment
    Placebo T2 T3 T4
T2 0.090 - - -
T3 0.014 1.000 - -
T4 0.140 1.000 1.000 -
T5 1.000 1.000 0.483 1.000
P value adjustment method: bonferroni
```

R gives p-values adjusted with Bonferroni's correction: the corrected p-values are given by multiplying the p-values from the Student tests by the number of tests. Given the results (p-value $=0.014$ between treatment 1 and treatment 3), there is a significant difference between treatment 1 (placebo) and treatment 3 , at the 5% level.

Note

The comparison between treatment 1 and treatment 3 was performed by analysing model 1 . The p-value for the individual Student test was 0.0014 . Since ten comparisons were performed, this p-value is multiplied by 10 in Bonferroni's method.

Many other correction methods exist. For single factor analysis of variance with the same number of observations in each group, Tukey's method [30] is the most accurate. It gives simultaneous confidence intervals for the difference $\mu_{i}-\mu_{j}$ where $1 \leq i<j \leq I$.

```
> my.aov <- aov(times ~}\mp@subsup{}{}{~}reatment
> TukeyHSD(my.aov)
    Tukey multiple comparisons of means
        95% family-wise confidence level
Fit: aov(formula = times ~ treatment)
$treatment
\begin{tabular}{lrrrr} 
& diff & lwr & upr & padj \\
T2-Placebo & -2.5000000 & -5.0937744 & 0.09377442 & 0.0627671 \\
T3-Placebo & -3.1666667 & -5.7604411 & -0.57289224 & 0.0113209 \\
T4-Placebo & -2.3333333 & -4.9271078 & 0.26044109 & 0.0927171 \\
\(T 5-P l\) acebo & -1.3333333 & -3.9271078 & 1.26044109 & 0.5660002 \\
\(T 3-T 2\) & -0.6666667 & -3.2604411 & 1.92710776 & 0.9410027 \\
\(T 4-T 2\) & 0.1666667 & -2.4271078 & 2.76044109 & 0.9996956 \\
\(T 5-T 2\) & 1.1666667 & -1.4271078 & 3.76044109 & 0.6811222 \\
\(T 4-T 3\) & 0.8333333 & -1.7604411 & 3.42710776 & 0.8770466 \\
\(T 5-T 3\) & 1.8333333 & -0.7604411 & 4.42710776 & 0.2614661 \\
\(T 5-T 4\) & 1.0000000 & -1.5937744 & 3.59377442 & 0.7881333
\end{tabular}
```

```
> par(las=1) # Horizontal writing of labels.
> plot(TukeyHSD(my.aov))
```

95% family-wise confidence level

Differences in mean levels of treatment

The results from Tukey's method agree with those from Bonferroni's method: the only confidence interval which does not contain the value 0 is the one for the difference between treatment 3 and treatment 1 . There is a significant difference between treatment 1 and treatment 3 . Since scarring time is shorter with treatment 3 , we suggest using treatment 3 .

- Contrast analysis: In ANOVA, a contrast (noted L) is defined as a linear combination of theoretical means with sum of coefficients equal to zero:

$$
L=\sum_{i=1}^{I} \lambda_{i} \mu_{i}=\lambda^{\top} \boldsymbol{\mu} \quad \text { with } \quad \sum_{i}^{I} \lambda_{i}=0
$$

where $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{I}\right)^{\top}$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{I}\right)^{\top}$.
Contrasts are used to compare the means of groups of levels. For example, in the fever button example, to compare treatments 2 and 3 , you should use the contrast $L_{1}=\lambda^{\top} \mu$ with $\lambda=(0,1,-1,0,0)^{\top}$ and perform the test $\mathcal{H}_{0}: L_{1}=0$ against $\mathcal{H}_{1}: L_{1} \neq 0$.
You can perform tests on contrasts with the function fit.contrast() from package gregmisc.
> require (gregmisc)
$>$ cmat <- rbind(": 2 against $\left.3^{\prime \prime}=c(0,1,-1,0,0)\right)$
> fit.contrast (my.aov, treatment, cmat)

| treatment: 2 against 30.6666667 | 0.883176 | 0.7548514 | |
| ---: | :--- | ---: | ---: | ---: | ---: |
| | $\operatorname{Pr}(>/ t /)$ | | |
| treatment: 2 against 30.4573908 | | | |

Note

The same result was given by the individual Student test in model 2.

Now suppose that treatments 2 and 3 are ointments but treatments 4 and 5 are anti-tobacco patches. To compare the two types of remedies, you can use the contrast $L_{2}=\lambda^{\top} \boldsymbol{\mu}$ with $\boldsymbol{\lambda}=(0,-1,-1,1,1)^{\top}$ and perform the test $\mathcal{H}_{0}: L_{2}=0$ against $\mathcal{H}_{1}: L_{2} \neq 0$.

```
> cmat <- rbind(": 2 against 3"=c(0,1,-1,0,0),
+ ": 2 and 3 against 4 and 5"=c(0,-1,-1,1,1))
> fit.contrast(my.aov,treatment, cmat)
    Estimate Std. Error
treatment: 2 against 3 0.6666667 0.883176
treatment: 2 and 3 against 4 and 5 2.0000000 1.249000
    t value Pr(>|t|)
treatment: 2 against 3 0.7548514 0.4573908
treatment: 2 and 3 against 4 and 5 1.6012815 0.1218767
```


13.1.6 Summary

The next table presents the main functions for single factor anaysis of variance.

Table 13.1: Main functions for single-factor ANOVA

R instruction	Description
plot (Y~factor(X))	graphical inspection
$\operatorname{aov}(\mathrm{Y} \sim \mathrm{factor}(\mathrm{X})$)	analysis of variance
summary (aov(Y~factor (X)))	analysis of variance table
anova(lm(Y~factor (X)))	analysis of variance table
pairwise.t.test()	pairwise comparisons
fit.contrast()	contrast tests (package gregmisc)
barlett.test()	homoscedasticity test
levene.test()	homoscedasticity test
plot(aov(Y~factor(X)))	graphical analysis of residuals

- SECTION 13.2

Analysis of variance with two factors

13.2.1 Aims, data and model

- Aim: ANOVA with two factors, or two-way ANOVA, is a method to explain a quantitative variable with two "crossed" explanatory qualitative variables (called factors).

In ANOVA, the explanatory variables are often called independent variables (for example in psychology) and noted IV.

- Data: Let A be a factor with I modalities and B a factor with J modalities. For each couple $(i, j), i=1, \ldots, I$ and $j=1, \ldots, J$, we observe a quantitative variable $\mathrm{Y}, n_{i j}$ times. We assume that Y follows a normal distribution $\mathcal{N}\left(\mu_{i j}, \sigma^{2}\right)$ in each subpopulation defined by values i and j of the two factors.
- Model: The model is written

$$
\mathrm{Y}_{i j k}=\mu_{i j}+\epsilon_{i j k}, \quad \text { for } k=1, \ldots, n_{i j}, \quad i=1, \ldots, I, \quad j=1, \ldots, J,
$$

where the errors $\epsilon_{i j k}$ are independent random variables from a $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution.
In this model, the real parameters $\mu_{11}, \ldots, \mu_{I 1}, \ldots, \mu_{1 J}, \ldots, \mu_{I J}$ are unknown, as is the variance σ^{2}.
We decompose $\mu_{i j}$ so that the effects of the factors A and B appear, as well as the effect of their interaction:

$$
\mu_{i j}=\mu_{\bullet \bullet}+\alpha_{i}^{\mathrm{A}}+\alpha_{j}^{\mathrm{B}}+\beta_{i j}
$$

with

- $\mu_{\bullet \bullet}=\frac{1}{I J} \sum_{i=1}^{I} \sum_{j=1}^{J} \mu_{i j}$: general mean effect;
- $\mu_{i \bullet}=\frac{1}{J} \sum_{j=1}^{J} \mu_{i j}$: effect of level i of factor A;
- $\alpha_{i}^{A}=\mu_{\bullet \bullet}-\mu_{\bullet \bullet}:$ differential effect of level i of factor A ;
- $\mu_{\bullet j}=\frac{1}{I} \sum_{i=1}^{I} \mu_{i j}$: effect of level j of factor B;
$-\alpha_{j}^{B}=\mu_{\bullet j}-\mu_{\bullet \bullet}$: differential effect of level j of factor B ;
- $\quad \beta_{i j}=\mu_{i j}-\mu_{\bullet \bullet}-\alpha_{i}^{\mathrm{A}}-\alpha_{j}^{\mathrm{B}}$: interaction effect of level i of factor A and level j of factor B.

By construction, $\sum_{i=1}^{I} \alpha_{i}^{\mathrm{A}}=0, \quad \sum_{j=1}^{J} \alpha_{j}^{\mathrm{B}}=0 \quad$ and $\quad \forall i, \quad \sum_{j=1}^{J} \beta_{i j}=$ $0, \forall j, \sum_{i=1}^{I} \beta_{i j}=0$.

The aim here is to detect

- whether factor A has an effect on the quantitative variable Y ;
- whether factor B has an effect on the quantitative variable Y ;
- and whether there is an interaction effect between factors A and B on the quantitative variable Y .

13.2.2 Example and graphical inspection

- Example of use: The next table gives the yield of einkorn wheat from fields in four different regions with three types of fertilizer.

| | Region I | Region II | Region III | Region IV | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fertilizer E_{1} | 15 | 14 | 17 | 21 | 20 | 21 | 14 | 15 | 14 | 16 | 17 | 17 |
| Fertilizer E_{2} | 16 | 19 | 20 | 23 | 24 | 25 | 15 | 14 | 14 | 12 | 11 | 12 |
| Fertilizer E_{3} | 18 | 17 | 17 | 20 | 21 | 21 | 17 | 19 | 17 | 12 | 13 | 13 |

These data are input in R with the following instructions:

```
> yield <- c(15,14,17, 21, 20, 21,14,15,14,16,17,17,16,19,20,23,
+ 24,25,15,14,14,12,11,12,18,17,17,20,21,21,17,19,
+ 17,12,13,13)
> fertilizer <- gl(3,12,36,labels=paste("Fertilizer", 1:3))
> region <- gl(4,3,36,labels=paste("Region", 1:4))
> wheat <- data.frame(yield,fertilizer,region)
```

We wish to study the effect of the type of fertilizer (E_{1}, E_{2} ou E_{3}) on the yield per hectare of einkorn wheat and to find out whether there is a significantly different yield between the four regions.

Note

In this example, the data are balanced (there is the same number of observations for each pair of factor levels). When this is not the case, the ANOVA table is no longer unique; we advise you to use a decomposition of variance of type III (see [31]).

- Graphical inspection: In the ANOVA model with two factors and interaction, the effect of a factor on the explained variable can be different depending on
the modalities of the other factor. This flexibility in the model can be visualized. The command to explore this interaction is interaction.plot(). The function plotMeans(), available in the package Rcmdr, also allows graphical inspection of the interaction.
> interaction.plot(region,fertilizer, yield)


```
    > interaction.plot(fertilizer,region,yield)
```


Fig. 13.3: Exploration of interaction in two-way ANOVA.

These plots indicate that there seems to be interaction (the lines intersect).

13.2.3 ANOVA table, tests, and parameter estimation

- $\quad \mathrm{R}$ instruction for ANOVA table: Several functions exist to perform two-way $\overline{\text { ANOVA with interaction: } \operatorname{aov}() \text {, anova (lm()) and Anova() (in package }}$ car).

Warning

When you have only one observation per combination of modalities of the factors A and B (i.e. $n_{i j}=1 \forall i, j$), you can only estimate two-way ANOVA without interaction. aov(yield~region+fertilizer).

[^11]

```
fertilizer 2 0.89 0.444 0.4571 0.6385
region:fertilizer 6 99.56 16.593 17.0667 1.359e-07 ***
Residuals 24 23.33 0.972
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(lm(yield~region*fertilizer,data=wheat))
Analysis of Variance Table
Response: yield
    Df Sum Sq Mean Sq F value Pr(>F)
region 3 327.19 109.065 112.1810 2.955e-14 ***
fertilizer 2 0.89 0.444 0.4571 0.6385
region:fertilizer 6 99.56 16.593 17.0667 1.359e-07 ***
Residuals 24 23.33 0.972
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> Anova(lm(yield~region*fertilizer,data=wheat))
Anova Table (Type II tests)
Response: yield
    Sum Sq Df F value Pr(>F)
region 327.19 3 112.1810 2.955e-14 ***
fertilizer 0.89 2 0.4571 0.6385
region:fertilizer 99.56 6 17.0667 1.359e-07 ***
Residuals 23.33 24
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Note

The formula region*fertilizer, used in aov() and $\operatorname{lm}()$, corresponds in fact to the formula region+fertilizer+region:fertilizer, i.e. the factor region, the factor fertilizer, and the interaction of these two factors.

The p-value associated with the test of interaction is significant. This implies that the effect of fertilizer of yield can be different depending on the region.

Warning

We consider that there is no interaction effect if the associated p-value is greater than 5%. In this case, we perform an ANOVA without an interaction term which makes it easier to interpret the principal effect. When there is interaction, do not interpret the principal effects in the ANOVA table output.

- Test of conditional effects with interaction: For example, we wish to know whether there is a fertilizer effect in region 1 . To this end, we use the function subset (), which only uses data from a given region.

```
> fertilizer.region1 <- summary(aov(yield~}\mp@subsup{f}{ertilizer, subset=}{
+ region=="Region 1"))
> fertilizer.region1
    Df Sum Sq Mean Sq F value Pr(>F)
fertilizer 2 14 7.0000 3 0.125
Residuals 6 14 2.3333
```


Warning

The test in this ANOVA table corresponds to ANOVA with one factor (fertilizer) of the yield of wheat in region 1. It does not take into account any information from data in the other regions, which would allow for a better estimation of the residual variance. To test the fertilizer effect in region 1, divide the mean square of the fertilizer factor found in the ANOVA restricted to region 1 by the mean residual square of the ANOVA with interaction:

```
> F.fertilizer.region1 <- fertilizer.region1[[1]]$Mean[1]/
+ model2[[1]]$Mean[4]
> pvalue <- 1-pf(F.fertilizer.region1,df1=2,df2=24)
> pvalue
[1] 0.003552714
```

The p-value is less than 5%, hence we conclude that there is a fertilizer effect in region 1.

- Parameter estimation: The parameters can be estimated with the function summary() for the model lm(yield~region*fertilizer). Recall that \mathbf{R} imposes the constraints $\alpha_{1}^{\mathrm{A}}=0, \alpha_{1}^{\mathrm{B}}=0, \beta_{1 j}=0 \forall j=1, \ldots, J$ and $\beta_{i 1}=0 \forall i=1, \ldots, I$.
> summary(lm(yield~region*fertilizer))
Ca11:
lm(formula $=$ yield ~ region * fertilizer)
Residuals:
Min 1Q Median 3Q Max
$-2.3333-0.6667 \quad 0.1667 \quad 0.3333 \quad 1.6667$
Coefficients:

Estimate	Std. Error
15.3333	0.5693
5.3333	0.8051
-1.0000	0.8051
1.3333	0.8051
3.0000	0.8051
2.0000	0.8051
0.3333	1.1386
-3.0000	1.1386
-8.0000	1.1386
-2.0000	1.1386
1.3333	1.1386

Thus the intercept corresponds to the estimate of the mean yield for fertilizer 1 in region 1. For example, the coefficient associated with region 2 corresponds to the estimate of the difference of the mean yield with fertilizer 1 if region 2 and the mean yield with fertilizer 1 if region 1 . The Student tests associated with the factors can therefore be interpreted. However, those associated with the estimates of the crossed factors coefficients are not relevant.

Note

In this example, there is no particular reason of choosing this constraint. To change it, use the function C() . For example: summary $(\operatorname{lm}($ yield $\sim C($ region, sum $) * C($ fertilizer, sum))) corresponds to the constraints $\sum_{i=1}^{I} \alpha_{i}^{\mathrm{A}}=0, \quad \sum_{j=1}^{J} \alpha_{j}^{\mathrm{B}}=0 \quad$ and $\forall i, \quad \sum_{j=1}^{J} \beta_{i j}=0, \quad \forall j, \quad \sum_{i=1}^{I} \beta_{i j}=0$.

13.2.4 Validating assumptions

- Validating assumptions: As in one-way ANOVA, we validate the model with a study of the residuals of the underlying linear model.

```
> par(mfrow=c (2,2))
> plot(model,col.smooth="red")
```


Fig. 13.4: Residual analysis in two-way ANOVA.

However, if the data size is large enough for each pair of factor modalities, it is better to check for normality in each subpopulation and for homoscedasticity.

13.2.5 Contrasts

- Contrast method: We refer the reader to the definition of contrasts given for one-way ANOVA.
For example, suppose we wish to know whether there is a significant difference of yield in region 1 between fertilizers 1 and 2 . We perform a contrast test using the function estimable() from package gmodels.

```
> mod.inter <- lm(yield ~ fertilizer:region-1)
> cm <- rbind("F1 vs F2 in R1"=
+ c(1,-1,0,0,0,0,0,0,0,0,0,0))
> estimable(mod.inter,cm)
    Estimate Std. Error t value DF Pr(>|t|)
F1 vs F2 in R1 -3 0.8050765 -3.726354 24 0.001048837
```

We get the same p-value as with the test for estimating model parameters. Another example of use of the method of contrasts is the comparison of the yield with fertilizer 1 in the Southern regions (regions 1 and 2) with the Northern regions (regions 3 and 4):

```
> cm <- rbind("F1 vs F2 in R1"=
+ C(1, -1,0,0,0,0,0,0,0,0,0,0),
+ "R1 & R2 vs R3 & R4 for F1" =
+ c(1,0,0,1,0,0,-1,0,0,-1,0,0))
> estimable(mod.inter,cm)
    Estimate Std. Error t value DF
F1 vs F2 in R1 -3 0.8050765 -3.726354 24
R1 & R2 vs R3 & R4 for F1 5 1.1385501 4.391550 24
    Pr(>|t|)
F1 vs F2 in R1 0.0010488374
R1 & R2 vs R3 & R4 for F1 0.0001951599
```


13.2.6 Summary

This table lists the main functions for two-way ANOVA.

Table 13.2: Main functions for two-way ANOVA.

Rinstruction	Description
interaction.plot $(Y$, factor (X), factor $(Z))$	graphical inspection
$\operatorname{aov}(Y \sim \operatorname{factor}(X) *$ factor $(Z))$	two-way ANOVA with interaction
summary $(\operatorname{aov}(Y \sim \operatorname{factor}(X) *$ factor $(Z)))$	ANOVA table
anova $(\operatorname{lm}(Y \sim \operatorname{factor}(X) *$ factor $(Z)))$	ANOVA table
Anova $(\operatorname{lm}(Y \sim \operatorname{factor}(X) * \operatorname{factor}(Z)))$	ANOVA table (package car)

Warning

For two-way ANOVA with unbalanced data, you should use a decomposition of the sums of squares of type III (see [31]).

```
> model.lm <- lm(yield~region*fertilizer,contrasts=list(region=
+ contr.sum,fertilizer=contr.sum))
> Anova(model.lm,type="III")
Anova Table (Type III tests)
Response: yield
        Sum Sq Df F value Pr (>F)
(Intercept) 10370.0 1 10666.3143 < 2.2e-16 ***
region 327.2 3 112.1810 2.955e-14 ***
fertilizer 0.9 2 0.4571 0.6385
region:fertilizer 99.6 6 17.0667 1.359e-07 ***
Residuals 23.3 24
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Remember to use the option contrasts in function $\operatorname{lm}()$.

- SECTION 13.3
 Repeated measures analysis of variance

This section is a brief introduction to repeated measures ANOVA models. We first introduce some vocabulary to better understand the three models introduced in this section.

A fixed effects model is a model where all explanatory variables (factors) are treated as non-random (controlled, for example). A random effects model or mixed effects model occurs when some or all explanatory variables are assumed to be random.

In ANOVA, a statistical unit is called a "subject". When a dependent variable is measured on groups of independent subjects, where each group is exposed to a different condition, the set of conditions is called a between-subjects factor. The models in sections 13.1 and 13.2 only use such factors.

In the case where each subject has a measure of the dependent variable for all modalities of the factor, this factor is called a within-subjects factor. An experiment has within-subjects design when at least one factor is within-subjects. Such experimental designs are also called repeated-measures designs, since within-subjects factors always imply repeated measures on each subject. By construction, this is equivalent to considering an extra random factor, the subject factor.

When an analysis includes both within-subjects and between-subjects factors, it is called a repeated measures ANOVA with between-subjects factors, mixed-design

ANOVA or split-plot ANOVA.

13.3.1 One-way repeated measures ANOVA

- Aim: We consider the case where for each subject s (out of n), we measure the response (dependent) variable Y for each of the I modalities of the fixedeffects factor X .
- Example: For 15 minutes, we count how many times each of seven rats presses \bar{a} lever, in three reinforcement conditions. In the first condition, the rat is given well-liked food, in the second average-liked food, and in the third less-liked food. The results are given in the following table:

	Factor: condition		
subject	cond $_{1}$	cond $_{2}$	cond $_{3}$
s_{1}	8	6	2
s_{2}	6	5	1
s_{3}	7	5	0
s_{4}	9	3	3
s_{5}	5	4	1
s_{6}	7	5	2
s_{7}	6	2	0

- Model: The underlying model is a mixed-effects model:

$$
\mathrm{Y}_{s i}=\mu_{i}+\pi_{s}+\epsilon_{s i}, \quad s=1, \ldots, n, i=1, \ldots, I
$$

where μ_{i} measures the fixed effect of modality i of factor X , the π_{s} are independent random variables following a $\mathcal{N}\left(0, \sigma_{\pi}^{2}\right)$ distribution, to take into account the dependence between measures made on individual s, the $\epsilon_{s i}$ are independent random variables following a $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution. We also assume that the π_{s} and the $\epsilon_{s i}$ are independent. By construction, this single factor model with repeated measures is in fact a two-factor model: one fixed within-subjects factor (X) and one random factor, the subject factor.

- \quad Rinstructions:
summary(aov(Y ~ X + Error=subject/X,data=my.data.frame))
where my.data.frame is a data.frame containing variables Y and X, and a variable subject giving the subject ID number. The variables X and subject must necessarily be defined as factors.

Note
You can also use the function lme() included in package nlme: anova(lme(Y ~ X,random= 1|subject, data=my.data.frame))

- Back to the example:

```
> rat <- data.frame (lever=c(8,6,2,6,5,1,7,5,0,9,3,3,5,4,1,
+ 7,5,2,6,2,0),subject=gl(7,3,21),cond=gl(3,1,21))
> summary(aov(lever~ cond+Error(subject/cond), data=rat))
Error: subject
                                    Df Sum Sq Mean Sq F value Pr (>F)
Residuals 6 15.905 2.6508
Error: subject:cond
    Df Sum Sq Mean Sq F value Pr (>F)
cond 2 108.86 54.429 47.297 0.000002036 ***
Residuals 12 13.81 1.151
Signif. codes: 0 '***' 0.001 '**'0.01 '*'0.05 '.' 0.1 ' ' 1
```


13.3.2 Two factor model with repeated measures for both factors

- Aim: We consider the case where for each subject s (out of n), the response variable Y is measured for each of the $I \times J$ combinations of modalities of two fixed effects factors A and B.
- Example: A scientist wishes to study the effect of lecithin on memory issues. Four subjects receive a daily treatment. After one, two and six months of treatment, each subject undergoes two tests (Test 1 and Test 2). The results are shown in the following table:

	Test 1		Test 2			
subject	M_{1}	M_{2}	M_{6}	M_{1}	M_{2}	M_{6}
s_{1}	10	11	9	3	6	3
s_{2}	18	20	17	16	20	14
s_{3}	6	8	8	5	6	3
s_{4}	4	9	9	10	10	6

- Model: The underlying model is a mixed model:

$$
\mathrm{Y}_{s i j}=\mu_{\bullet \bullet}+\alpha_{i}^{A}+\alpha_{j}^{B}+\beta_{i j}+\pi_{s}+\pi_{s i}^{A}+\pi_{s j}^{B}+\epsilon_{s i j}
$$

with $s=1, \ldots, n, i=1, \ldots, I, j=1, \ldots, J$ and where the terms $\mu_{\bullet \bullet}, \alpha_{i}^{A}$, α_{j}^{B} and $\beta_{i j}$ were defined in Section 13.2. The random effect subject is represented by the i.i.d. random variables π_{s} with distribution $\mathcal{N}\left(0, \sigma_{\pi}^{2}\right)$. The i.i.d.
random variables $\pi_{s i}^{A} \sim \mathcal{N}\left(0, \sigma_{\pi^{A}}^{2}\right)$ measure the random interaction effects between the subject factor and the fixed factor A. The i.i.d. random variables $\pi_{s j}^{B} \sim \mathcal{N}\left(0, \sigma_{\pi^{B}}^{2}\right)$ measure the random interaction effects between the subject factor and the fixed factor B. The errors $\epsilon_{s i j}$ are i.i.d. variables following the distribution $\mathcal{N}\left(0, \sigma^{2}\right)$. Furthermore, we assume that the errors are independent of the $\pi_{s}, \pi_{s i}^{A}$ and $\pi_{s j}^{B}$.

- $\quad \underline{\mathrm{R} \text { instructions: }}$

```
summary(aov(Y ~ A*B + Error(subject/(A*B)),data=my.data.frame))
```

- Back to the example

```
> lecithin <- data.frame(memory=c(10,11,9,3,6,3,18,20,17,16,20,14,
+ 6,8,8,5,6,3,4,9,9,10,10,6), subject=gl(4,6,24),
+ test=gl(2,3,24),month=gl (3,1,24))
> summary(aov(memory month*test+Error(subject/(test*month)),
+ data=lecithin))
Error: subject
    Df Sum Sq Mean Sq F value Pr(>F)
Residuals 3 508.13 169.38
Error: subject:test
    Df Sum Sq Mean Sq F value Pr(>F)
test 1 30.375 30.375 2.2158 0.2333
Residuals 3 41.125 13.708
Error: subject:month
    Df Sum Sq Mean Sq F value Pr(>F)
month 2 32.25 16.1250 16.826 0.003465 **
Residuals 6 5.75 0.9583
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Error: subject:test:month
        Df Sum Sq Mean Sq F value Pr (>F)
month:test 2 12.25 6.125 2.3333 0.1780
Residuals 6 15.75 2.625
```


13.3.3 Two factors model with repeated measures for one factor

- Aim: We are interested in the case where subjects are allocated to groups defined by the I modalities of fixed factor A. For each subject, we measure the response variable for all J modalities of fixed factor B.
- Example: In an experiment, the subjects estimate the length of a metal bar. The bars are of three different lengths. Two groups of four distinct subjects are created. In each group, each subject is shown three bars of different lengths.

	G1		
Subject	L1	L2	L3
1	10	11	9
2	18	20	17
3	6	8	8
4	4	9	9

	G2		
Subject	L1	L2	L3
1	3	6	3
2	16	20	14
3	5	6	3
4	10	10	6

- Model:

$$
Y_{s(i) j}=\mu_{\bullet \bullet}+\alpha_{i}^{A}+\alpha_{j}^{B}+\beta_{i j}+\pi_{s(i)}^{A}+\epsilon_{s(i) j}, \quad s=1, \ldots, n, i=1, \ldots, I, j=1, \ldots, J
$$

where the $\pi_{s(i)}$ are i.i.d. random variables with distribution $\mathcal{N}\left(0, \sigma_{\pi}^{2}\right)$ measuring the random effects of the modalities s of the subject factor. The errors $\epsilon_{s(i) j}$ are i.i.d. random variables with distribution $\mathcal{N}\left(0, \sigma^{2}\right)$. Furthermore, we assume that the $\epsilon_{s(i) j}$ are independent of the $\pi_{s(i)}$. The terms $\mu_{\bullet \bullet}, \alpha_{i}^{A}, \alpha_{j}^{B}, \beta_{i j}$ were defined in Section 13.2. For the model to be identifiable, we have to impose the constraints $\sum_{i=1}^{I} \alpha_{i}^{A}=0, \sum_{j=1}^{J} \alpha_{j}^{B}=0, \forall j, \sum_{i=1}^{I} \beta_{i j}=0, \forall i, \sum_{j=1}^{J} \beta_{i j}=0$. The realization $y_{s(i) j}$ of the random variable $\mathrm{Y}_{s(i) j}$ represents the observation of the sth subject from i th group of factor A , for level j of factor B . The notation $s(i)$ underlines the fact that the subject factor is nested in factor A .
R instructions:
summary(aov(Y~A*B + Error(subject \%in\% A), data=my.data.frame)) or equivalently:
summary(aov(Y ~A*B + Error(subject:A),data=my.data.frame))

- Back to the example:

```
> bar.estim <- data.frame (bar=c (10,11,9,3,6,3,18,20,17,16,20,14,
+ 6,8,8,5,6,3,4,9,9,10,10,6),subject=gl (4,6,24),
+ group=gl(2,3,24), # Factor A.
+ long=gl(3,1,24) # Factor B.
+ )
> summary(aov(bar ~ group*long +
+ Error(subject %in% group),data=bar.estim))
Error: subject:group
    Df Sum Sq Mean Sq F value Pr(>F)
group 1 1 30.37 30.375 0.3318 0.5855
Residuals 6 549.25 91.542
Error: Within
    Df Sum Sq Mean Sq F value Pr(>F)
long 2 32.25 16.1250 9.0000 0.004096 **
group:long 2 12.25 6.1250 3.4186 0.066833.
Residuals 12 21.50 1.7917
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Memorandum

aov(): perform ANOVA
anova $(\operatorname{lm}())$, Anova $(\operatorname{lm}())$: ANOVA table
factor(), as. factor(): declare a variable as a factor
C(): specify the constraint in ANOVA
barlett.test(), levene.test(): tests of equality of variances
pairwise.t.test(): pairwise comparisons
fit. contrast(): contrast test (package gregmisc)
estimable(): contrast test (package gmodels)
interaction.plot(): graphical inspection for interaction
Error: create a formula to specify the nesting of the subject factor

Exercises

13.1- Give the instruction to perform ANOVA with one factor (noted A).
13.2- Give the instruction to perform ANOVA with two factors (noted A and B) with interaction.
13.3- Which test would you use to check for homoscedasticity in an ANOVA model?
13.4- Which instruction performs pairwise tests after single-factor ANOVA?
13.5- Which function gives the estimates for a single-factor ANOVA model?
13.6- Which function is used to choose the constraint in ANOVA?

Worksheet

A- Study of one-way ANOVA

- Study of noise levels

In order to study the influence of the factor "level of surrounding noise" on the ability of a subject to solve a problem, the following experiment is designed: twentyfour school children are randomly allocated to four rooms. Street noises were previously recorded and are played in each room at a specific noise level. The children must solve a series of problems. The response variable is the final grade for the series of problems. The results are given in the following table:

Noise level			
1	2	3	4
62	56	63	68
60	62	67	66
63	60	71	71
59	61	64	67
63	63	65	68
59	64	66	68

We wish to know whether there is an effect of the factor "level of surrounding noise" on a subject's ability to solve a problem.
13.1- Input the data set in an adequate structure to perform ANOVA.
13.2- Write down the ANOVA model to answer the question.
13.3- Perform the analysis corresponding to your model.
13.4- Perform all pairwise comparisons of noise levels; remember to take into account the problem of multiplicity of tests.

- Study of intima-media

In the "Intima-media" study, we are interested in the relationship between intimamedia thickness and alcohol consumption.
13.1- Download the intima-media data file.
13.2- Suggest a plot to visualize the differences in intima-media thickness depending on alcohol consumption.
13.3- Is there a difference of mean intima-media thickness depending on alcohol consumption?
13.4- Analyse the residuals to validate the assumptions of your statistical study.

- Study of physical activity

In a study of risky behaviour amongst people aged 14 to 25 , a scientist observed offences (theft, racketeering, brawls...) committed by youngsters and weekly physical activity. Risky behaviour was measured on a scale from 0 to 100 . A subset of the data is available at the URL http://www.biostatisticien.eu/springeR/ sports.RData:

```
> print(sports[sample(1:105,10),],row.names=FALSE)
    score time
        9 [2;3[
        75 [0;1[
        0 [3;4[
        21 [2;3[
        67 [4;5[
        69 [1;2[
        36 [2;3[
        O [3;4[
        87 [0;1[
        16 [2;3[
```

13.1- Describe the factors involved and write down the model (and the underlying assumptions).
13.2- Perform a test at the 5% level to decide whether there is a significant effect between physical activity and risky behaviour.
We call "not athletic" youngsters who play sports for less than 2 hours per week, "somewhat athletic" those with weekly physical activity in the interval [2,4[and "very athletic" those who play sports at least 4 hours per week. The scientist makes the following research assumptions:

- research assumption 1: "not athletic" youngsters have more risky behaviour than "somewhat athletic" youngsters;
- research assumption 2: risky behaviour is different between "very athletic" and "not athletic" youngsters.
13.3- Translate the research assumptions into contrasts.
13.4- Test these two assumptions at the 5% level.

B- Study of two-way ANOVA

- Study of batteries

In an experiment on battery lifetime, the aim is to find battery life as a function of type of battery. It is known that battery lifetime depends on temperature, so a plane with two factors (temperature and type of battery) is created. The following table gives battery lifetime depending on these two factors.

| | $15^{\circ} \mathrm{C}$ | $70^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type I | 130 | 155 | 34 | 40 | 20 | 70 |
| | 74 | 180 | 80 | 75 | 82 | 58 |
| Type II | 150 | 188 | 136 | 122 | 25 | 70 |
| | 159 | 126 | 106 | 115 | 58 | 45 |
| Type IIII | 138 | 110 | 174 | 120 | 96 | 104 |
| | 168 | 160 | 150 | 139 | 82 | 60 |

13.1- Which factors are involved in this experiment? What are their modalities? What is the response variable?
13.2- Propose and define an ANOVA model for this data set.
13.3- Propose a graphical representation to visualize any interaction there may be in the model.
13.4- Estimate the parameters of the model.
13.5- Draw an ANOVA table for your model.
13.6- Perform the relevant tests to finalize this analysis.

- Milk yield

We are interested in the influence of type and quantity of food on milk yield. We have observed these forty values:

	Straw			Hay					Grass						Silage							
Low dose		811	11107		21	314	411	10			12	12	13	14						14		13
High dose		89	8109		10	710	0 12				91	11	11	12				1	1	15		

13.1- Propose and define an ANOVA model to study the influence of type and quantity of food on milk yield.
13.2- Propose a graphical representation to visualize any interaction there may be in the model.
13.3- Estimate the parameters of the model.
13.4- Draw an ANOVA table for your model.
13.5- Perform the relevant tests to finalize this analysis.

- Intima-media study

In practical A, we looked at a possible relationship between intima-media thickness and alcohol consumption in the "Intima-media" study. We now wonder whether intima-media thickness is linked to alcohol consumption and tobacco consumption.
13.1- Download the intima-media data set.
13.2- Propose and define an ANOVA model to study the influence of tobacco consumption and alcohol consumption on intima-media thickness.
13.3- Propose a graphical representation to visualize any interaction there may be in the model.
13.4- Is there a difference in intima-media thickness depending on alcohol consumption? Depending on tobacco consumption?

Appendix: Installing R and R packages

Prerequisites and goals of this chapter

- No prerequisite. You may be interested in reading chapter 1 first.
- This chapter explains how to install R version x (replace throughout x by the number of the latest version) under Microsoft Windows XP, and how to install additional packages under Windows or Linux.

- SECTION C. 1
 Installing R under Microsoft Windows XP

First download \mathbf{R} (file R - x-win.exe where x is the number of the latest version) using your usual web browser from the URL http://cran.r-project.org/bin/ windows/base/
Save this executable file on the Windows Desktop and double-click the file R-x-
win.exe (its icon is

The software then installs. All you have to do is follow the instructions displayed on your screen and keep the default options.

When the icon is added to the Desktop, installation is complete.

SECTION C. 2
 Installing additional packages

Many additional modules (called packages or libraries) are available on the website http://cran.r-project.org/web/packages/
available_packages_by_name.html or here: http://cran.r-project.org/ bin/
windows/contrib/, in the folder corresponding to the number x of your R version.
Packages extend the functionalities of \mathbf{R}. We present several ways of installing a new package.

C.2.1 Installing from a file on your disk

For example, you can download from the website mentioned above the file: R2HTML_number.zip and save it on the Windows Desktop.

To install this package, first start \mathbf{R} by double-clicking its icon
Go to the menu Packages, in the sub-menu Install package(s) from zip files...

Select the file R2HTML_number.zip on the Windows Desktop then click on "Open".

C.2.2 Installing directly from Internet

For example, to install packages car and Rcmdr, first launch R by double-clicking its icon on the Desktop.

Then go to menu Packages, and sub-menu Install package(s)...

Choose a CRAN mirror close to your location and click OK.
At the next step, select the entries "car" and "Rcmdr".
To do this, first click on "car" then scroll down and click on "Rcmdr" while pressing on the CTRL key. Check that both entries have been selected (highlighted in blue).

Click "OK". You should see the two following screens, indicating that the packages you selected are being installed.

Warning

This procedure may fail, for example if your system administrator has blocked access to some websites with a firewall, has imposed a proxy to surf the Internet or has forbidden writing in some Windows folders. If you encounter a problem, we advise you to contact your administrator. Note that you can force R to use a proxy, and that you can install packages locally in your own home directory. You can consult sections 2.15 (How do I set environment variables?) or 2.19 (The Internet download functions fail) of the Windows FAQ available here: http://cran.r-project.org/bin/windows/base/rw-FAQ.html

C.2.3 Installing from the command line

You can use \mathbf{R} without the menus of the graphical user interface. This is the case for example under Unix/Linux, where \mathbf{R} does not have a graphical user interface. In that case, use the following commands to install packages:

- to install a package from a *. zip file on your hard disk:

```
install.packages(choose.files(),repos = NULL)
```

- to install a package (say Rcmdr) from the CRAN website:
install.packages("Rcmdr")

Another possibility is to install a package without going through \mathbf{R}, directly from an MS-DOS command window under Microsoft or from a terminal under Linux or MacOS. In that case, you will need many compilation tools. If these tools are not installed on your computer, refer to the section on package creation in chapter 7.

If these tools are installed on your computer, you can try this:
For example, download the file (package source) Rcmdr_number.tar.gz from the URLhttp://cran.r-project.org/src/contrib/Descriptions/Rcmdr. html.
Save it (on the Desktop) and start an MS-DOS window (Start menu/Run/cmd), then enter:
cd Desktop
R CMD INSTALL Rcmdr_number.tar.gz (replace number with the relevant number).

C.2.4 Installing packages under Linux

Note that the commands of the previous section also work under Linux. But sometimes, you need to be logged in as root to use them (command su - in a terminal window).

If you do not have root access, you can still install packages locally, in your home directory. For example, for package Rcmdr, type in a terminal:

R CMD INSTALL --library=/home/user/Rlibs Rcmdr_number.tar.gz
(you should first have created the folder Rlibs wih the command mkdir Rlibs, and should replace /home/user/Rlibs with the appropriate path and number with the appropriate number).

Finally, so that \mathbf{R} knows where to look for installed packages, you must create a file $\sim /$.Renviron containing the line

R LIBS=/home/user/Rlibs

If your computer is behind a firewall and you need to use a proxy to go online, you can use the following command to install a package directly from R :

```
Sys.setenv("http_proxy"="http://user:pass@url_of_
    the_proxy:num_port")
install.packages("Rcmdr",method="wget")
```

For further details, read the online help for function download. file().

SECTION C. 3

Loading installed packages

Warning

To understand this section, you need to have a rough understanding of the difference between your computer's random access memory (RAM) and physical memory.

Installing a package means that its files are "written" physically on the hard disk: when you turn your computer off then on again, the files are still in the same place. You will not need to reinstall the package, unless you need an updated version. On the contrary, loading a package (to the memory) means that it is temporarily at the user's disposal in R. But if you close and reopen R, the package is no longer available: you need to load it again.

To sum up, once you have installed a package on your computer's hard disk, you have to load it to R's memory before you can use it.

For example, if you type in the R console:
Commander ()
you should see the following error message, which indicates that the package including this function cannot be accessed by R:

```
Error: cannot find function "Commander"
```

You must first load Rcmdr to the memory. To do this, you can either type require (Rcmdr) in the console, or go to the menu Packages/Load package...,

and use the mouse to load package Rcmdr.

Sélectionnez un item	
boot	\wedge
car	
claster	
codetools	
datasets	
foreion	
(lataphics	
KernSmooth	
MASS	
methods	
${ }_{\substack{\text { mocy } \\ \text { nime }}}^{\text {and }}$	
nnet	
R2HTML	
Rematr	
${ }_{\text {reamper }}^{\text {reompgen }}$	
${ }^{\text {rpart }}$ spatial	
splines	v
OK	Annuler

The following window then appears.

Close it, and type once again in the \mathbf{R} console:
Commander ()
Note that the package Rcmdr has been loaded and that this command no longer returns an error message.

Tip

Note that \mathbf{R} offers the possibility of automatically loading some packages upon start-up:

```
First <- function() {
    require(pkg1) # Replace pkg1 with the
                            # name of the desired package
    require(pkg2)
    # and so on.
}
```

Indeed, the functions .First() and .Last() specify instructions to be executed when you start and exit R, respectively.

References

1. Joseph Adler : R in a Nutshell. O'Reilly, 2010.
2. H. Akaike: Information theory and an extension of the maximum likelihood principle. In Petrov B. N., Csaki F., éditeurs : Proc. of the 2nd Int. Symp. on Information Theory, pages 267-81, 1973.
3. R. A. Becker, J. M. Chambers, A. R. Wilks : The New s Language: A Programming Environment for Data Analysis and Graphics. Chapman \& Hall, 1988.
4. D. A. Belsley, E. Kuh, R. E. Welsch : Regression diagnostics: identifying influential data and sources of collinearity. John Wiley \& Sons, New York-Chichester-Brisbane, 1980. Wiley Series in Probability and Mathematical Statistics.
5. M. Bilodeau, P. Lafaye de Micheaux : A-dependence statistics for mutual and serial independence of categorical variables. J. Statist. Planning Inf., 139:2407-19, 2009.
6. J. W. Braun, D. J. Murdoch : A First Course in Statistical Programming with R. Cambridge University Press, 1st édition, January 2008.
7. Patrick Burns : The R inferno. Unpublished manual, 2011.
8. J. M. Chambers : Software for Data Analysis: Programming with R. Statistics and Computing. Springer, June 2008.
9. Ian Chivers, Jane Sleightholme : Introduction to Programming with Fortran: With Coverage of Fortran 90, 95, 2003, 2008 and 77. Springer, 2nd édition, 2012.
10. Y. Cohen, J. Cohen : Statistics and Data with R: An Applied Approach Through Examples. Wiley, 2008.
11. R. D. Соoк, S. Weisberg : Residuals and influence in regression. Monographs on Statistics and Applied Probability. Chapman \& Hall, London, 1982.
12. M. J. Crawley : The R Book. Wiley, Chichester, June 2007.
13. P. Dalgand : Introductory Statistics with \mathbf{R} (Statistics and Computing). Springer, 2nd édition, August 2008.
14. A. C. Davison, D. V. Hinkley : Bootstrap methods and their application, volume 1 de Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1997. With 1 IBM-PC floppy disk (3.5 inch; HD).
15. B. S. Everitt, T. Hothorn : A Handbook of Statistical Analyses Using R. Chapman \& Hal1/CRC, 1st édition, February 2006.
16. R. A. Fisher : Statistical Methods for Research Workers, 4th edition § 21.1. Oliver \& Boyd, Edinburgh, 1932.
17. John Fox : Extending the R commander by "plug in" packages. R News, 7(3):46-52, 2007.
18. G. M. Furnival, R. W. Jr. Wilson : Regression by leaps and bounds. Technometrics, 16:499511, 1974.
19. D. J. Hand : Branch and bounds in statistical data analysis. The Statistician, 30:1-13, 1981.
20. Richard M. Heiberger, Erich Neuwirth : R Through Excel. Use R! Springer, 2009.
21. R. Ihaka, R. Gentleman : R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3):299-314, 1996.
22. Brian W. Kernighan, Dennis M. Ritchie: The C Programming Language, Second Edition. Prentice Hall, 1988.
23. P. Lafaye de Micheaux, B. Liquet : ConvergenceConcepts: an R package to investigate various modes of convergence. R Journal, 1(2):18-26, 2009.
24. P. Lafaye de Micheaux, B. Liquet : Understanding convergence concepts: A visual-minded and graphical simulation-based approach. The American Statistician, 63(2):173-8, 2009.
25. H. Levene : Robust tests for equality of variances. In Contributions to probability and statistics, pages 278-92. Stanford Univ. Press, Stanford, Calif., 1960.
26. J. Maindonald, J. Braun : Data Analysis and Graphics Using R: An Example-based Approach (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge University Press, December 2006.
27. C. L. Mallows : Some comments on c_{p}. Technometrics, 15:661-75, 1973.
28. Norman Matloff : The Art of R Programming. No Starch Press, 2011.
29. Carl Meyer : Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. With 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual (iv+171 pp.).
30. Jr. Miller, G. Rupert : Simultaneous statistical inference. Springer-Verlag, New York, 2nd édition, 1981. Springer Series in Statistics.
31. D. C. Montgomery : Design and Analysis of Experiments. Wiley, 7th edition, 2008.
32. Robert A. Muenchen : R for SAS and SPSS Users. Springer Series in Statistics and Computing. Springer, 2009.
33. Robert A. Muenchen, Joseph M. Hilbe : R for Stata Users. Statistics and Computing. Springer, 2010.
34. S. K. Park, K. W. Miller : Random number generators: good ones are hard to find. Commun. ACM, 31(10):1192-1201, 1988.
35. C. Robert, G. Casella : Introducing Monte Carlo Methods with R (Use R!). Springer, 2009.
36. D. Sarkar : Lattice: Multivariate Data Visualization with R. Use R! Springer, March 2008.
37. G. Schwarz : Estimating the dimension of a model. Annals of statistics, 6:461-64, 1978.
38. Bjarne Stroustrup : The C++ Programming Language, Third edition. Addison-Wesley, 1997.
39. Paul Teetor : R Cookbook. O’Reilly, 2011.
40. Hrishikesh D. Vinod : Hands-on Intermediate Econometrics Using R: Templates for Extending Dozens of Practical Examples. World Scientific, Hackensack, NJ, 2008.
41. S. Weisberg : Applied Linear Regression, 3rd edition. Wiley-Interscience, 2005.
42. Alain F. Zuur, Elena N. Ieno, Erik H.W.G. Meesters : A Beginner's Guide to R. Springer, 2009.

General index

A

absolute deviation to the median 350
absolute value 312
AIC................................ . . . 490
analysis of variance
\quad one-way 507
one-way with repeated measures 528
repeated measures 527
two factors. 518
two factors with repeated measures for both factors 529
two factors with repeated measures for one factor 530
ANCOVA............................ . . 470
AND 95
ANOVA 470
arccosine 312
arcsine................................ . 312
arctangent........................ . . 312
arrays.......................... 51, 103
extraction......................... . 103
insertion.......................... . . . 103
arrow............................... . . 281
arrow, assignment................... . 37
assignment.......................... . . 37
assignment arrow 37
asymmetry, coefficient 350

B

BATCH . 300
Bernoulli 410
beta.......................... . 406, 410
function........................ . . . 312
logarithm of beta function.... 312
between-subjects factor 527
bias estimated by bootstrap 404
bias of an estimator 400

BIC
.485, 490
binary.............. . 49, 70, 125, 189
binomial............................. . 405
binomial coefficient.............. . . 312
bit...................................... 125
Bonferroni......................... . . . 515
boolean.............................. . . . 47
bootstrap 396, 404
boxplot............................. . . . 364
bytes............................ . 49, 189

C

carriage return.................... . 170
Cauchy 406, 410
central limit theorem............. . 393
character strings 48, 72, 106
case............................... . . 108
concatenate 107
letters . 107
lower case 108
replacing occurrences......... . 108
search........................... . . . 108
split. 108
sub-strings. 107
upper case 108
charts
bar 357, 363
bar with CF line. 362
bar, stacked.................... . . 359
boxplots............. 364, 368, 374
cross 356, 362
mosaic 371
Pareto........................... 358
pie................................. . . 360
stacked bar 359
stemplot 364, 367
chi-squared 406
chi-squared, Pearson's 351
GENERAL INDEX
clipboard 67
closing the session 36
coefficient of determination 460 473
coefficient of variation 350
Cohen-Friendly association plot. 372
collinearity 483
colours 161
command history 285
comment 36
compilers 229
complex numbers 45
argument 45
imaginary part 45
modulus 45
real part 45
concatenation 71
condition 113
confidence intervals 416, 462
for a correlation 421
for a mean 416
for a median 420
for a proportion 418
for a variance 419
confidence intervals, interpretation449
console 35
contingency coefficient, Pearson's352
contingency table 351
contrasts, in ANOVA. .514, 516, 526
control flow 113
Cook's distance 497
copy-pasting 67
correlation 415
correlation ratio eta-squared 354
cosine 312
counter 116
covariance ratio 499
Cramér, Phi-2 and V-2 352
CRAN 3
creating data 71
cumulative distribution function 386 ,389
cumulative distribution function, em-pirical363549
cumulative frequency polygon.. 348 , 370
cumulative maxima 312
cumulative minima 312
cumulative products 312
cumulative sums 312
D
databases 74
datasets 143
dates. 109, 136
anteriority test 112
current date 109
day 109, 110
difference 112
extraction 109
hours 109, 110
minutes 109, 110
month 109, 110
operations on 112
POSIX 136
seconds 109, 110
time zone 110
year 109, 110
debugger 255
debugging 253
density 386, 388
Dfbetas 499
Dffits 498
directory 283
distribution function 386
distribution function, empirical 363
DLL 236

E

effective argument192
elements
extraction 97
insertion 97
éléments
replacement 98
empirical cumulative distribution
function 396
empirical distribution function . . 366plot363, 366
environment 227
estimator 394
Excel 67, 71
execution time 109
exit 36
exponential 410
exporting data 70
expression 222
F
factorial 312
factors 54
factors, in ANOVA 507
FALSE 95
FAQ 141, 145
file path 62, 63
Fisher 406
fixed effects model 527
fonts 178
formal arguments 192
format() 275
formulae 224, 510
fractiles 349, 389
frequency polygons 369
functions
arguments 42
body 193
comments 193
constrained optimization 328
declaration 192
demonstration 143
errors 121
examples of use 143
methods 142
multidimensional optimization 326 326
naming of effective arguments 194
object oriented programming 203
operators 201
optimization 325
parameters 42
partial naming of effective argu-ments194
returning an object 196
roots 329
scope of variables 198
sequence of instructions 193
supplementary arguments 195
variable scope 198
zeros 329

G

gamma
distribution 406, 407
first derivative of logarithm of
gamma function 312
function 312
logarithm of gamma function 312
second derivative of logarithm ofgamma function312
generalized error distribution 407
generalized Pareto 407, 413
generating numbers 405
generating random numbers 381
geometric 405
gradient, numerical 325
graphical user interface 5
graphics window 149
font size 150
height 150
managing parameters 175
splitting 151
width 150
Gumbel 406
help online 139
hexadecimal 49
histogram 368
history 285
hyperbolic cosine 312
hyperbolic sine 312
hyperbolic tangent 312
hypergeometric 405
hypothesis testing 422
assertion of interest 422
Bartlett 429, 513
chi squared for fit to a distribution438
decision rule 422
Fisher's test in ANOVA 511
Fisher's test, exact 436
GENERAL INDEX 551
for a correlation 432
for a mean 424
for a proportion 429
for a variance 427
for two correlations 433
for two means 425
for two means, paired samples 4 426
for two variances 428
independence, chi-squared 434
Kolmogorov-Smirnov for onesample439
Kolmogorov-Smirnov for twosamples 439
level of significance埗
Levene 514
Mann-Whitney for two samples443
mutual independence for contin-gency tables 435
normality, Shapiro-Wilk 437
of sign, of median for two pairedsamples442
of sign, of median for two samples441
of sign, of the median for one sam-
ple 440
p-value 423
power 423, 450
risk of the first kind 422, 450
test statistic 422
two proportions 431
Wilcoxon 427
Wilcoxon for paired samples 444
Wilcoxon for two samples 443
Yates' chi-squared 435
Iimages165
importing data 68
index of largest value 98
index of smallest value 98
indexing
recursive 105
inference 394
inferential 409
influential point 495
inheriting classes 211
installation
of R 537
packages 538
integer part 312
integration, numerical 323
interaction 479, 522
interquartile range 350
inverse hyperbolic cosine 312
inverse hyperbolic sine 312
inverse hyperbolic tangent 312
inverse normal 407
IRC 145
Irwin-Hall 407
J
Johnson SB 407
Johnson SU 407
K
Kendall's tau 352
Kumaraswamy 407
kurtosis 350

L

Laplace 407
Laplace test 313
law of large numbers 392
least squares criterion 458
levels of a factor in ANOVA 507
leverage 496
Lévy 407
lists 52, 93, 104
extraction 104
insertion 105
loading a package 542
location contaminated 407
\log-logistic 407
logarithm 312
logarithmic scale 155
logical 95, 114
logical mask 95, 98, 100, 102
logistic 406
lognormal 406
loop 116
M
mailing lists 144
Mallows 485
mask
logical mask 95
mass function 388
Matlab 68
matrices 313
adding a scalar 314
addition, entry-wise 314
adjoint 320
centred and/or scaled 319
Cholesky decomposition 321
condition number 319
conjugation 315
cross product 315
determinant 318
division 315
division, entry-wise 315
eigenvalues 319
eigenvectors 319
extracting by indices 99
extracting by logical mask 100
extraction 99
half vec operator 318
Hermitian 320
insertion 102
inverse, Cholesky method 322
inversion 315
Kronecker product 317
lower triangular 317
Moore-Penrose 321
multiplication 315
multiplication, entry-wise 315
multiplying by a scalar 314
number of columns 86
number of rows 86
outer product 316
pseudo-inverse 321
QR decomposition 322
rank. 323
singular value decomposition 321
singular values 321
singular vectors 321
square root 320
substraction, entrywise 314
trace 318
transpose 320
transposition 315, 320
triangular 317
upper triangular 317
vec operator 318
maximum 312
maximum likelihood 397
mean 348, 415
mean absolute deviation 350
median 347, 415
merging columns 87
merging rows 87
merging tables 87
method 205
minimum 312
Minitab 68
missing values 47, 135
mixed effects model 527
mode 346
modelling 409
Monte Carlo 396
mosaic plot 371
multinomial 407
multiple comparisons, in ANOVA514
MySQL 70, 74
N
names of variables 38
natural logarithm 312
negative binomial 405, 410
normal 406
numbers
binary notation 125
decimal notation 125
dyadic 125
fixed-point 124
floating point 124
numerical differentiation 325
numerical gradient 325
numerical integration 323
numerical optimization 325
numerical summaries 346

O

object-oriented programming ... 191 objects
attributes 215
class . 203
deleting . 282
listing . 282
methods 205
storage . 281
online help 139
OpenOffice 65, 67, 71
optimization
constrained 328
multidimensional............... 326
optimization, numerical 325
OR 95
outliers . 495
overflow . 129

P

p-value...................... . 449, 460
packages......... 142, 281, 288, 301
Pareto............................. . . . 410
path . 288
peakedness, coefficient.......... . . 350
Pearson's chi-squared 351
Pearson's contingency coefficient352
Pearson's correlation............. . 354
pi, number 313
plots
3D................................ . . . 185
adding text....................... . . 167
adding text in the margin..... 169
arrows........................... 158
axes 171, 181
boxes........................... . . . 161
caption.......................... . . . 172
colours 161, 177
curves............................. . . 160
drawing . 154
fine-tuning. 174
gif . 167
identifying the points 174
interacting 173
legend............................. 172
156
lines
183
lines and symbols
155
155
logarithmic scale 178
overlay 155
polygons 159
saving 150
segments 156
straight line 157
text 167
title. 155, 169
Poisson 405, 410
polynomial regression 500
POSIXIt 109
prediction 462
prediction intervals 462
predictor 462
principal components analysis 334
probability density function 386
product 312
prompt symbol 35
proportion 415
pseudo-random numbers 382

Q

quantile function 386, 389
quantiles 389
chi-squared 416
Fisher 416
normal 416
Student 416
quotation marks 106

R

Rademacher 407
random effects model 527
random variables 383
distribution 383, 385, 388
i.i.d. 384
identically distributed 384
independent 384
parameters 390
parameters of a distribution 385
realizations. 383, 384
support 387, 388
range 312, 350
ranks 85
Rayleigh 407
RCommander 5
recursive indexing 105
recycling 84
regular expressions 282
rejection sampling 402
remainder of division 312
residuals 464, 492
Rice 407
roots of a polynomial 330
rounding 312

S

sample 385
sampling variation 399
SAS 68, 70
saving 281, 283, 286, 290
scale contaminated 407
search engines 143
sets
complement 96
inclusion 96
intersection 96
membership 96
subset 96
superset 96
symmetric difference 96
union 96
shifted exponential 407
sign 312
simulation 381
sine 312
skew-normal 407
skewness 350
Spearman's rank correlation coeffi-cient353
spreadsheet 73
SPSS 68
square root 312
stable 407
standard deviation 350
standardized residuals 495
stemplot 364, 367
strings of characters 48, 106
Student 406
studentized residuals 495
subject factor 527
sum 312
symbolic differentiation 324
symmetrical Tukey 407
T
tables
conditional distributions 345
contingency 343, 351
contributions to the chi-squared351
counts 342
frequency 342
grouped data 343
independence 351
individual data 342
joint distribution 344
marginal distributions 345
margins 343
tangent 312
Task Views 145
text editor 61
tie. 85
TRUE 95
Tukey 515
underflow 129
uniform 382, 406
discrete 405variable name38
variables
dummy 476
explained, dependent, response455
explanatory, independent 455
independent, in ANOVA 518
interaction 479
modalities 338
mode 346
ordinal 339, 341
qualitative 339
quantitative, continuous . 339, 341
quantitative, discrete 339, 341
type 338
variance 350, 415
variance estimated by bootstrap . 404
variance inflation factor 483
variance of an estimator 400
vectorization 84
vectors 50, 83
duplicates. 86
length of a vector 85
ranking indices 85
sorting elements 85
vector of ranks 85
VIF 483
vignettes. 143
W
Weibull 406
Welsch-Kuh distance 498
wiki 145
window
graphics 149
workspace 283
X
XOR 95

Index of R commands and symbols

Symboles
"...................................... 106
~...................185, 205, 224, 273
*.............................. 202, 480

+ 84, 202
-..................................... . 202
-> 58, 281
............................... . 195, 224
.C()..............236, 237, 240, 251
.Call()............................. 251
.First()........................ 544
.Fortran() 236, 240
.GlobalEnv 227, 228
.Last()............................... . 544
.Machine 130
/.................................... 202
; 41, 193
<........................95, 132, 202
<- ...37, 58, 98, 102, 105, 203, 228, 281
<=.......................95, 132, 202
= 37, 193
== 95, 115, 132, 202
>........................... 35, 95, 132
>=..........................95, 132, 202
?............................ 139, 147
??................................... 142
[......... 83, 97, 99, 104, 132, 133
[() 101
[[..................83. 104, 132, 133
\# . 36, 193
\$..................................... . 105
\%*\% . 315, 331
\%*\%() . 581
\%/\% . 202
\%\% . 202, 312
\%in\% 96, 202, 531
\%\% 202
\& 95, 132, 202
\& \& 95, 114, 132
|. 95, 202
II. 95
! 95, 202
!= 95, 202
50, 51, 71, 72, 500202
'. 48
\{. 193
\}. 193
A
A.dep.tests() 435
abline()...25, 157, 179, 184, 186,371, 459, 469, 481, 482, 577
abs() 312, 331, 350
acos() 312
acosh() 312
add 160
add1() 487, 488, 583
addmargins() 343, 344, 376
ade4. 336, 372
adj 178
aggregate() 92
all 88
all() 96, 132, 133, 135
all(x) 95
all.equal()....95, 115, 116, 128,129, 321, 322, 334, 378
all.equal (x, y) 95
along.with 194
alpha 163
alternative...425, 430-432, 437,440
AnalyzeFMRI 189, 600
ann 178

$\begin{aligned} & \text { Anova() } \ldots .511,521,522,526,527, \\ & \quad 532 \end{aligned}$	at... 312
anova()...461, 473, 475, 476, 479,	
500, 511, 517, 521, 522, 526,	attach() $64,79,133,285,289,304$
583	305, 338, 377, 456, 575, 605
anova(lm()).................. . 501	attr().... 204, 215-217, 220, 273
ansari.test().............. 447	attributes()..215-217, 220, 221,
any()............... 132, 133, 135	273, 325
any (x) 95	axes....................161, 171
$\operatorname{aov}() .510,516,517,521-523,526$,	axis......................... 171
529-532, 583	axis()......... 171, 182, 186, 190
aplpack................. 364, 367	axTicks().................... 181
$\begin{aligned} & \text { apply().91, } 93,118,132,135,188, \\ & 189,414,575 \end{aligned}$	B
approx() 156	barchart()......... 357, 358, 362
apropos() 142, 147, 203	barlett.test().........517, 532
	barplot().149, 188, 357-359, 362,
arima()........................ . 239	371, 376, 582
arima.sim()................... 239	bartlett.test()...447, 514, 583
array.......................... . . 51	basename()................... 291
$\operatorname{array}() \ldots \ldots .51,57,58,104,219$	BATCH.......................... . . 300
arrowaxis()................. 355	beta()......................... 312
arrows() 158, 159, 186	bg....................... 177, 184
as.character().48, 106, 206, 236	bigmemory 300
as.data.frame()...........67, 81	bin2dec().................... 125
as.Date().................. 56,57	binom.approx()............. 418
as.double()........236, 341, 376	binom.exact() 419
as.factor()........339, 376, 532	binom.test().418, 419, 422, 430,
as.integer() ...48, 236, 341, 376	431, 441-443, 446-448, 583
as.list().................... 199	biroot() 119
as.logical()........95, 135, 340	bitmap()................. 151, 287
as.matrix().................. 334	BMI () 118, 119
as.numeric().......48, 189, 347	bmp 150
as.ordered() 341, 376	
as.POSIXct()................ 111	boot.......405, 417, 419, 448, 583
as.POSIXlt().. 111, 112, 132, 136	boot ().............. 417, 419-421
as.raw()........................ 49	boot.ci() 417, 419-421
as.vector()........100, 101, 188	box() 161, 170, 183, 186
asin()........................ . 312	Box.test().................. 447
asinh()........................ . 312	boxplot()..26, 364, 365, 368, 376,
ask............................ . . 175	582
assocplot()................. 372	bquote()................ . 167, 168
asymp.test().420, 428, 429, 446,	break............... 116, 117, 124
447	breaks......................... 343
asympTest...............420, 428	Brobdingnag.................. 130

browseEnv() 606
browser() 253-255
bty 161, 181
by 88, 89, 92, 194
byrow 51
C
c. 255
C() 512, 513, 524, 532, 584
c() ... 50, 51, 57, 58, 71, 73, 78, 99196, 575
camembert() 360
car........ 484, 511, 514, 521, 539cat().. 107, 116, 192-194, 196, 206
caTools 167, 188
cbind().......87, 88, 101, 132, 188
ceiling() 312
cex. 175, 178
cex.axis 178
cex.lab 178
cex.main 178
cex.sub. 178
character 48, 49
chisq.test 434
chisq.test()..351, 376, 434-436,438, 439, 442, 446-448, 583
chol() 321, 322, 331
chol2inv() 322
choose() 44, 230, 312, 580
choose.dir() 305, 580
choose.files() 540
chron 112
cin 178
class 222
class() 44, 49, 51,
55, 58, 104, 203, 204, 211, 212,215, 216, 218, 273, 377, 510
clip() 175
CMD 541
co.var() 350
coeff() 481, 482
coefficients() 461, 583
col... 162, 171, 172, 177, 184, 188,577
col.axis 177
col.lab. 177
col.main 177
col.names 221
col.sub 177
col2rgb() 163
colClasses 574
collapse. 133, 196-198
collapse() 199, 206
colMeans() 79, 91, 335
colnames 67, 221
colnames().......86, 132, 221, 575
colors() 161, 162, 186
colSums() 91
combinat 230
combn() 230
combnRC() 237, 255
Commander() 18
complete.cases() 135
complex 45, 49
conf.level 417, 419
confint() $462,469,474,483,500$,501
constrOptim() 325, 329
contour() 190
contour3d() 21
ConvergenceConcepts 393
cooks.distance()..497, 498, 501
cor()......335, 353, 354, 376, 415cor.test()....354, 376, 421, 422,432, 433, 446-448
cor.test.2.sample().. 433, 446,
447
cor0.test() 432, 447
correct 434, 446
$\cos ()$ 163, 312, 331
$\cosh ()$ 312
$\operatorname{cov}()$ 335, 354, 376
covratio() 499
cra 178
cramer.v() 352
crosschart() 367
crossprod() 316
CrossTable() 437
crt 178
csi 175, 178
cummax ()312, 331 dffits() 499, 501
cummin() 312, 331
cumprod () 312, 331
cumsum() 312, 331
curve() $25,160,163,177,186,187$,577
cut () 55, 343
cxy 178
DD()324, 331
data() 143, 147, 576
data.entry() 78, 575
data.frame 54
data.frame()......54, 57, 58, 88,90, 92, 93, 108, 133, 138, 221,463, 475
Date 112
date() 109
dbeta() 406
dbinom() 405
dcauchy() 406
dchisq() 406
de() 575
debug. 255
debug() 255
dec 62, 78, 574
dec2bin() 125
demo()..... 143, 147, 168, 180, 185
density() 390
deriv() 324, 331
$\operatorname{det}()$ 18, 331, 332, 581
detach() 289, 304, 605
dev.copy2eps() 151
dev.copy2pdf() 151
dev.cur() 150
dev.list() 150
dev.off(). 150, 151, 186, 287, 577
dev.print() 287
dev.set() 150
devAskNewPage() 175
device 150
$\operatorname{dexp}()$ 406
df() 406, 582
dfbetas() 499, 501
dgamma() 406
dgeom() 405
dgumbel() 406
dhyper() 405
diag() 581
diff() 350, 581
difftime() 112, 132
digamma() 312
dim 52, 215, 217-219
dim() 86, 132, 217, 218
dimnames 215, 219-221
dimnames() 86, 132, 221
din 175
dir.create() 291
display.brewer.all() 165
dlnorm() 406
dlogis() 406
dnbinom() 405
dnorm() $160,406,412$
do.call() 94, 137, 138
dotchart() 356, 357
double 45
download.file() 542
dpois() 405
dQuote() 106
drop 101
drop1() 583
dt() 406
dudi.pca() 336
dunif() 406
duplicated() 86
dweibull() 406
dwtest() 465
dyn.load() 236, 259
dyn.unload() 236
E
ecdf() $.363,364,366,370,397$
edit 67
eigen. 320
eigen() ... 319, 320, 331, 332, 581
else 114, 132
emptyenv() 228
epitools 418, 419
Error 532
Error() 529-531
estimable() 526, 532
eta2() 355
eval() 222, 223, 273
evd 406
exact 444, 446
example() 141, 143, 147, 159, 185,366
$\exp ()$ 41, 312, 331
expression() . . 167-169, 222-225,273, 324
F
F 47, 95
f.read.volume() 189
factor 54, 510
factor()..54, 55, 57, 58, 275, 478,510, 517, 526, 532, 583
factorial() 43, 312
FALSE $47,49,58,88,95$
family 178
ff. 300
fg 177
fig 175
file 62, 63, 78
file(clipboard) 78
file.access() 291
file.append() 291
file.choose() 62, 78, 254
file.copy() 291
file.create() 291
file.exists() 275, 291
file.info() 291
file.path() 275, 291
file.remove() 291
file.rename() 291
file.show() 291
file.symlink() 291
filehash 70
filename 150
fill 172
fin 175
find() 142
fisher.test().....436, 437, 442,446-448, 583
fit.contrast().... 516, 517, 532
fitted() 467, 496
fix() 67, 74, 78, 574
flashy.plot() 373
fligner.test() 447
floor() 312
flush.console() 116
font 178
font.axis 178
font.lab 178
font.main 178
font.sub 178
for 116, 132
force.in 485
foreign. 69, 574, 587
format() 106, 110
formatC() 127
formula 210
formula() 211
fourthrows() 138
freq 369
friedman.test() 447
ftable() 78, 344
FUN 91
function().. 25, 44, 192-199, 204,206, 273
G
gamma() 312
gc() 297-299
gdata....68, 90, 574, 590, 593, 605
get() 305
getaddr() 295
getAnywhere() 211
getLoadDLLs() 253
getwd() 283, 580
ggplot2 185
gl() 55, 519, 529-531
glob2rx() 282
globalenv() 228
gmodels 532
gputools 271
grad() 325, 331
graphics.off() 150 is.character() 48, 58
gray() 189
gregmisc 516, 517, 532
grep() 108, 132, 138, 162
gsub() 108, 132
gtools 90

H

hat()
168, 497
hatvalues() 497
head() 63, 338, 377
header 62, 78, 574
height 150
heights 154
help() 40, 139-142, 147, 576
help.search() 142, 147
help.start() 141, 142, 147
hessian() 325, 331
hist().26, 149, 151, 160, 343, 348,368-370, 376, 466, 582
history() 286, 580
I
I() 500
identical() 218
identical(x,y) 95
identify() 174, 186, 577
if 114, 132
if() 115
ifelse() 114
$\operatorname{Im}()$ 45
image() 165-167, 188-190, 577
IndependenceTests 435
Inf 48
influence.measures() 497
inherits() 204, 212
INSTALL 541
install.packages() 540
integer 45, 51
integrate()...323, 331, 334, 412interaction.plot() ... 520, 521,526, 532
intersect() 96
inv() 246
invisible() 198, 199
IQR() 350, 376, 581
is.element() 96
is.list() 54
is.loaded() 253
is.logical() 58, 95
is.na() 48, 58, 135
is.null() 122
is.numeric() 58
isTRUE() 115, 129

J

jarque.bera.test().... 465, 466
jpeg 150
jpeg() 151, 287
jpg 150
K
kappa() 319
kde2d() 414
Kendalltaub 353
kronecker() 317, 331
kruskal.test() 447
ks.test () . 439, 440, 446-448, 58 583
kurt() 350
kurtosis() 350
L
181
lab
171
labels
93, 132
lapply()
181
las
185
lattice
154
layou()
layout()..151-154, 175, 186, 190, 577
layout.show() 153, 154
lbeta() 312
leaps 485
leaps() 485
legend 172
legend()..172, 173, 186, 190, 464,481, 482
len 181
lend 183
length() 85, 132
length.out 194
LETTERS 90, 107
letters 50, 90, 107, 220
levels 55
levels()...55, 339, 341, 342, 376,377
levene.test().514, 517, 532, 583
lgamma() 312
lheight 183
library().......142, 147, 288, 580lines()...156, 157, 171, 183, 186,225
list 52, 193
list() ... 53, 57, 58, 195, 199, 220
list.files() 291
ljoin 183
$\operatorname{lm}()$ 25, 211, 459,460, 462, 469, 472, 476, 478,480, 483, 484, 487-491, 493,500, 501, 511, 512, 517, 521-524, 526, 527, 532, 583
lme() 529
lmitre 183
lmtest 465
load() 275, 283, 285
loadhistory() 285
local() 227, 228, 273
locator(). 173, 186, 188, 371, 577
log 155, 181
$\log ()$ $41,43,312,331$
logical 47, 49
logical() 95
lower.tri() 317
ls()....73, 227, 282, 289, 305, 580
lty................161, 172, 183, 184
lwd 172, 183, 184
M
m. 367
$\operatorname{mad}()$ 350, 376
mai 175
main 155, 169
mantelhaen.test() 447
$\operatorname{map}()$ 189
mapdata 189, 600
mapply() 94
maps 189, 600
mar. 175
MARGIN 91
margin.table().... 345, 376, 581
MASS 414
mat 69
match() 202
match.call() 199
matlines() 464
Matrix 314
matrix 51, 359
matrix().51, 57, 58, 132, 166, 189,217, 219, 221, 314, 317
mauchley.test() 447
mauchly.test() 447
$\max ()$ 12, 331, 350
mcnemar.test() 447
mean().79, 140, 147, 348, 350, 376, 415
med.test() 448
median() . . 313, 347, 376, 415, 614
memory.limit() 300
memory.size() 300
meresix() 138
merge 88, 89
merge() 88, 132
method 485
methods() 142, 210
mex 175
mfcol 151, 175
mfg 175
mfrow 151, 175
mgp 175
$\min ()$ 12, 331, 350
misc3d 21
missing(..... 273
Mod() 45
mode() , 58
model.frame() 212
model.matrix() 497, 513
moments 350, 581
months() 110
mood.test() 447
mosaicplot() 372
mpinv() 321INDEX OF R COMMANDS AND SYMBOLS563
mtext()......... 169, 178, 182, 186
mtp 69
mtrace() 255, 256
mvtnorm 251
n. 254
NA 47-49, 58, 88, 95, 376
na.omit() 135, 376

optimize() 325, 326, 331, 581

options() 142

order () 85, 132, 137, 159

ordered 54, 55

ordered() 57

ormidp.test() 447

outer () 316, 328, 331
na.rm 137
names 215, 219-221
names ().50, 86, 136, 199, 220, 221,461, 581
NAMESPACE 259
NaN 48
nchar() 133
ncol. 51
ncol() 86, 132
ncolumns 71
new 175
new. env() 227, 228, 273
next 116, 117
nlevels() 342
nlm() 325-328, 331
nlme 529
nlminb() . . 325, 328, 329, 331, 398
noquote() 106
nortest. 447
nrow 51
nrow () 86, 132
nrows 78, 574
NULL 113, 122, 196, 216, 218
numDeriv 325, 331
numeric 45, 49
numericDeriv() 325
0
object.size() 296, 299
objects() 282, 580
odbcClose() 75
odbcConnect() 75
oma 175
omd 175
omi 175
oneway.test() 447

P

package.skeleton() ... 302, 303, 305
paired................. . 427, 444, 446
pairs() 472, 500, 501
pairwise.prop.test()...... 447
pairwise.t.test() 447, 514, 517, 532, 583
pairwise.wilcox.test().... 447
$\operatorname{par}() . .26,151,152,162,174,175$, 177-183, 186, 187, 190, 577
parent.env().................... . . 228
parse() 223, 273
paste()... 107, 110, 132, 133, 189, 196-199, 202, 206, 221
paste(..., sep $=$, collapse = NULL) 195
path.expand() 291

pbinom() 405
pcauchy() 406
pch 183, 184, 356
pchisq().................... . . 406, 412
pdf . 150
pdf() 151, 287
permn() . 230
persp() 327, 328

pf() . 406
pgamma() . 406
pgeom() . 405
pgumbel() . 406
phyper() 405
pi.. . . 313
pictex() 151
pie() 164, 360, 376, 582
pin 175
plnorm() 406
plogis() 406
plot()$159,161,162,168-174,179-$182, 184-186, 188, 356, 363,364, 366, 370, 373-376, 457,481, 482, 517, 521
plot(lm()) 501
plot.default() 181
plot.ecdf() 376
plot.lm() 214
plot.new() 170, 171, 175, 183, 276
plot.window() 276
plotMeans() 520
plt 175
plyr 93
pmvt() 251
pnbinom() 405
png 150
png()....................151, 287, 580
pnorm() 334, 406, 448, 582
points 155
points()...25, 154, 156, 184, 186,225, 362, 481, 482, 577
pointsize 150
poly() 500
polygon() 59, 186, 188
polyroot()......119, 330-332, 581
pos 168
POSIXct 111
POSIXIt 11, 136
postscript() 151, 287
power. anova.test() 447
power.prop.test() 447
power.t.test() 447
PP.test() 447
ppois() 405
predict() 463, 464, 469, 474, 475,500, 501
print 207
print()...107, 195, 199, 203, 205,206, 209, 224
print.default() .. 206, 207, 210, 212
print.formula() 205, 206
print. $\operatorname{lm}()$ 212
PrintValue() 259
prod()..........135, 312, 331, 575
prop.table()........345, 376, 581prop.test()...418, 422, 430-432,441, 442, 446-448, 582
prop.trend.test() 447
ps 150, 178
pt() 406
pty 175
punif() 406
pweibull() 406
pwilcox() 443
Q
Q. 254
q() 36, 285
qbeta() 406
qbinom() 405, 421, 582
qcauchy() 406
qchisq() 582
qexp() 406
qf() 416
qgamma() 406
qgeom() 405
qgumbel() 406
qhyper() 405
qlnorm() 406
qlogis() 406
qnbinom() 405
qnorm() 406, 416
qpois() 405
qqnorm() 466
qr() 322, 331
qr.Q() 322
qr.R() 322
qt(). 582
quade.test() 447
quantile() 349, 376
quartz() 150
qunif() 406
quote() 325
require() 165, 259, 288, 338, 542, 580
resid() 466
residuals() ... 466, 467, 501, 583
return() 118, 197
rev() 85, 132, 334
RevoScaleR 300
RExcelInstaller 2
$\operatorname{rexp}()$ 406, 410
rf() 406
Rf_PrintValue() 259, 262
rgamma() 406
rgb() 163
rgeom() 405
rgl 414
rgrs 352
rgumbel() 406
rhyper() 405
rlnorm() 406
rlogis() 406
rm() 79, 80, 282, 299, 58
Rmpi 270
rnbinom() 405, 410
rnorm() 72, 160, 391, 401, 406, 582
RODBC 75
round() 312, 331
row.names 62, 78, 221, 574
rowMeans() 91
rownames 221
rownames().86, 132, 174, 221, 575
rowSums() 91
rpois() 405, 410
RSiteSearch() 144, 147, 576
rsprng 271
rstandard() 495, 496
rstantard() 501
rstudent() 501
rt() 406
runif()72, 159, 161, 162, 383, 397,401-403, 406, 412
rweibull() 406
Ryacas 324

S

s.class()........................ 336
sample()....... 138, 404, 405, 414
sapply().........93, 118, 132, 206
sav................................... 69
save()...................... . 275, 283
save.image()............. 283, 285
savehistory() 285
savePlot() 150, 151, 186, 577
scale() 319, 335, 581
scan................................ . . 67
$\operatorname{scan}() . .62,67,70,73,78,80,190$,
574
scatter()....................... 336
sd()319, 350, 376
sd.pop().......................... 350
search() 288, 289, 305
searchpaths()................. 288
seed................................ . . . 382
segments() 156, 157, 186, 369
sep.................62, 78, 196, 574
seq() $50,71,78,159,194,201,575$
set.seed()........................ 383
setdiff() 96
setwd().....63, 234, 283, 305, 580
shapiro.test()........437, 438,
446-448, 583
side.......................... 169, 171
sigma2.test() 419, 422, 428, 446,
447
sign().............................. 312
signif().......................... 312
$\sin () \ldots \ldots \ldots .41,163,312,331$
sinh()............................... 312
sink()................................ . 290
skew().............................. 350
skewness()........................ . . 350
skip............................ . 78, 574
smartbind()....................... 90
snow..........................270, 271
solve()...246, 258, 315, 322, 331,
581
sort().................85, 132, 136
source() 39, 40, 200, 254, 290
spheres3d()..................... . 414
spineplot()....................... 372
split.screen()................ 175
sprintf()....................... . 107
sqlQuery()........................ 75
sqrt()...........41, 312, 319, 331
sQuote().......................... 106
srt............................ 178, 181
stack()...................... 92, 510
stats................................ 147
stem()...................... 367, 376
stem.leaf() 364, 367
step().................490, 491, 501
stop()............................... 121
storage.mode() 49
str()................................. 54
strheight().............. 178, 183
stripchart().................... 375
strptime()....109, 110, 112, 132, 136, 576
strspit()........................ 133
strsplit()................ 108, 132
strwidth()........................ 178
style................................. . 367
sub............................ 155, 169
$\operatorname{sub}()$. . 108, 132
subset().................... 102, 522
substring()...107, 109, 132, 133, 136, 137
sum()312, 318, 331
summary ()..81, 209, 213, 349, 376, 435, 460, 469, 472, 473, 482, 487, 500, 511, 512, 517, 522524, 526, 529-531, 581, 584
summary $(\operatorname{lm}())$.
summary.lm()..................... 213
surface3d()..................... 414
svd() 321, 331
sweep()............................... 91
switch............................. 132
switch().............113, 122, 194
symbol58........................ . . 480
Sys.chmod()...................... . 291
Sys.sleep() 109, 116
Sys.time() 109, 110, 132, 275
Sys.umask()...................... . 291
system() 234
system.time().109, 117, 118, 230
INDEX OF R COMMANDS AND SYMBOLS 567
T

unit................................. . 367T . 47, 95t() $81,101,188,315,322,331,581$t.test.............................. . . . 417
t.test().......417, 422, 425-427,
446-448, 450, 582
tab2by2.test()................ 447
table() 342, 343, 356, 376,
435-437, 442, 581
table.cont () 372,373
tabulate()......................... 188
tail() 63, 377
tan()................. 312
tanh() . 312
tapply()..................... . . 118, 510
tck.................................. 181
tcl.. 181
tcltk.............................. . . 5, 6
text() 166-168, 173, 178-180, 182,
$183,186,577$
TheRSoftware.... 2
tick.............................. . . . 171
tiff().............................. . . 151
title() ... 169, 170, 178, 183, 186
tolower (). 108, 576
toupper()...................... . . 108, 220
trace()..................... 318
tracemem() 214
transform()93, 108, 456
trigamma() 312
TRUE 47, 49, 58, 88, 95, 132
trunc ()............... 312
try().................................. . . . 121
ts() . 56, 57
tseries..................................... 465
TukeyHSD () 516
twentyfourthrows() 138
type................................ 155
typeof() 44, 58
\mathbf{U}
undebug() 255
union() . 96
unique() 86, 132, 136, 414
uniroot() 329-332, 581
unlink() 291
unlist().................... 137, 138
unstack()......................... 92
update()............ 185, 211, 226
upper.tri()...................... 317
useDynLib 259
UseMethod() 205, 207, 209
usr . 175
utils . 597

V

$\operatorname{var}()$. $350,376,415$
var. equal. 426, 446
var.pop() 350
var.test() 429, 446-448
vec () . 318
vech() . 318
vector . 50
vector() 123
View() . 67
vif().................. . 484, 500, 501
vignette().......... 143, 147, 324
W
weekdays () 110
weight. category(). 122
which() 98, 101, 104, 132
which. $\max ()$. 98 , 581
which.min() 98
while.............. 116, 117, 132
while()............................. . . . 123
width . 150
widths . 154
wilcox.test().421, 422, 444-448, 583
win.graph() 149
windows () 149, 150, 186, 577
wmf . 150
write() 71, 575
write.ftable() 80
write.table() 70, 78, 79, 575
writeaddr() 295

X

X11()................................. 150
xaxp................................. . 181
xaxs................................... . . 181
xaxt.................................. . 181
xfig()................................. 151
xlab............................155, 169
xlim................................... 155
xlog................................. . . 181
xls..................................... 68
xlsReadWrite..........68, 71, 587
xor(x, y)......................... 95
xpd................................... . 175
xpinch.............................. 150
xpos................................. 150
xpt....................................... 69
xtable............................... 143
xyplot().......................... 185
Y
yaxp................................ . . . 181
yaxs................................. . 181
yaxt................................. 181
ylab............................155, 169
ylim.................................. . . 155
ylog................................... . . 181
ypinch................................ 150
ypos................................. . 150

Index of authors

A

Adler, Joseph 146
Akaike, H. 490

B

Becker, R. A. 1
Belsley, D. A. 500
Bilodeau, M. 435
Braun, J. 146
Braun, J. W. 146
Burns, Patrick 129, 146

C

Casella, G. 382
Chambers, J. M. 1, 146
Chivers, Ian 229
Cohen, J. 146
Cohen, Y. 146
Cook, R. D. 500
Crawley, M. J. 146

D

Dalgaard, P. 146
Davison, A. C. 417

E

Everitt, B. S. 146

F

Fisher, R. A. 402
Fox, John 17
Furnival, G. M. 484

G

Gentleman, R. 1

H

Hand, D. J. 484
Heiberger, Richard M. 2
Hilbe, Joseph M. 2
Hinkley, D. V. 417
Hothorn, T. 146

I

Ieno, Elena N. 146
Ihaka, R. 1

K

Kernighan, Brian W. 229
Kuh, E. 500

L
Lafaye de Micheaux, P. 393, 435
Levene, H. 514
Liquet, B. 393

M

Maindonald, J. 146
Mallows, C. L. 485
Matloff, Norman 146
Meesters, Erik H.W.G. 146
Meyer, Carl 313
Miller, Jr. 515
Miller, K. W. 381
Montgomery, D. C. 519, 527
Muenchen, Robert A. 2, 146

Murdoch, D. J. 146

N

Neuwirth, Erich 2
P
Park, S. K. 381

R

Ritchie, Dennis M. 229
Robert, C. 382
Rupert, G. 515

S
Sarkar, D. 146, 185
Schwarz, G. 485
Sleightholme, Jane 229

Stroustrup, Bjarne 229

T

Teetor, Paul 146

V
Vinod, Hrishikesh D. 56

W

Weisberg, S. 455, 492, 500
Welsch, R. E. 500
Wilks, A. R. 1
Wilson, R. W. Jr. 484
Z
Zuur, Alain F. 146

List of R packages mentionned in the book

Symboles
RcmdrPlugin. TeachingDemos 18
A
ade4 251, 336, 372, 373
AnalyzeFMRI 189, 600
aplpack 364, 367, 368
asympTest 420, 428
B
base 142
bigmemory 300
boot ...405, 417, 419-421, 448, 583
Brobdingnag 130
Ccar....484, 511, 514, 521, 526, 539
caTools 167, 188
chron 112
combinat 230
ConvergenceConcepts 393
D
datasets 142, 290
debug 255
E
epitools 418, 419
evd 406
F
ff 300
filehash 70
foreign 69, 574, 587
Ggdata...68, 90, 338, 439, 574, 590,593, 605
ggplot2 185
gmodels 437, 526, 532
gputools 271
graphics 142
grDevices 142
gregmisc 32
gtools 90
I
IndependenceTests 435
L
lattice 4, 185
leaps 485
lmtest 465

M
mapdata 189, 600
maps. 189, 600
MASS 414
Matrix 314
misc3d 21
moments 350, 581
N
nlme 529
nortest 447
numDeriv 325, 331
P
plyr 93
R
R.huge 70
R.matlab 2, 69, 587
R2HTML 288, 538
rbenchmark 240
Rcmdr 5, 6, 520, 539, 541-544
RcmdrPlugin.sos 18
RColorBrewer . . 164, 165, 360, 362
RevoScaleR 300
RExcelInstaller 2
rgl................. . 4, 185, 277, 414
rgrs 352
Rmpi 270
RODBC 75
rsprng 271
Ryacas 324
S
snow. 270, 271
stats 142, 147
tcltk. 5, 6
tseries 465, 466
utils 142, 597
X
xlsReadWrite 68, 71, 587
xtable. 143

Solutions to Exercises

Solutions to Exercises from Chapter 1

1.1- [1] 1223456789
1.2- [1] 246810
1.3- The instruction var<-3 does not output anything. The instruction Var*2 outputs an error message beacuse Var has not yet been defined.
1.4- The instruction $x<-2$ does not output anything. The instruction $2 x<-2 * x$ outputs an error message because a variable name should not begin with a number.
1.5- The instruction root.of.four <- sqrt (4) does not output anything. The instruction root.of.four outputs [1] 2
1.6- The instruction $\mathrm{x}<-1$ does not output anything. The instruction $\mathrm{x}<-1$ outputs [1] FALSE
1.7- The instruction An even number <- 16 outputs an error message because a variable name should not contain spaces.
1.8- The instruction "An even number" <- 16 does not output anything.
1.9- The instruction " $2 x$ " <- 14 does not output anything.
1.10- The instruction An even number outputs an error message.
1.11->2 +
$+4$
[1] 6
1.12- The instruction TRUE + T + FALSE*F + T*FALSE + F outputs [1] 2.
1.13- The $6 R$ data types are: numeric, complex, logical, character, raw.
1.14- $\mathrm{X}<-\operatorname{matrix}(1: 12$, nrow=4, ncol=3, byrow=FALSE)
1.15- The R data structures are: $c()$, matrix (), array(), list(), data.frame(), factor(), ordered().

Solutions to Exercises from Chapter 2

2.1- The three main R functions to use to import data from an ASCII text file are: read.table(), scan() and read.ftable().
2.2- header: a logical value indicating whether the file contains the names of the variables as its first line (e.g. : header=TRUE).
sep: the field separator character. Values on each line of the file are separated by this character (e.g.: sep=" " or sep="\t").
dec: the character used in the file for decimal points (e.g.: dec=". " or dec=", "). row. names: a vector of row names. This can be a vector giving the actual row names, or a single number giving the column of the table which contains the row names (e.g.: row. names=2).
skip: the number of lines of the data file to skip before beginning to read data (e.g.: skip=4 to exclude the first 4 lines from reading).
nrows: the maximum number of rows to read in (e.g.: row.names=19).
2.3- Function readLines () reads some or all text lines from a connection.
2.4- Function $\operatorname{fix}()$ enables one to modify a data. frame or a matrix using a small spreadsheet.
2.5- read. csv (): reads a comma separated value file in table format and creates a data frame from it, with cases corresponding to lines and variables to fields in the file (note: dec=".").
read. $\operatorname{csv} 2()$: reads a semicolon separated value file in table format and creates a data frame from it, with cases corresponding to lines and variables to fields in the file (note: dec=", "). read. delim(): reads a tabulated separated value file (note: dec="."). read.delim2(): reads a tabulated separated value file (note: dec=", ").
2.6- Function read.ftable() reads, writes and coerces flat contingency tables.
2.7- Function scan() should be used when data are not organised in table format. Function read. table() is used for table format data sets.
2.8- Importing data from an Excel sheet:

- Using copy-paste: select the data under Excel, copy these data to the clipboard, use the instruction:
x <- read.table(file("clipboard"), sep="\t", header=TRUE, dec=", ")
- Using an intermediate ASCII file: save the Excel sheet as .txt (separator: TAB), then use function read. table().
- Using package gdata and function read.xls().
2.9- Package foreign.
2.10- The colClasses argument from function read.table() can be used to indicate the type of each column, and thus greatly increases the speed of reading of huge data sets.
2.11- Function write.table() enables one to write in a file the data set contained in a data. frame. Another function is write() that should be used for vector or matrix objects.
2.12- Here are four basic functions to build vectors:
- c()
- seq()
- rep()
- !" () (example 1:10)
2.13- The instruction $\operatorname{seq}(1,2, b y=0.1)$ gives the following vector:
[1] 1.01 .11 .21 .31 .41 .51 .61 .71 .81 .912 .0
2.14- The instruction $\operatorname{rep}(1: 3$, each=2) gives the following vector:

112233
2.15- The instruction rep $(1: 3,2)$ gives the following vector:

123123
2.16- Functions to enter data at hand in a small spread sheet are: data.entry() and de().

Solutions to Exercises from Chapter 3

3.1- [1] 212
3.2- [,1] [,2]
$[1] \quad 1 \quad$,
$[2] \quad 2 \quad$,
3.3- Using functions rownames () and colnames ().
3.4- $\operatorname{cbind}(X, Y)$
3.5- For the product of all elements of a matrix X : $\operatorname{prod}(X)$.

For the product of the elements of each column of matrix X :
apply (X,FUN=prod, MARGIN=2).
3.6- [1] 4
[1] 2683
3.7- weight [height>180]
3.8- [1] 789
[1] 56
3.9- L[[4]] <- 1:10
3.10- [1] 67
3.11- $\operatorname{attach}(\mathrm{X})$
weight[sex=="F"]
height[sex=="F"]
\# or:
X[sex=="F",-3]
3.12- [1] 123 and integer (θ)
3.13- [1] TRUE TRUE FALSE and [1] TRUE
3.14- [1] 44
3.15- [1] "acbd"
3.16- [[1]]
[1] "ab" "cd"
3.17- [1] "" "cd"
3.18- tolower(c("Jack","Julia", "William"))
3.19- strptime().

Solutions to Exercises from Chapter 4

4.1- help(mean).
4.2- This instruction provides a list of all functions whose name contains the searched word.
4.3- This instruction gives examples on using the searched function.
4.4- Command RSiteSearch() enables one to search one the web site http: //search.r-project.org/nmz.html directly from R. The extracted information is then displayed in your browser.
4.5- 1. The header of the file, with:

- the name of the function for which we are looking for help;
- the name of the package in which the function is included (e.g.: base);
- the origin of the help file: R Documentation;

2. An explicit title for the function (e.g.: Arithmetic Mean).
3. A brief description of what the function does: Description.
4. How to use the function; in particular, the compulsory and optional arguments: Usage.
5. A description of the function's arguments: Arguments.
6. Explanations on the output of the function: Value.
7. References (statistical articles or books) related to the function's application domain: References.
8. The See Also section, which lists similar or related functions.
9. Examples of use: Examples
4.6- help(package="stats") or library(help="stats").
4.7- Type data() to see a list of data sets and then type the name of the chosen data set.

Solutions to Exercises from Chapter 5

5.1- The windows () command is used to open a graphical device. The dev.off() command closes the window specified by device-number (if no device number is given, the active window is closed).
5.2- savePlot(filename="myplot",type="pdf", device=dev.cur())
5.3- The instruction par ($\operatorname{mfrow}=c(3,2)$) opens a graphical window where plots are successively displayed in a "matrix" with 3 rows and 2 columns (filled by rows).
5.4- Function layout() enables one to obtain a more evolved splitting of the graphical window than using function par().
5.5- points()
5.6- type="1"
5.7- abline()
5.8- Function curve() enables one to draw any function of x.
5.9- The argument col.
5.10- Function image(). The instruction

```
image(as.matrix(rev(as.data.frame(t(X)))))
```

enables one to display coherently the image whose values are given in matrix X.
5.11- Function text().
5.12- Function identify() or locator().
5.13- The instruction par (ask=TRUE) outputs a message asking the user to press the ENTER key before each new plot is drawn.
5.14- lty
5.15- pch
5.16- $\operatorname{curve}(\cos (x), x \lim =c(-10,10), x l a b=" X$ axis", col="blue", main="Sinus and cosinus curves",ylim=c $(-2,2), y l a b=" \sin (x) ")$ curve ($\sin (x)$, add=TRUE)
abline(h=0, col="red")
abline(v=0, col="red")
arrows(3*pi/2,1,pi/2,1)
text ((3*pi)/2,1,expression(hat(beta)[1]))

Solutions to Exercises from Chapter 6

6.1- - function(name) \{name\}: the class of the returned R object is function, the display produced is: function(name) \{name\}.

- (function(name) \{name\})("Ben"): the class of the returned R object is character, the display produced is: "Ben"
- (function(name) \{cat(name, " n ") \}) ("Ben"): the returned \mathbf{R} object has no class, the display produced is: Ben
- (function(name) \{invisible(name)\}) ("Ben"): the class of the returned R object is character, no display.
6.2- - No difference.
- No difference.
- No difference.
6.3- No difference when executing name() and name("Peter") if the function name() is defined by name <- function(name="Peter") name and also by name <- function(name="Peter") name2 <- name. For these two functions, the nature of res, obtained by res <- name("Ben") is of type character.
6.4- "Peter".
6.5- • "Ben L"
- "Ben L"
- "R D"
6.6- name <- function(name="Peter") \{cat(name," \backslash n") \}
6.7- For the execution of names ("peteR", "Ben", "R")
- [1] "peteR" "Ben" "R"
- [[1]]
[1] "peteR"
[[2]]
[1] "Ben"
[[3]]
[1] "R"
- [1] "peteR"
[1] "Ben"
[1] "R"
- [1] "peteR"
[1] "Ben"
[1] "R"
For the execution of names (c ("peteR", "L") , c("Ben", "L") , c("R", "D"))
- [1] "peteR" "L" "Ben" "L" "R" "D"
- [[1]]
[1] "peteR" "L"
[[2]]
[1] "Ben" "L"
[[3]]
[1] "R" "D"
- [1] "peteR"
[1] "L"
[1] "Ben"
[1] "L"
[1] "R"
[1] "D"
- [1] "peteR" "L"
[1] "Ben" "L"
[1] "R" "D"
6.8- For the function names <- function(names=c("Ben","R"), ...) c(names,...)
- [1] "PeteR"
- [1] "PeteR"
- [1] "PeteR"

For the function names<-function(..., names=c("Ben", "R")) c(names, ...)

- [1] "Ben" "R" "PeteR"
- name
"Ben" "R" "PeteR"
- [1] "PeteR"
6.9- - Male <- function(firstname,name) \{ obj <- list(firstname=firstname, name=name) class(obj) <- "Male" obj
\}
- hello.Male <- function(obj)
cat("Hello Mister",obj\$firstname,obj\$name, "!\n")
- Hello Mister Ben L
- Error : impossible to find function "hello"
- hello <- function(obj) UseMethod("hello")
6.10- - Female <- function(firstname, name) \{
obj <- list(firstname=firstname, name=name)
class(obj) <- "Female"
obj
\}
- hello.Female <- function(obj) cat("Hello Mrs.",obj\$firstname,obj\$name,"!\n")
- Hello Mister Elsa R !
- Hello Mrs. Elsa R !
- Hello Mrs. Elsa R !
6.11- - Hello Mister Ben L !

Hello Mrs. Elsa R !

- Error in UseMethod("hello") :
no method for 'hello' applicable for an object of class "character"
- Hello Ben !

Hello L !
Hello Elsa !
Hello R !

Solutions to Exercises from Chapter 7

7.1- ls() or objects().
7.2- rm(foo).
7.3- getwd().
7.4- setwd(choose.dir()).
7.5- Save in a file (name. RData) the objects that have been created.
7.6- The history of commands, the working environment, the contents displayed in the console, and the graphs.
7.7- This allows you to recall and replay previously typed commands (using arrows up and down on the keyboard).
7.8- The function history () displays in a new window the list of all previous commands typed in the current session.
7.9- png(file="myplot.png")
curve (x**2)
dev.off()
7.10- It enables one to access variables of a data.frame directly by their name.
7.11- require() (or library ())
7.12- Import a sequence of R instructions from a file to the console, and checks the syntax.

Solutions to Exercises from Chapter 8

8.1- choose().
8.2- The instruction $\operatorname{sum}(1: n)$.
8.3- range().
8.4- The term by term product of the two following matrices:

	$[, 1]$	$[, 2]$
$[1]$,	1	0
$[2]$,	0	1

and

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	4

which gives

	$[, 1]$	$[, 2]$
$[1]$,	1	0
$[2]$,	0	4

8.5- \%*\%().
8.6- Function solve() for the inverse and function t () for the transpose.
8.7- The instruction diag(5).
8.8- Command $\operatorname{det}()$ for the determinant and sum(diag()) for the trace.
8.9- scale(A).
8.10- Function eigen().
8.11- myf <- function(x) $\left\{3 * x^{\wedge} 2+2\right\}$ integrate (myf,lower=-1, upper=1)
8.12- optimize(f=function $(x)(\sin (x)) * * 2$, lower $=0$, upper $=2$, maximum=TRUE)
8.13- Command uniroot () for a function and polyroot () for a polynomial.

Solutions to Exercises from Chapter 9

9.1- table(x)/length (x).
9.2- table(x, y).
9.3- margin.table().
9.4- prop.table().
9.5- names(which.max(table(mytable))).
9.6- $\operatorname{diff}($ range $(x))$.
9.7- $\operatorname{IQR}(x)$.
9.8- $\operatorname{var}(x) *($ length $(x)-1) /$ length (x).
9.9- $\operatorname{sqrt}(\operatorname{var}(x) *(l e n g t h(x)-1) / l e n g t h(x)) / m e a n(x)$.
9.10- mean(abs(x-mean(x))).
9.11- Package moments.
9.12- First, we need to compute the χ^{2} statistic using
chi2 <- summary(table(mytable))\$statistic

Cramér's Φ^{2} is obtained by chi2/N.
9.13- Here is the code to compute the correlation ratio $\eta_{Y \mid X}^{2}$:

```
eta2 <- function(x,gp) {
    means <- tapply(x,gp,mean)
    frequency <- tapply(x,gp,length)
    varinter <- (sum(frequency * (means - mean(x))^2))
    vartot <- (var(x) * (length(x) - 1))
    res <- varinter/vartot
    return(res)
}
```

9.14- Function barplot () can be used to obtain a Pareto diagram.
9.15- A stacked bar chart can be obtained using the function barplot() with an object of type matrix as first argument.
9.16- Function pie() can be used to obtain a pie chart.
9.17- Function boxplot () can be used to obtain a box plot.
9.18- Function hist () is used to draw a histogram.

Solutions to Exercises from Chapter 10

10.1- rnorm().
10.2- $\operatorname{rnorm}(n$, mean $=2, \operatorname{sd}=\operatorname{sqrt}(10)$) generates n realizations of a random variable with $\mathcal{N}(2,10)$ distribution.
10.3- qchisq().
10.4- df ().
10.5- qt ().
10.6- $\operatorname{pnorm}(5$, mean $=2, \operatorname{sd}=$ sqrt (2) $)-\operatorname{pnorm}(3$, mean $=2$, sd=sqrt (2))
10.7- qnorm(0.95)

Solutions to Exercises from Chapter 11

11.1- qbinom().
11.2- Function pnorm() is used to compute the Gaussian cumulative distribution function.
11.3- t.test (x, conf.level=0.9) \$conf.int
11.4- Function prop.test () is used to compute a confidence interval for a proportion or to perform a statistical test for a proportion by approximating the bino-
mial distribution by a normal distribution, whereas function binom. test() performs exact computations.
11.5- ks.test() and wilcox.test().
11.6- shapiro.test().
11.7- chisq.test() and fisher.test().
11.8- Package boot.
11.9- paired=TRUE.
11.10- The χ^{2} test of independence enables one to test the dependence between two qualitative variables whereas the χ^{2} goodness-of-fit test can be used to test if a qualitative variable follows a given distribution. To perform these two tests, you can use the chisq.test () function. The χ^{2} test of independence is performed on a table. For the χ^{2} goodness-of-fit test, it is necessary to specify the p argument representing the theoretical probabilities of the possible outcomes of the qualitative variable.

Solutions to Exercises from Chapter 12

12.1- $\operatorname{lm}\left(Y^{\sim} \mathrm{X} 1\right)$.
12.2- $\operatorname{lm}\left(\mathrm{Y}^{\sim} \mathrm{X} 1-1\right)$ or $\operatorname{lm}\left(\mathrm{Y}^{\sim} 0+\mathrm{X} 1\right)$.
12.3- $\operatorname{lm}\left(\mathrm{Y}^{\sim} \mathrm{X} 1+\mathrm{X} 2\right)$.
12.4- $\operatorname{lm}\left(\mathrm{Y}^{\sim} \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 1: \mathrm{X} 2\right)$ or $\operatorname{lm}\left(\mathrm{Y}^{\sim} \mathrm{X} 1 * \mathrm{X} 2\right)$.
12.5- $\operatorname{lm}\left(\mathrm{Y}^{\sim} \mathrm{X} 1+\mathrm{I}\left(\mathrm{X} 1^{\wedge} 2\right)+\mathrm{I}\left(\mathrm{X} 1^{\wedge} 4\right)\right.$).
12.6- anova(lm($\left.\mathrm{Y}^{\sim} \mathrm{X} 1+\mathrm{X} 2\right), \operatorname{lm}\left(\mathrm{Y}^{\sim} \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4\right)$).
12.7- residuals().
12.8- coefficients().
12.9- The variable Z has to be introduced as a factor by means of the factor() command.
12.10- $\operatorname{lm}\left(Y^{\sim} \operatorname{poly}(X, 3)\right)$.
12.11- add1().
12.12- drop1().

Solutions to Exercises from Chapter 13
13.1- $\operatorname{aov}\left(Y^{\sim}\right.$ factor $\left.(A)\right)$.
13.2- $\operatorname{aov}\left(Y^{\sim}\right.$ factor $(A)+$ factor $\left.(B)\right)$.
13.3- $\operatorname{aov}\left(Y^{\sim}\right.$ factor $(A) *$ factor $\left.(B)\right)$.
13.4- bartlett.test() and levene.test().
13.5- pairwise.t.test().
13.6- summary ($\operatorname{lm}\left(\mathrm{Y}^{\sim}\right.$ factor $\left.(\mathrm{X})\right)$).
13.7- The function $C()$.

Solutions to Worksheet

Solutions to Worksheet from Chapter 1

Study of Body Mass Index

```
1.1- Individuals <- c("Edward","Cynthia","Eugene","Elizabeth",
    "Patrick","John", "Albert", "Lawrence", "Joseph", "Leo")
    Weight <- c(16,14,13.5,15.4,16.5,16,17,14.8,17,16.7)
    Height <- c(100,97,95.5,101,100,98.5,103,98,101.5,100)
    Gender <- c("F","F","M","F","M","M","M","M","M","M")
1.2- mean(Weight) # result : [1] 15.69
    mean(Height) # result : [1] 99.45
```

1.3- BMI <- Weight/(Height/100)^2
BMI \# Outputs the results.
1.4- myTable <- data.frame(Individuals, Weight, Height, Gender, BMI)
myTable \# Outputs the results.
1.5- help(plot)
1.6- plot(Height, Weight, main="Scatter plot of Weight as a function of Height")

Solutions to Worksheet from Chapter 2

Reading various data sets

A- Entering data from a hard copy

- Fever blisters
2.1- blisters <- as.data.frame(de(""))

First, change the type of each column to Real, and the names to trti, $1 \leq$ $i \leq 5$ (by clicking on the first cell of each column), then enter your data. Click on Quit at the end. Next, we can type the following command to display the data in R :

```
blisters # Outputs the data.
```

2.2- attach(blisters)
mean(trt1) \# Result: [1] 7.5
mean(trt2) \# Result: [1] 5
mean(trt3) \# Result: [1] 4.333333
mean(trt4) \# Result: [1] 5.166667
mean(trt5) \# Result: [1] 6.166667
2.3- We obtain directly the same results by typing:
colMeans(blisters)
2.4- write.table(file="blisters.txt",blisters, row.names=FALSE)
2.5- You can use your favorite text editor to display the contents of the file blisters.txt and thus check if it has been correctly created (the instruction getwd() will tell you where this file has been saved).
2.6- ls()
rm(blisters)
ls()
blisters \# We see that the object blisters has disapeared.
2.7- blisters <- read.table("blisters.txt", header=TRUE, sep="")
blisters \# Here is is again!

- Risk factors for atherosclerosis
2.1- Enter data as they are organized in the contingency table, by pressing the ENTER key after each end of line. After the last line, press once more on the ENTER key.
X <- scan() \# Data are then collected in a vector.
X <- matrix (X, ncol=3, nrow=6, byrow=TRUE)
2.2- class(X) <- "ftable"
2.3- attributes (X) \$col.vars<-list (alcohol=c("nondrinker", "occasional-drinker", "regular-drinker")) attributes (X) \$row.vars<-list (GENDER=c ("M", "F"), tobacco= c("non-smoker","former smoker","smoker"))
2.4- X
2.5- write.ftable(X,file="athero.txt")
2.6- You can use your favorite text editor to display the contents of the file athero.txt and thus check that it has been correctly created (the instruction getwd() will tell you where this file has been saved).
2.7- rm (X)

X \# The object has been removed.
2.8- X <- read.ftable(file="athero.txt")

X \# Here it is again!

B- Importing from other software

2.1- You can begin by downloading the file http://biostatisticien.eu/springeR/ bmichild.xls using your browser. If you have Excel, you can then tranform it into the file bmichild.txt, with TAB as separators, then use the following R command:
bmi. XLS <- read.table(file.choose(),header=TRUE, sep="\t", dec=",")
If you do not have Excel, you can use the package xlsReadWrite, after installing it:
require(xlsReadWrite)
bmi.XLS <- read.xls("bmichild.xls")
Finally, under Linux, you can use the commands:
require(gdata)
bmi. XLS <- read.xls("http://biostatisticien.eu/springeR/bmichild.xls")
2.2- Install the package foreign. Download the file http://www.biostatisticien. eu/springeR/bmichild.xpt using your browser.
require(foreign)
bmi.SAS <- read.xport(file.choose()) \# Select bmichild.xpt.
2.3- url <- "http://www.biostatisticien.eu/springeR/bmichild.sav"
bmi. SPSS <- read.spss(url)
bmi.SPSS <- as.data.frame(bmi.SPSS)
2.4- Install the package R.matlab.
require(R.matlab)
x <- readMat("http://www.biostatisticien.eu/springeR/bmichild.mat")
class(x) \# x is a list.
$\mathrm{x} \quad$ \# We see that the data are in \$bmi[,,1].
$\mathrm{x}<-\mathrm{x} \$ \mathrm{bmi}[,, 1]$
\# Note that the elements of GENDER and zep are saved into a list.
x\$GENDER
class (x\$GENDER) <- "character"
x\$GENDER
class(x\$zep) <- "character"
bmi.MAT <- as.data.frame (x)
2.5- summary (bmi. XLS)
summary (bmi.SAS)
summary (bmi.SPSS)
summary (bmi.MAT)
2.6- write.table(bmi.SPSS,"bmichild.txt", row.names=FALSE)

C- Importing more complex data files

2.1- readLines("http://biostatisticien.eu/springeR/geoidformat.txt") X <- scan('http://biostatisticien.eu/springeR/raf98.gra', skip=3) $\mathrm{X}<-\operatorname{matrix}(\mathrm{X}, \mathrm{ncol}=421$, nrow=381, byrow=TRUE) $\operatorname{dim}(X)$
2.2- Save the file http://biostatisticien.eu/springeR/Infarction.xls using your browser, then transform it into a file Infarction.txt (TAB as separator). Next, use the command:
infarction <- read.table("Infarction.txt", header=TRUE, sep="\t", na.strings = ".",dec=",")

Under Linux, rather use:
require(gdata)
url <- "http://biostatisticien.eu/springeR/Infarction.xls"
infarction <- read.xls(url,header=TRUE, sep=", ", na.strings=".", dec=".")
2.3- Download the file http://biostatisticien.eu/springeR/nutrition_ elderly.txt in the folder whose name is given by the command getwd(), then enter the following commands:

```
X <- read.table("nutrition_elderly.txt",row.names=1)
X <- t((X))
X <- as.data.frame(X)
```

2.4- url <- "http://www.biostatisticien.eu/springeR/Birth_weight.txt" readLines(url) \# To get an idea of the file organization. \# Note the three missing lines [33] to [35], \# and also the presence of dashes at line [194].
X <- read.table(url, row.names=1,skip=1,header=FALSE, sep=";",nrows=189, blank.lines.skip=TRUE)
Y <- read.table(url, nrows=1, row.names=1)
colnames (X) <- as.matrix(Y)
head(X) \# Display the first lines of X.

Solutions to Worksheet from Chapter 3

Manipulating various data sets

A- Manipulating a few data sets presented at the beginning of the book

File nutrielderly.xls

3.1- Install the package gdata. Be careful that the use of this package necessitates the PERL software which is not available by default under Windows. Thus install also PERL (http://www.biostatisticien.eu/springeR/ Rtools.exe).
require(gdata)
nutrien1 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien1.xls")
nutrien2 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien2.xls") colnames(nutrien1) <- tolower(colnames(nutrien1))
result <- rbind(nutrien1,nutrien2)
3.2- nutrien3 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien3.xls")
nutrien4 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien4.xls")
result <- merge(nutrien3, nutrien4,all=TRUE)
3.3- nutrien5 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien5.xls")
nutrien6 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien6.xls")
The coding of the variables is given in the table in section B.4. We will try to identify abnormal values using the following instruction:
apply (nutrien5, FUN=table, MARGIN=2)
We can identify six abnormal values in nutrien5: gender=12, gender=21, height $=1.67$, weight $=200$, age $=8$ and chocol=7. The subjects with these abnormal values are identified using:
ind5gender <- nutrien5\$Subject[which(nutrien5\$gender \%in\% c(12,21))]
ind5height <- nutrien5\$Subject[which(nutrien5\$height==1.67)]
ind5weight <- nutrien5\$Subject[which(nutrien5\$weight==200)]
ind5age <- nutrien5\$Subject[which(nutrien5\$age==8)]
ind5chocol <- nutrien5\$Subject[which(nutrien5\$chocol==7)]
ind5abnorm <- c(ind5gender,ind5height,ind5weight,ind5age,ind5chocol)
Let us do the same with nutrien6.
apply (nutrien6, FUN=table, MARGIN=2)

We find seven abnormal values in nutrien6: gender=12, gender=21, weight=8, age=7, meat=6, chocol=6, and fat=9. The subjects with these abnormal values are identified using:

```
ind6gender <- nutrien6$Subject[which(nutrien6$gender %in% c(12,21))]
ind6weight <- nutrien6$Subject[which(nutrien6$weight==8)]
ind6age <- nutrien6$Subject[which(nutrien6$age==7)]
ind6meat <- nutrien6$Subject[which(nutrien6$meat==6)]
ind6chocol <- nutrien6$Subject[which(nutrien6$chocol==6)]
ind6fat <- nutrien6$Subject[which(nutrien6$fat==9)]
ind6abnorm <- c(ind6gender,ind6weight,ind6age,ind6meat,ind6chocol,ind6fat)
```

We will now look at whether it is possible to correct some of these abnormal values. To do this, we will investigate whether an individual with an abnormal value in one of the tables may be present in another table with a normal value. Here is the list of common subjects between both files:

```
ind.com <- intersect(nutrien6$Subject,nutrien5$Subject)
```

List of abnormal subjects in nutrien5 that are also present in nutrien6:

```
intersect(ind.com,ind5abnorm)
# Result : no subject.
```

List of abnormal subjects in nutrien6 that are also present in nutrien5:

```
intersect(ind.com,ind6abnorm)
# Result: subject 30
nutrien5[nutrien5$Subject==30,]
nutrien6[nutrien6$Subject==30,]
# We have gender=21 in nutrien6 and gender=2 in nutrien5.
```

We thus replace this value in nutrien6:
nutrien6\$gender[which(nutrien6\$Subject==30)] <-
nutrien5\$gender[which(nutrien5\$Subject==30)]
We can now merge the two tables:

```
result <- merge(nutrien5,nutrien6,all=TRUE)
```

Without other information on abnormal data, we decide not to change them for the moment.
3.4- nutrien7 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien7.xls") nutrien8 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien8.xls") result <- cbind(nutrien7, nutrien8)
3.5- nutrien9 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien9.xls") nutrien10 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien10.xls") apply (nutrien9, FUN=table, MARGIN=2, useNA="ifany") apply(nutrien10, FUN=table, MARGIN=2, useNA="ifany")

The variable chocol contains 29 missing data points. We delete this variable before combining the two tables:
nutrien9bis <- nutrien9[,-which(colnames(nutrien9)=="chocol")]
result <- cbind(nutrien9bis, nutrien10)
3.6- nutrien11 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien11.xls")
nutrien12 <- read.xls("http://www.biostatisticien.eu/springeR/nutrien12.xls")
\# Number of missing values for all individuals in each table:
ind11NA <- apply(is.na(nutrien11),FUN=sum, MARGIN=1)
ind12NA <- apply(is.na(nutrien12),FUN=sum,MARGIN=1)
\# Determination of the individual with the most missing values:
ind11max <- which.max (ind11NA) \# We find the individual 86. ind12max <- which.max(ind12NA) \# We find the individual 86. ind11NA[ind11max] \# 3 missing values. ind12NA[ind12max] \# 4 missing values.

The individual 86 has 7 missing values on 13 variables. We suppress it from the merged table:
result <- cbind(nutrien11,nutrien12) [-86,]
3.7- url <- "http://www.biostatisticien.eu/springeR/nutri_elderly.xls" nutri_elderly <- read.xls(url)
nrow (nutri_elderly[nutri_ederly\$fish==0 \& nutri_elderly\$meat==0,])
There is no vegetarian among the individuals studied.

File Intima_Media_Thickness.xls

3.1- url <- "http://www.biostatisticien.eu/springeR/Intima_Media_Thickness.xls"

Intima <- read.xls()
Intima <- transform(Intima, BMI=weight/(height/100)^2)
\# or equivalently:
\# BMI <- Intima\$weight/((Intima\$height/100)^2)
\# Intima <- cbind(Intima, BMI)
3.2- Intima\$measure[Intima\$BMI>30]
3.3- Intima[Intima\$SPORT==1,]
3.4- Intima[Intima $\$$ BMI<=30 \& Intima $\$$ AGE $>=50$,]

File bmichild.xls

3.1- bmichild <- read.xls("http://www.biostatisticien.eu/springeR/bmichild.xls")
bmichild <- transform(bmichild,BMI=weight/(height/100)^2)
\# or equivalently:
\# BMI <- bmichild\$weight/((bmichild\$height/100)^2)
\# bmichild <- cbind(bmichild,BMI)
3.2- subset(bmichild, BMI<15 \& an<=3.5 \& month <=5)
\# or equivalently:
\# bmichild[bmichild\$BMI<15 \& bmichild\$an <=3 \& bmichild\$month<=5,]
3.3- sum(bmichild\$BMI<15 \& bmichild\$an<=3 \& bmichild\$month<=5)
\# or equivalently:
\# nrow(bmichild[bmichild\$BMI<15 \& bmichild\$an<=3 \& bmichild\$month<=5,])
We find 7 children.

File Birth_weight.xls
3.1- url <- "http://www.biostatisticien.eu/springeR/Birth_weight.xls"
birth.weight <- read.xls(url)
PTL1 <- birth.weight\$PTL
PTL1[birth.weight\$PTL>=2] <- 2
birth.weight <- cbind(birth.weight,PTL1)
3.2- FVT1 <- birth.weight\$FVT

FVT1[birth.weight\$FVT>=2] <- 2
birth.weight <- cbind(birth.weight, FVT1)
3.3- birth.weight[order(birth.weight\$BWT),]
3.4- birth.weight[birth.weight\$RACE<=2 \& birth.weight\$SMOKE==1,]

B- Handling missing values

Install the package gdata. And since this package necessitates PERL, also install PERL (http://www.biostatisticien.eu/springeR/Rtools.exe). Now, we read the data:
url <- "http://www.biostatisticien.eu/springeR/Infarction.xls" read.xls(url)

We note that the missing values are coded with ".". We thus use the following instruction:
infarction <- read.xls(url, na.strings=".")
3.1- indNA <- which(apply(is.na(infarction), FUN=any, MARGIN=1)==TRUE)

```
3.2- sup1 <- function(x) {sum(x)>1}
    indNA <- which(apply(is.na(infarction),FUN=sup1,MARGIN=1)==TRUE)
    infarction$NUMBER[indNA]
```

3.3- colnames(infarction)[which(apply(is.na(infarction), FUN=any, MARGIN=2)==TRUE)]
3.4- a) infarction[as.logical(apply(!is.na(infarction), 1, prod)),]
b) infarction[!apply(apply(infarction,1,is.na), 2, any),]
c) infarction[apply(!apply(infarction,1,is.na), 2,all),]
d) infarction[complete.cases(infarction),]
e) na.omit(infarction)

C- Handling character strings

3.1- url <- "http://www.biostatisticien.eu/springeR/dept-pop.csv"
dept <- read.csv(url,dec=",")
3.2- numdep <- substring(dept\$Departement, 1,3)

Dept <- substring(dept\$Departement,4)
dept <- cbind(numdep, Dept, dept[,-1])

D- Influenza epidemics in France since 1984

3.1- url <- "http://www.biostatisticien.eu/springeR/flu.csv" head(read.csv(url))

We note that the missing values are coded using dashes (-). We thus use the following instruction:
flu <- read.csv(url,na.strings="-")
3.2- names(flu)
flu\$Date
3.3- unique(sort (substring(flu\$Date,5,6)))

We find the numbers "01" to " 53 ".
3.4- strptime("198444", format="\%Y\%W")

We notice that the above instruction gives the correct year, but in fact the current day and month.
3.5- We read on the calendar that the first monday of the 44th week corresponds to october 29, 1984.
3.6- strptime("1984441",format="\%Y\%W\%w")
3.7- flu\$Date[1:10]
strptime(paste(as.character(flu\$Date[1:10]), "1", sep=""), format="\%Y\%W\%w")

We notice on the web site calendar that this does not work for december 31, 1984. We should rather use:
strptime("1984531", format="\%Y\%W\%w")
whereas we used:
strptime("1985011", format="\%Y\%W\%w")
Thus there is a problem with week format.
3.8- date1 <- as.POSIXlt("29,10,1984",format="\%d,\%m,\%Y")
3.9- date 1
date1+7
The above operation added 7 seconds to date1.
3.10- date $1+7 * 24 * 60 * 60$
3.11- dates <- date $1+7 * 24 * 60 * 60 *(0:(n r o w(f l u)-1))$
3.12- flu\$Date <- substring(dates,1,10)
3.13- mask1 <- (as.POSIXlt(dates) >= as.POSIXlt("1992-09-15"))
mask2 <- (as.POSIXlt(dates) <= as.POSIXlt("1993-11-03"))
portion <- flu[mask1 \& mask2,]
3.14- flu.cases <- colSums(portion[,-1],na.rm=TRUE)
flu.cases

E- Combining tables or lists; other manipulations

3.1- a <- matrix $(1: 6,3,2)$
rownames $(a)<-c(1,2,6)$
b <- matrix $(1: 8,4,2)$
rownames(b) <- c(3,4,5,7)
3.2- $a b<-\operatorname{rbind}(a, b)$
ab <- ab[order(rownames(ab)),]
ab
3.3- list1 <- list()
list1[[1]] <- matrix(runif(25),nr=5)
list1[[2]] <- matrix(runif(30),nr=5)
list1[[3]] <- matrix(runif(15),nr=5)
matrix(unlist(list1), nrow=5)
\# or also:
do.call(cbind,list1)

```
3.4- list2 <- list()
    list2[[1]] <- matrix(runif(25),nc=5)
    list2[[2]] <- matrix(runif(35),nc=5)
    list2[[3]] <- matrix(runif(15),nc=5)
    tmp <- lapply(list2,FUN=t)
    t(matrix(unlist(tmp),nrow=5))
    # or also:
    do.call(rbind,list2)
3.5- tmp <- data.frame(Disease = c("Infarction", "Hepatitis",
    "Lung cancer"),RF = c("tobacco, alcohol", "alcohol", "tobacco"))
    tmp
    tmp$Disease[grep("tobacco",tmp$RF)]
```


F- The French chevalier de Méré

- fourthrows <- function() \{
asixormore <- 0
game <- sample(1:6,4, replace=TRUE)
nbsix <- sum(game == 6)
if(nbsix >= 1) asixormore <- 1
return(asixormore)
\}
- twentyfourthrows <- function() \{
adoublesixormore <- 0
die1 <- sample(1:6,24,replace=TRUE)
die2 <- sample(1:6,24,replace=TRUE)
nbdoublesix <- sum(die1[which(die1 == die2)] == 6)
if(nbdoublesix >= 1) adoublesixormore <- 1
return(adoublesixormore)
\}
meresix <- function(nsim $=2000$) \{
atleastasix <- 0
atleastadoublesix <- 0
for (j in 1:nsim) \{
atleastasix <- atleastasix + fourthrows()
atleastadoublesix <- atleastadoublesix + twentyfourthrows()
\}
\#************* Displaying the output ******************
cat("Frequency of $6 \mathrm{~s}=$ =",atleastasix/nsim," $\backslash \mathrm{n}$ ")
cat("Frequency of double-6s =",atleastadoublesix/nsim,"\n")
\}

Solutions to Worksheet from Chapter 4

Where to find information

4.1- We type
help.search("combination")
then we note the right function. We choose the one from package utils which is present by default in R.
help (combn)
4.2- combn $(\mathrm{c}(5,8,2,9), 3)$
4.3- help.search("crime")
help(USArrests)
4.4- dim(USArrests) \# Dimension of the data set.
names(USArrests) \# Names of variables.
rownames(USArrests) \# Names of individuals (states).
4.5- Subscribe to : https://stat.ethz.ch/mailman/listinfo/r-help
4.6- Read the General Instructions on the R Mailing Lists page and the posting guide on http://www.r-project.org/posting-guide.html
4.7- To unsubscribe, it suffices to follow the instructions given at the bottom of page https://stat.ethz.ch/mailman/listinfo/r-help
4.8- Connect on IRC, for example via the web site http://webchat. freenode. net
4.9- Subscribe to http://forums.cirad.fr/logiciel-R/index.php TO BE CHANGED!!!!
4.10- Read the Windows FAQ from http://cran.r-project.org/faqs.html. Section 5.5 explains TAB completion mechanism.
4.11- Enter a quote (") then press twice on the TAB key.

Solutions to Worksheet from Chapter 5

Creating various plots

A- Complex numbers

```
5.1- z <- 1+2i
    plot(1,3,xlab="Re(z)",ylab="Im(z)",xlim=c(0, 2.5),ylim=c(0, 2.5),
        main="Complex numbers")
    segments(0,0,\operatorname{Re}(z),\operatorname{Im}(z))
    points(Re(z),\operatorname{Im}(z),pch=19)
    abline(h=0,v=0)
    segments(Re(z),0,Re(z),\operatorname{Im}(z),lty=3)
    segments(0,Im(z),Re(z),\operatorname{Im}(z),lty=3)
    text(Re(z),\operatorname{Im}(z),"z",pos=4)
    text(0.4,1.1,"Mod(z)",srt=Arg(z)*180/pi)
    r<-0.5
    x<-seq(from=Re(r*exp(1i*Arg(z))),to=r,length=100)
    y<-sqrt(0.5^2-x^2)
    points(x,y,type="l")
    text(0.55,0.35,"Arg(z)",srt=-45,cex=0.8)
```


B- Flag of Canada

5.1- require(caTools)
5.2- Save the file http://www.biostatisticien.eu/springeR/canada.gif in your working environment. Then launch the instruction:
X <- read.gif("canada.gif")
5.3- image(as.matrix(rev(as.data.frame($\mathrm{t}(\mathrm{X} \$ \mathrm{image})$))), $\mathrm{col}=\mathrm{X} \$ \mathrm{col})$
5.4- coord <- locator(25) \# Retrieve coordinates of points \# constitutive of the contour maple leaf.
rec1 <- locator(2) \# Retrieve coordinates of bottom-left and \# top-right vertices of left rectangle.
rec2 <- locator(2) \# Retrieve coordinates of bottom-left and \# top-right vertices of right rectangle.
windows() \# or X11() under Linux.
plot ($\theta, x \lim =c(\theta, 1)$, ylim=c $(\theta, 1)$, type="n", ann=FALSE, axes=FALSE)
rect (rec1\$x[1], rec1\$y[1], rec1\$x[2], rec1\$y[2], col="red")
rect (rec $2 \$ x[1], r e c 2 \$ y[1], r e c 2 \$ x[2], r e c 2 \$ y[2], c o l=" r e d ")$
polygon(coord,col="red")

C- Frequency tables

5.1- Enter the data set:
$\mathrm{X}<-\quad$ matrix $(\mathrm{c}(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,1,1,1,1$, $1,2,1,1,1,1,1,1,1,1$,

```
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,3,2,1,1,1,1,1,1,2,
1,4,1,1,1,1,1,2,2,1,1,1,1,2,3,3,1,2,1,1,1,1,1,3,4,1,1,1,2,3,4,3,
1,2,1,1,4,1,1,4,4,1,1),ncol=8)
colnames(X) <- c("Nr","W1","W2","W3","W4","W5", "W6","W7")
fi <- tabulate(X[,"W7"],4)/16
as.vector(t(cbind(fi,1-fi)))
```

5.2- For this, create a function:

```
f <- function(x){
fi <- tabulate(x,4)/16
as.vector(t(cbind(fi,1-fi)))
}
freq <- apply(X[,-1],FUN=f,MARGIN=2)
rownames(freq) <- c("f1","1-f1","f2","1-f2","f3","1-f3","£4","1-f4")
```

5.3- barplot(freq,col=c("black","white"))
5.4- windows() \# or X11() under Linux.
barplot(freq, col=c("red", "white"), width=1, space=0.1, axes=F, border="black",names.arg=rep("",7))
axis(2,labels=1:4,at=1:4-0.5,lty=0,las=1,col.axis="blue")
par(cex=.8)
axis(3,labels=c("W1", "W2", "W3", "W4", "W5", "W6", "W7"),
at=0:6+0:6/10+0.5,lty=0, col.axis="blue")
$\operatorname{par}(c e x=1)$
title(main="Burning scores",col="black")

D- Anatomic images of the brain
5.1- Read the data:
dim <- 256
url <- "http://www.biostatisticien.eu/springeR/anat.img"
bytes <- readBin(url,what="raw",n=dim*dim*2)
5.2- Permutate pairs of bytes:
nbval <- dim^2
indices <- rbind((1:nbval)*2,(1:nbval)*2-1)
indices <- as.numeric(indices)
x <- bytes[indices]
5.3- Transformation to decimal representation:

```
x <- matrix(x,ncol=2,byrow=TRUE)
test <- function(x) {
    as.numeric(paste("0x",paste(x,collapse=""), sep=""))
```

\}
values <- apply(x,MARGIN=1,FUN=test)
5.4- X <- matrix (values, nrow=dim, ncol=dim)
5.5- image ($\mathrm{X}, \operatorname{col}=\operatorname{gray}(0: 100 / 100)$)
5.6- Install the package AnalyzeFMRI. Download the files anat.img and anat.hdr to your workspace, then type the following instructions:
require(AnalyzeFMRI)
Y <- f.read.volume("anat.img")
image(Y[,,1],col=gray(0:1000 / 1000))

E- Drawing the map of a region of France

5.1- Install the packages maps and mapdata, then load them into memory:
require(maps)
require(mapdata)
5.2- map("france")
5.3- france <- map("france", plot=FALSE)
5.4- Latitude/longitude data are organized in france $\$ x / f r a n c e \$ y$ for each region in france\$names (until the next NA).
5.5- Vector of NA indices:
indNA <- which(is.na(france\$x))
5.6- deptname <- "Gard"
5.7- inddept <- which(france\$names==deptname)
5.8- $\operatorname{plot}(f r a n c e \$ x[i n d N A[i n d d e p t-1]:$ indNA[inddept]], france\$y[indNA[inddept-1]:indNA[inddept]], type="l", main=deptname, xlab="Longitude", ylab="Latitude")
5.9- Retrieve coordinates of the town called Alès on http://www.gpsvisualizer. com/geocode.
ales <- c(4.08268,44.121288)
points(ales[1],ales[2], pch=16, col="red")
text(ales[1],ales[2],"Alès", pos=1)

F- Representation of the geoid in France
5.1- Read the data:
readLines('http://www.biostatisticien.eu/springeR/geoidformat.txt") data <- scan("http://www.biostatisticien.eu/springeR/raf98.gra",skip=3)
5.2- Z <- matrix(data, nrow=421, ncol=381, byrow=FALSE)
$Z<-$ as.matrix(rev(as.data.frame(Z)))
layout (mat=matrix $(1: 2, \operatorname{ncol}=2)$, widths=c $(5,1))$
$\operatorname{par}(\operatorname{mar}=\mathrm{c}(4,4,3,0), \operatorname{mai}=\mathrm{c}(1,1,1,0), \mathrm{las}=1, \mathrm{tck}=-0.01)$
$\mathrm{x}<-\operatorname{seq}($ from $=-5.5$, to $=8.5$, length=421)
$\mathrm{y}<-\operatorname{seq}($ from $=42$, to $=51.5$, length=381)
image ($\mathrm{x}, \mathrm{y}, \mathrm{Z}, \mathrm{col}=$ rainbow(17) , xlab="Longitude", ylab="Latitude", axes=FALSE)
par (ps=18)
title("The quasigeoid QGF98 model",family="HersheyScript")
$\operatorname{par}(p s=11)$
axis(1,at=(-6):8,labels=paste((-6):8,"o", sep=""))
axis(2,at=42:51,labels=paste(42:51, "o", sep=""))
contour ($\mathrm{x}, \mathrm{y}, \mathrm{Z}, \mathrm{add}=$ TRUE)
$\operatorname{par}(m a i=c(\theta, 0, \theta, 0), b t y=" n ")$
plot ($0: 1,0: 1$, axes=FALSE, xlab="", ylab="", type="n")
legend("center", legend=42:55,fill=rainbow(17), bty="n", title="Meters")

Solutions to Worksheet from Chapter 6

Programming functions and object-oriented programming in R

A- Managing a bank account

6.1- .folder.accounts <- "./Account"
path.account <- function(name) \{ file.path(.folder.accounts, paste(name,".RData", sep="")) \}
6.2- account <- function(name) \{ path <- path.account (name) account <- data.frame(amount=numeric(0),
mode=factor(levels=c("Debit","Credit")),
date=character((0), remark=character ($($))
save(account, file=path)
cat("Account", name,"created !\n")
\}
6.3- debit <- function(name,amount,remark="", date=format(Sys.time(),"\%d/\%m/\%Y")) \{

```
        path <- path.account(name)
        load(path)
        account <- rbind(account,data.frame(amount=amount,mode="Debit",
                    date=date,remark=remark))
    save(account,file=path)
}
credit <- function(name,amount,remark="",
                    date=format(Sys.time(),"%d/%m/%Y")) {
    path <- path.account(name)
    load(path)
    account <- rbind(account,data.frame(amount=amount,mode="Credit",
                date=date,remark=remark))
    save(account,file=path)
}
```

6.4- The instruction
sum(account[account\$mode=="Credit","amount"])
returns the credited amount on the account. We modify the function account ()
this way:

```
account <- function(name) {
    path <- path.account(name)
    if(!file.exists(path)) {
        account <- data.frame(amount=numeric(0),mode=
                factor(levels=c("Debit","Credit")),date=character(0),
                remark=character(0))
        save(account,file=path)
        cat("Account",name,"created !\n")
    } else {
        load(path)
        cat("State of account",name,"=",
            sum(account[account$mode=="Credit","amount"])
                - sum(account[account$mode=="Debit","amount"]),"euros.\n")
    }
}
```


B- Organizing graphical objects

```
6.1- Window <- function( }x=0,y=0,width=2,height=2,log="") {
    obj <- list(x=x,y=y,width=width,height=height,log=log)
    class(obj) <- "Window"
    obj
}
```

```
6.2- Circle <- function(x=0,y=0,radius=0.5) {
    circle <- list(x=x,y=y,radius=radius)
    class(circle) <- "Circle"
    circle
    }
    Rectangle <- function(x=0,y=0,width=1,height=height) {
    rectangle <- list(x=x,y=y,width=width,height=height)
    class(rectangle) <- "Rectangle"
    rectangle
    }
6.3- plot.Window <- function(obj) {
    plot.new()
    plot.window(xlim=obj$x+c(-1,1)*obj$width/2,
        ylim=obj$y+c(-1,1)*obj$height/2,obj$log,asp=1)
    }
plot.Rectangle <- function(rectangle) {
    rect(rectangle$x-rectangle$width/2,rectangle$y-rectangle$height/2,
            rectangle$x+rectangle$width/2,rectangle$y+rectangle$height/2)
    }
plot.Circle <- function(circle) {
    symbols(circle$x,circle$y,circle=circle$radius,inches=FALSE,add=TRUE)
    }
```

6.4- mywindow <- Window $(0,0,2,2)$
mycircle <- Circle($0,0, .5$)
myrectangle <- Rectangle($0,0,1,1$) plot(mywindow);plot(mycircle);plot(myrectangle)
6.5- MyPlot <-function($x=0, y=0$, width=2,height=2,log="") \{ graph <- list(objets=list()) class(graph) <- "MyPlot" graph
\}
6.6- add.MyPlot <- function(graph,...) \{ graph\$objects <- c(graph\$objects,list(...))
graph
\}
add <- function(obj,...) UseMethod("add")
plot.MyPlot <- function(graph) \{
for (object in graph\$objects) \{

```
        plot(object)
        }
    }
graph <- MyPlot()
graph <- add(graph,Window(0,0,2,2),Circle(0,0,.5),
                                    Rectangle(0,0,1,1))
plot(graph)
6.7- MyPlot <- function(...,x=0,y=0,width=2,height=2,log="") {
    graph <- list(objets=list())
    class(graph) <- "MyPlot"
    graph <- add(graph,Window(x,y,width,height,log),...)
    graph
    }
graph <- MyPlot(Circle(),Rectangle())
plot(graph)
6.8- display <- function(obj,...) UseMethod("plot")
graph <- MyPlot(Circle(),Rectangle())
display(graph)
```

6.9- Your turn to play!

C- Creating a class $\operatorname{lm} 2$ for linear regression with two regressors

```
lm2 <- function(...) {
    obj <- lm(...)
    if(ncol(model.frame(obj))!=3)
        stop("two independent variables are required!")
    class(obj) <- c("lm2",class(obj)) # or c("lm2","lm")
    obj
}
n <- 20
x1 <- runif(n,-5,5)
x2 <- runif(n,-50,50)
y <- .3+2*x1+2*x2+rnorm(n,0,20)
reg2 <- lm2(y }x1+x2
summary(reg2)
plot3d.lm2 <- function(obj,radius=1,lines=TRUE,windowRect,...) {
    matreg <- model.frame(obj)
    colnames(matreg) <- c("y","x1","x2")
```

```
    predlim <- cbind(c(range(matreg[,2]),rev(range(matreg[,2]))),
    rep(range(matreg[,3]),c(2,2)))
    predlim <- cbind(predlim,apply(predlim,1,
        function(l) sum(c(1,l)*coef(obj))
    ))
    if(missing(windowRect)) windowRect=c(2,2,500,500)
    open3d(windowRect=windowRect,....)
    bg3d(color = "gray")
    plot3d(formula(obj),type="n")
    spheres3d(formula(obj),radius=radius,specular="green")
    quads3d(predlim,color="blue",alpha=0.7,shininess=128)
    quads3d(predlim,color="cyan",size=5,front="lines",back="lines",lit=F)
    if(lines) {
        matpred <- cbind(matreg[2:3],model.matrix(obj)%*%coef(obj))
        points3d(matpred)
        colnames(matpred) <- c("x1","x2","y")
        matlines <- rbind(matreg[,c(2:3,1)],matpred)
        nr <- nrow(matreg)
        matlines <- matlines[rep(1:nr,rep(2,nr))+c(0,nr),]
        segments3d(matlines)
    }
}
require(rgl)
plot3d(reg2)
rgl.snapshot("lm2vue1.png")
par3d(userMatrix=rotate3d(par3d("userMatrix"),-pi*.1, 0, 0, 1))
rgl.close()
```


Solutions to Worksheet from Chapter 7

Managing and creating packages

A- Using the functions attach() and detach()

7.1- Download the file http://www. biostatisticien.eu/springeR/bmichild. xls, using your favorite browser, in your working folder.
7.2- Install the package gdata. Since this package necessitates PERL, install also PERL (http://www.biostatisticien.eu/springeR/Rtools.exe).
require(gdata)
bmichild <- read.xls("bmichild.xls")
names (bmichild)
7.3- When you type GENDER, R answers Error : object 'GENDER' not found.
7.4- When you type ls(), you cannot see the variabe GENDER.
7.5- attach(bmichild)

GENDER
The contents of object GENDER appears.
7.6- The variable GENDER is still not visible with the instruction ls().
7.7- search()

We notice that the object bmichild appears in position 2 .
7.8- 1 s (pos=2)
7.9- detach(bmichild)
search()
GENDER
7.10- GENDER <- "Male"

GENDER
7.11- attach(bmichild)

A warning message displays.
GENDER
It is "Male" that displays but not the contents of the object GENDER from the data.frame.
7.12- GENDER \# does not display the contents of the object
\# GENDER from the data.frame.
weight
7.13- ls() \# bmichild and GENDER are present. search() \# bmichild is present.
7.14- $1 \mathrm{~s}(\mathrm{pos}=2)$
7.15- get("GENDER", pos=2) bmichild[,"GENDER"] \# or rm(GENDER) GENDER
\# Note the existence of the following function:
browseEnv()

B- Creating a mini-package

- Objects in the package

7.1- setwd(choose.dir())
\# alternatively, under Linux:
library (tcltk)
setwd(tk_choose.dir())
7.2- Create the two functions and the data sets:
$f<-$ function(x, y) $x+y$
$\mathrm{g}<-$ function($\mathrm{x}, \mathrm{y}) \mathrm{x}-\mathrm{y}$
d <- data.frame ($a=1, b=2$)
e <- rnorm (1000)
7.3- package.skeleton(name="SmallRPkg",list=c("f","g","d","e"))
7.4- Effective creation of the file of the package. You must modify the help files .Rd.
file.show(file.path(R.home("doc"), "KEYWORDS"))
7.5- Modify the file DESCRIPTION.
7.6- Read then delete the file Read-and-delete-me.
7.7- Checking (and possibly modification) of the PATH environment variable.
7.8- In a DOS command window, type the following instructions:
\# Change to the folder containing your package:
cd C:\Documents and Settings $\backslash j o h n d o e \backslash D e s k t o p$
R CMD check SmallRPkg
R CMD INSTALL --build SmallRPkg
7.9- Install your package SmallRPkg.zip. For this, type for example:

```
help(package="SmallRPkg")
help(d)
```


Solutions to Worksheet from Chapter 8

Matrix operations, optimization, integration

A- A first optimization problem
8.1- A <- matrix (c $(2,3,5,4)$, nrow=2, ncol=2)
myf <- function(x) \{ res <- $\operatorname{det}(A-x * \operatorname{diag}(2))$ return(res)
\}
8.2- myf <- function(x) \{ n <- length (x) res <- rep (NA,n) for (i in 1:n) res[i] <- $\operatorname{det}(A-x[i] * \operatorname{diag}(2))$ return(res)
\}
8.3- $\operatorname{curve(myf,xlim=c(-10,10))~}$ abline ($\mathrm{h}=0, \mathrm{v}=0$)

Note that we can use the instruction locator (2) \$x to "find" the two roots.
8.4- uniroot (myf, lower=-5, upper=0) \$root
uniroot (myf, lower=0, upper=10) \$root
8.5- The polynomial can be written $P(x)=-7-6 x+x^{2}$. Its roots are obtained using:
polyroot (c ($-7,-6,1$)
8.6- eigen(A) \$values

B- A second optimization problem
8.1- To simplify things, we do not reproduce the figure at the correct scale.

```
plot.new()
par(xpd=NA)
rect(0,0,1,1)
points(0,1,pch=16)
text(0,1,"A",adj=c(2,-0.1),col="blue")
points(1,1,pch=16)
text(1,1,"B",adj=c(-1,0),col="blue")
```

```
points(1,0,pch=16)
text(1,0,"C",adj=c(-0.5,1),col="blue")
points(0,0,pch=16)
text(0,0,"D",adj=c(1.7,1),col="blue")
points(0.5,0,pch=16)
text(0.5,0,"H",adj=c(1.5,-0.5),col="blue")
points(1,0.4,pch=16)
text(1,0.4,"Q",pos=4,col="blue")
points(0.5,0.4,pch=16)
text(0.5,0.4,"M",adj=c(0.5,-1),col="blue")
segments(0.5,0,0.5,0.4)
segments(0.5,0.4,1,0.4)
polygon(x=c(0.5,0,1),y=c(0.4,1,1),col=rgb(t(col2rgb("brown"))/256,
                    alpha=20/100),border="brown")
x <- seq(from=0.6,to=0.565,length=100)
points(x,sqrt(0.1^2-(x-0.5)^2)+0.4,type="l")
text(0.61,0.45,expression(alpha))
```

8.2- We have $\cos (\alpha)=M Q / M B$ hence $M B=5 / \cos (\alpha)$ and $M A=M B . M H=$ $B C-B Q, \tan (\alpha)=B Q / M Q=B Q /(A B / 2)$ so $B Q=5 \tan (\alpha)$ and $M H=6-$ $5 \tan (\alpha)$. Thus $g(\alpha)=10 / \cos (\alpha)+6-5 \tan (\alpha)=(10-5 \sin (\alpha)) / \cos (\alpha)+6=$ $5(2-\sin (\alpha)) / \cos (\alpha)+6$.
8.3- $g<-$ function(alpha) $\{5 *(2-\sin (a l p h a)) / \cos ($ alpha $)+6\}$
8.4- optimize (g, lower $=0$, upper $=\mathrm{pi} / 2$, tol $=0.000001$)
8.5- $g^{\prime}(\alpha)=5\left(-\cos ^{2}(\alpha)-(2-\sin (\alpha))(-\sin (\alpha))\right) / \cos ^{2}(\alpha)=5\left(-\cos ^{2}(\alpha)+2 \sin (\alpha)-\right.$ $\left.\left.\sin ^{2}(\alpha)\right) / \cos ^{2}(\alpha)=5(2 \sin (\alpha)-1)\right) / \cos ^{2}(\alpha)$ since $\cos ^{2}(\alpha)+\sin ^{2}(\alpha)=1$.
8.6- D(expression(5*(2-sin(alpha))/cos(alpha)+6), "alpha")
8.7- gprime <- function(alpha) $\left\{5 *(2 * \sin (\right.$ alpha $\left.)-1) /(\cos (a l p h a))^{\wedge} 2\right\}$
8.8- uniroot (gprime, lower=0, upper=pi/2,tol=0.000001)\$root

C- Standard normal table

8.1- phi <- function(x) $\left\{\exp \left(-x^{\wedge} 2 / 2\right) / \operatorname{sqrt}\left(2^{*}\right.\right.$ pi) $\}$
8.2- quantiles <- $\operatorname{seq}(0,5.5, b y=0.01)$
n <- length(quantiles)
probs <- vector(mode="numeric",length=n)
for (i in 1:n) probs[i] <- integrate(phi,lower=-Inf, upper=quantiles[i],rel.tol=0.00001)\$value
8.3- all.equal(probs, pnorm(quantiles))
8.4- $\mathrm{plot}(\mathrm{c}(\mathrm{rev}(-q u a n t i l e s), q u a n t i l e s), \mathrm{c}(r e v(1-\mathrm{probs}), \mathrm{probs})$, type="l")
8.5- curve(pnorm(x), add=TRUE, col="blue")

D- Principal components analysis

8.1- url <- "http://www.biostatisticien.eu/springeR/climatewine.csv" climatewine <- read.table(url, sep="\t", header=TRUE)
attach(climatewine)
names(climatewine)
8.2- X <- as.matrix(climatewine[,-c(1,6)])
8.3- g <- colMeans (X)
round (g,2)
8.4- Xdot <- $\operatorname{scale}(\mathrm{X}$, scale=FALSE)
8.5- n <- $\operatorname{nrow}(\mathrm{X})$
inertia <- sum(Xdot^2)/n
inertia
8.6- inertiacontr <- rowSums (Xdot $\left.{ }^{\wedge} 2\right) / n /$ inertia
inertiacontr
8.7- onen <- as.matrix $(\operatorname{rep}(1, n))$
8.8- g
($\mathrm{g}<-\mathrm{t}(\mathrm{X}) \% * \%$ nen $/ \mathrm{n}$)
8.9- Xdot
(Xdot <- X-onen\%*\%t (g))
8.10- (S <- t(Xdot)\%*\%Xdot/n)
$\operatorname{cov}(X) *(n-1) / n$
8.11- Doneovers <- diag(1/sqrt(diag(S)))
8.12- Z <- Xdot\%*\%Doneovers
8.13- t(Z)\%*\%Z/n
($\mathrm{R}<-\operatorname{cor}(\mathrm{X})$)
8.14- Lambda <- diag(eigen(R) \$values)

W <- eigen(R,symmetric=TRUE) \$vectors
8.15- theta <- seq $(0,2 * \mathrm{pi}, .05)$
$\mathrm{x}<-\cos ($ theta)
$\mathrm{y}<-\sin ($ theta)
plot(x,y,type="l")
abline ($\mathrm{h}=\mathrm{Q}, \mathrm{v}=0$)

A <- W\%*\%Lambda^(1/2)
text(A[,1:2], colnames(X))
$\operatorname{arrows}(\operatorname{rep}(0,4), \operatorname{rep}(0,4), A[, 1], A[, 2], l e n g t h=0.1)$
8.16- p <- ncol(X)
cumsum(diag(Lambda))/p*100
The first two axes explain 87.6% of the total inertia.
8.17- CW <- Z\%*\%W
8.18- dev.new()
plot(CW[,c(1,2)],type="p",xlab="Axis 1",ylab="Axis 2")
text(CW[,c(1,2)],labels=YEAR)
abline ($\mathrm{h}=0, \mathrm{v}=0$)
8.19- plot(CW[,c(1,2)],type="n",xlab="Axis 1",ylab="Axis 2")
good <- CW[QUALITY==1, c $(1,2)]$
average <- CW[QUALITY==2,c(1,2)]
mediocre <- CW[QUALITY==3,c $(1,2)]$
text(good,labels=YEAR[QUALITY==1], col="red")
text(average,labels=YEAR[QUALITY==2], col="blue")
text(mediocre,labels=YEAR[QUALITY==3], col="green")
abline ($\mathrm{h}=0, \mathrm{v}=0$)
legend("topleft", c("good", "average", "mediocre"), fill=c("red", "blue", "green"))
8.20- QLT <- apply (sweep (CW^2,1, apply (CW^2,FUN=sum, 1), FUN="/") [, 1:2], FUN=sum, 1) round (QLT, 2)
8.21- require(ade4)
8.22- rownames (X) <- climatewine[,1]
res <- dudi.pca(X) \# Enter 2 for the number of axes.
scatter(res)
s.class(res\$li, as.factor(climatewine[,6]))

Solutions to Worksheet from Chapter 9

Descriptive data studies

A- Thoughts on independence in descriptive statistics

9.1- url <- "http://www.biostatisticien.eu/springeR/snee74en.txt"
snee <-read.table(url, header=TRUE)
9.2- head(snee)
tail(snee)
dim (snee)
str(snee)
There are 592 individuals and 3 qualitative variables.
9.3- attach(snee)
names(snee)
class(hair)
levels(hair)
class(eyes)
levels(eyes)
class(gender)
levels(gender)
9.4- Study of the variable hair:
table(hair) \# Frequencies.
round(table(hair)/length(hair)*100,2) \# Frequencies in percentage. names(which.max(table(hair))) \# Mode of the variable.
barplot(sort(table(hair),TRUE), col=c("yellow2", "tan4","black","tan1"))
Study of the variable eyes:
table(eyes) \# Frequencies.
round(table(eyes)/length(eyes) $* 100,2$) \# Frequencies in percentage.
names(which.max(table(eyes))) \# Mode of the variable.
barplot(sort(table(eyes),TRUE), col=c("blue", "brown","tan3", "green"))
Study of the variable gender:
table(gender) \# Frequencies.
round(table(gender)/length(gender)*100,2) \# Frequencies in percentage.
names(which.max(table(gender))) \# Mode of the variable.
barplot(sort(table(gender), TRUE), col=c("pink", "blue"), pareto=TRUE)
9.5- eyeshair <- table(eyes,hair) \# Contingency table.
9.6- fhair <- margin.table(eyeshair,2)/592 \# Column profiles.
fhair
9.7- \# Number of individuals having blue eyes:
nblue <- margin.table(eyeshair,1) [1]
nblue
9.8- round(fhair*nblue)
9.9- marginX <- margin.table(eyeshair, 1) tab.ind1 <- marginX\%*\%t (fhair) round(tab.ind1)
9.10- feyes <- margin.table(eyeshair,1)/592 \# Row profiles.
feyes
9.11- \# Number of individuals having blond hair:
nblond <- margin.table(eyeshair, 2) [1]
nblond
9.12- round(feyes*nblond)
9.13- marginY <- margin.table(eyeshair, 2)
tab.ind2 <- feyes\%*\%t(marginY)
round(tab.ind2)
9.14- all.equal (tab.ind1, tab.ind2)

The two tables are identical, which is reassuring since interest in the independence of the eyes and hair is equivalent to an interest in the independence of the hair and eyes.
9.15- $\left(\right.$ eyeshair-tab.ind1) ${ }^{\wedge} 2$
9.16- tab. contr <- (eyeshair-tab.ind1)^2/tab.ind1
tab.contr
9.17- chi2 <- sum(tab.contr)
chi2

Phi2 <- chi2/sum(eyeshair)
Phi2
C <- sqrt(chi2/(sum(eyeshair)+chi2))
C

V2 <- Phi2/(min(dim(eyeshair))-1)
V2
All these indicators are not zero, so there is some form of dependence in this population (studied under the descriptive statistics framework).
9.18- \# Conditionnal distributions of the variable hair \# given that eyes $=$ (blue, or brown or ...): prop.table(eyeshair,1)

Rows are not identical. This confirms the dependency (from a descriptive statistics perspective) between the two variables.
\# Conditionnal distributions of the variable eyes
\# given that hair = (blond or ...):
prop.table(eyeshair, 2)
Columns are not identical. This also confirms the dependency (from a descriptive statistics perspective) between the two variables.
9.19- table(hair, gender)
plot(hair~gender)
plot(table(hair, gender))
9.20- table(eyes, gender)
plot(eyes~gender)
plot(table(eyes, gender))
9.21- See worksheet in Chapter 2 to kown how to import the table, then follow the steps above.

B- Descriptive analysis of data set NutriElderly

9.1- require(gdata)
url <- "http://www.biostatisticien.eu/springeR/nutrition_elderly.xls"
nutrition <- read.xls(url,header=TRUE)
attach(nutrition)
9.2- names(which.max(table(situation)))
names(which.max (table(chocol)))
names(which.max (table(height)))
9.3- res <- hist(height, breaks=seq ($140,190, \mathrm{by}=5$), right=TRUE, plot=FALSE)
ind <- which.max (res\$count)
modal.class <- paste(res\$breaks[ind],res\$breaks[ind+1],sep="-")
The modal class is the class]155; 160].
9.4- median(chocol)

Note that if the studied variable is considered as an ordinal variable, then the function median() of \mathbf{R} does not work anymore:
median(as.ordered(chocol))
But we can propose a self made function to realize this operation:

```
my.median <- function(x) {
    if (is.numeric(x)) return(median(x))
    if (is.ordered(x)) {
        N <- length(x)
        if (N%%2) return(sort(x)[(N+1)/2]) else {
        inf <- sort(x)[N/2]
        sup <- sort(x)[N/2+1]
        if (inf==sup) return(inf) else return(list(inf,sup))
    }}
stop("Computation of the median not possible for this type.")
}
my.median(as.ordered(chocol))
```

```
9.5- table(chocol)
    table(raw_fruit)
```

9.6- We can use the following self-made function:
med <- function(tabx) names(which.max (cumsum(tabx)/sum(tabx)>0.5))
med(table(chocol))
med(table(raw_fruit))
9.7- quartile.on.freq <- function(tabx, quart) \{
\# tabx is the table of frequencies.
tab.freq.cum <- cumsum(tabx)/sum(tabx)
index <- order(tab.freq. cum < quart) [1]
f1 <- tab.freq. cum[index]
f2 <- tab.freq. cum[index-1]
x1 <- as.numeric(names(f1))
$x 2<-$ as.numeric(names(f2))
quartile <- as.numeric (x1 + (x2-x1)*(quart-f1)/(f2-f1))
return(quartile)
\}
tab <- res\$counts
names(tab) <- res\$breaks[-1]
quartile.on.freq(tab,0.25)
quartile.on.freq(tab,0.5)
quartile.on.freq(tab,0.75)
9.8- breaks <- res\$breaks
plot(breaks, ecdf(height) (breaks), type="l", main= paste("Cumulated frequency polygon", "of variable height", sep="\n"), ylab="Frequencies", col="darkolivegreen",lwd=3)
abline (h=c (0.25, 0.5,0.75))
locator(1) \$x \# Click on the searched intersection.
9.9- mean(height)
mean(weight)
mean(age)
9.10- table(tea)
$\operatorname{sum}(c(0: 6,9,10) * a s . n u m e r i c(t a b l e(t e a))) / s u m(t a b l e(t e a))$
9.11- $\operatorname{sum}(r e s \$ m i d s * r e s \$ c o u n t s) / s u m(r e s \$ c o u n t s)$
9.12- $\operatorname{diff}($ range(weight))
9.13- boxplot(weight)

```
9.14- var.pop <- function(x) var(x)*(length(x)-1)/length(x)
    sd.pop <- function(x) sqrt(var.pop(x))
    sd.pop(height)
9.15- coeffvar.tab <- function(tabx) {
    val <- as.numeric(names(tabx))
    freq <- as.numeric(tabx)/sum(tabx)
    mean <- sum(val*freq)
    var <- sum(val^2*freq) - mean^2
    res <- sqrt(var)/mean
    return(res)
    }
    coeffvar.tab(table(tea))
9.16- eta2 <- function(x,gp) {
    means <- tapply(x,gp,mean)
    frequencies <- tapply(x,gpe, length)
    varinter <- (sum(frequencies * (means - mean(x))^2))
    vartot <- (var(x) * (length(x) - 1))
    res <- varinter/vartot
    list(var.tot=vartot,var.inter=varinter,
        var.intra=vartot-varinter,eta2=res)
    }
    res <- eta2(tea,gender)
```


Solutions to Worksheet from Chapter 10

Simulations

A- Study of the distribution $f(x)=\frac{3}{2} \sqrt{x}$ on $[0,1]$
10.1- $f<-$ function(x) (3/2)*sqrt(x) integrate(f,lower=0, upper=1)
10.2- Method of generic inversion:

Finv <- function(x) $x^{\wedge}(2 / 3)$
u <- runif(1000)
$\mathrm{x}<-\operatorname{Finv}(\mathrm{u})$
10.3- mean(x)
$\operatorname{var}(\mathrm{x})$
10.4- Theoretical values are $\mathbb{E}(X)=3 / 5$ and $\operatorname{Var}(X)=12 / 175$.
10.5- The cumulative distribution function is $F(x)=x^{2 / 3}$. The theoretical probabilities of the various classes are: $0.3^{3 / 2}=0.1643168,0.5^{3 / 2}-0.3^{3 / 2}=$ $0.1892366,0.7^{3 / 2}-0.5^{3 / 2}=0.2321086,0.85^{3 / 2}-0.7^{3 / 2}=0.1979993$ and $1-0.85^{3 / 2}=0.2163387$. We can evaluate them numerically:
class <- c(0.3,0.5,0.7,0.85)
prob <- function(x) \{integrate(f,lower=0, upper=x) \$value\}
dist <- c(0,apply(as.matrix(class), MARGIN=1,FUN=prob),1)
(theoretical.prob <- diff(dist))
The empirical probabilities can be computed using the following code:

```
count <- function(x,vect.y) sum(vect.y<x)/length(vect.y)
```

empirical.dist <- c(0 ,apply(as.matrix(class), MARGIN=1,FUN=count, x), 1)
(empirical.prob <- diff(empirical.dist))
or the following code:
$c($ mean $(0<=x \& x<=0.3)$, mean ($0.3<x \& x<=0.5$), mean ($0.5<x \& x<=0.7$), $\operatorname{mean}(0.7<\mathrm{x} \& \mathrm{x}<=0.85), \operatorname{mean}(0.85<\mathrm{x} \& \mathrm{x}<=1)$)

B- Study of the generalized Pareto distribution

```
10.1- rGP <- function(n,mu,sigma,xi) mu+sigma*((runif(n))^(-xi)-1)/xi
10.2- n <- 1000
    simu <- rGP(n,0,1,0.25)
10.3- mean(simu)
    var(simu)
10.4- mu <- 0
    sigma <- 1
    xi <- 0.25
    (theo.mu <- mu + sigma/(1-xi))
    (theo.var <- (sigma^2)/(((1-xi)^2)*(1-2*xi)))
10.5-n <- 10000
    simu.new <- rGP(n,0,1,0.25)
    mean(simu.new)
    var(simu.new)
10.6- hist(simu.new,breaks=500,xlim=c(0, 10),prob=TRUE,col="red")
10.7- dens.pareto <- function(x,mu,sigma,xi) {
    (1/sigma)*((1+(xi*(x-mu))/sigma)^(-1/xi-1))
    }
    curve(dens.pareto(x,mu,sigma,xi),add=TRUE,col="blue")
```


C- Uniform distribution on a square

```
10.1- n <- 1000
    simu <- data.frame(X1=runif(n),X2=runif(n))
```

10.2- The distance of $\left(X_{1}, X_{2}\right)$ to the nearest edge is given by $D=\min \left(X_{1}, X_{2}, 1-\right.$ $X_{1}, 1-X_{2}$) (make a drawing to be convinced).
simu.d <- cbind(simu,1-simu)
D <- apply (simu.d,MARGIN=1,FUN=min)
mean($D<0.25$)
10.3- dist.sum <- function(coord) \{
$\mathrm{d}<-\min \left(\operatorname{coord}[1]^{\wedge} 2+\operatorname{coord}[2]^{\wedge} 2, \operatorname{coord[1]^{\wedge }2+\operatorname {coord}[4]^{\wedge }2,}\right.$
coord[3]^2+coord[2]^2, coord[3]^2+coord[4]^2)
d <- sqrt(d)
\}
D.sum <- apply(simu.d,MARGIN=1,FUN=dist.sum)
mean(D.sum<0.25)
10.4- mean(D)
$\operatorname{var}(\mathrm{D})$
hist ($\mathrm{D}, \mathrm{prob}=$ TRUE)
curve ($-8 * x+4$, add=TRUE)
\# Density on $[0,0.5]: f(x)=-8 x+4$

D- Towards modelling

10.1- X <- function() ifelse(rbinom(1,1,0.5),"HEADS","TAILS")

X()
10.2- throw.of.a.die <- function() sample(1:6,1)
throw.of.a.die()
10.3- yams <- function() sample(1:6,size=5, replace=TRUE)
10.4- $\mathrm{n}<-1000000$
result <- replicate(n,yams(),TRUE)
test <- function(res) ifelse(length(unique(res))> $1,0,1$)
prop <- mean(apply(result, MARGIN=2,FUN=test))

E- Box-Muller theorem

10.1-n <- 1000
u1 <- runif(n)
u2 <- runif(n)
$\mathrm{z} 1<-\operatorname{sqrt}(-2 * \log (\mathrm{u} 1)) * \cos (2 * \mathrm{pi} * u 2)$
$z 2<-\operatorname{sqrt}(-2 * \log (u 1)) * \sin (2 * p i * u 2)$
10.2- Non parametric estimation of the density:
require(MASS)
ngrid <- 40
denobj<-kde2d(z1, z2,n=ngrid)
den. z <-denobj\$z
10.3- Surface of the density of the bivariate normal:

```
require(rgl)
xgrid <- denobj$x
ygrid <- denobj$y
bi.z <- dnorm(xgrid)%*%t(dnorm(ygrid))
```

New window:
open3d()
bg3d(color="\#887777")
light3d()
Representing simulated data:
spheres3d(z1,z2,rep(θ, n), radius=0.1, color="\#CCCCFF")
Representing the non parametric estimated density:
surface3d(xgrid,ygrid, den.z*20, color="\#FF2222", alpha=0.5)
Representing the standard bivariate normale:
surface3d(xgrid,ygrid,bi.z*20, color="\#CCCCFF", front="lines")

Solutions to Worksheet from Chapter 11

A- Study of confidence intervals

- Study of the confidence interval for the mean

```
11.1- n <- 20
    M <- 50000
    ech <- rnorm(n,mean=-1.2,sd=sqrt(2)) # Only a sample.
    simu <- replicate(M,rnorm(n,mean=-1.2,sd=sqrt(2)),simplify=TRUE)
```

11.2- inter.mu <- function(x) t.test(x, conf.level=0.9)\$conf.int
res <- t(apply(simu,MARGIN=2,FUN=inter.mu))
11.3- $\operatorname{prop}<-\operatorname{mean}((\operatorname{res}[, 1]<-1.2) \&(-1.2<\operatorname{res}[, 2]))$

Around 90% of the intervals contain the value -1.2
11.4- $\mathrm{n}<-100$

M <- 50000
simu <- replicate(M,rchisq(n,df=1), simplify=TRUE)
res.chi2 <- t(apply(simu, MARGIN=2,FUN=inter.mu))
prop <- mean((res.chi2[,1] < 1) \& (1 < res.chi2[,2]))
11.5- $\mathrm{n}<-10$

M <- 50000
simu <- replicate(M,rchisq($n, d f=1$), simplify=TRUE)
res.chi2 <- t(apply(simu, MARGIN=2,FUN=inter.mu))
prop <- mean((res.chi2[,1] < 1) \& (1 < res.chi2[,2]))
The (empirical) level of confidence of the interval is not equal to 90%. This is due to the small sample size $(n=10)$, which is not sufficient to use the central limit theorem.
11.6- $\mathrm{n}<-20$
ech. 20 <- $\operatorname{rnorm}(n$, mean=-1.2,sd=sqrt(2))
inter.mu <- function(x) t.test(x, conf.level=0.95)\$conf.int
inter.mu(ech.20)
11.7- ech. 50 <- rnorm(50, mean=-1.2,sd=sqrt(2))
inter.mu(ech.50)
ech. 100 <- $\operatorname{rnorm}(100$, mean=-1.2,sd=sqrt(2))
inter.mu(ech.100)
ech. 1000 <- $\operatorname{rnorm}(1000$, mean=-1.2,sd=sqrt(2))
inter.mu(ech.1000)
ech. 10000 <- $\operatorname{rnorm}(10000$,mean=-1.2,sd=sqrt(2))
inter.mu(ech. 10000)

```
ech.100000 <- rnorm(100000,mean=-1.2,sd=sqrt(2))
inter.mu(ech.100000)
```

The confidence interval gets narrower around the true value of μ.
11.8- tt. $20<-c(t . t e s t(e c h .20) \$ s t, t . t e s t(e c h .20) \$ p . v a l)$
tt. $50<-c(t . t e s t(e c h .50) \$ s t, t . t e s t(e c h .50) \$ p . v a l)$
tt. $100<-\mathrm{c}(\mathrm{t} . \mathrm{test}(\mathrm{ech} .100) \$ \mathrm{st}, \mathrm{t} . \mathrm{test}(\mathrm{ech} .100) \$ \mathrm{p} . \mathrm{val})$
tt. $1000<-\mathrm{c}(\mathrm{t}$. test (ech. 1000) \$st,t.test (ech.1000)\$p.val)
tt. $10000<-\mathrm{c}(\mathrm{t} . \mathrm{test}(\mathrm{ech} .10000) \$ \mathrm{st,t.test(ech.10000)} \mathrm{\$ p.val)}$
tt. $100000<-c(t . t e s t(e c h .100000) \$$ st,t.test (ech. 100000) \$p.val)
output $<-$ rbind(tt. $20, \mathrm{tt} .50, \mathrm{tt} .100, \mathrm{tt} .1000, \mathrm{tt} .10000, \mathrm{tt} .100000$)
colnames(output) <- c("tobs","pvalue")
output
As n increases, $t_{o b s}$ increases and the p-value gets smaller. It becomes more and more difficult to "show" that μ is different from 0 .
11.9- inter.mu(ech.100000)
t.test (ech. 100000, mu=-1.1) \$p.val
tt. 50
The p-value is smaller here although -1.1 is nearer from the true $\mu(=-1.2)$ than the reference value 0 used at the previous question. On the other side, the confidence interval does not deceive. We see the interest of confidence intervals as compared to only giving the p-value!

- Study of confidence intervals from bootstrap
11.1- $\mathrm{n}<-20$

M <- 500
ech <- $\operatorname{rexp}(n$, rate=1/10) \# only one sample
simu. exp <- replicate(M,rexp(n,rate=1/10), simplify=TRUE)
11.2- For one sample:

```
require(boot)
mean <- function(x,indices) mean(x[indices])
mean.boot <- boot(simu.exp[,3],mean,R=999,stype="i",sim="ordinary")
boot.ci(mean.boot,conf=0.9,type="perc")$percent[4:5]
For M samples:
inter.boot.mean <- function(y) {
    mean <- boot(y,mean,R=999,stype="i",sim="ordinary")
    boot.ci(mean,conf=0.9,type="perc")$percent[4:5]
}
res <- t(apply(simu.exp,MARGIN=2,FUN=inter.boot.mean))
```

11.3- prop. boot $<-\operatorname{mean}((\operatorname{res}[, 1]<10) \&(\operatorname{res}[, 2]>10))$
11.4- res.ttest <- t(apply(simu.exp,MARGIN=2,FUN=inter.mu))
prop.ttest <- mean((res.ttest[,1] < 10) \& (res.ttest [,2] > 10))

B- Study of risks in hypothesis testing

- Study of risk of the first kind
11.1- $\mathrm{n}<-20$
$M<-500$
ech <- $\operatorname{rnorm}(n, m e a n=4, s d=s q r t(1.2)) ~ \# ~ O n l y ~ o n e ~ s a m p l e . ~$
simu <- replicate(M, $\operatorname{rnorm}(n, \operatorname{mean}=4, \operatorname{sd=} \operatorname{sqrt}(1.2))$, simplify=TRUE)
11.2- ttest $<-$ function(x) t.test($x, m u=4$) \$p.value res <- apply(simu,MARGIN=2,FUN=ttest)
11.3- (count $<-\operatorname{sum}($ res $<0.05)$)
count hypotheses are rejected; we expect to reject 25 null hypotheses.
11.4- $M<-5000$
simu <- replicate(M, $\operatorname{rnorm}(n, \operatorname{mean}=4, \operatorname{sd=} \operatorname{sqrt}(1.2))$, simplify=TRUE)
res <- apply(simu,MARGIN=2,FUN=ttest)
proportion $<-\operatorname{mean}($ res $<0.05)$
proportion
11.5- $\mathrm{n}<-100$

M <- 5000
simu <- replicate(M,rchisq(n,df=1), simplify=TRUE)
ttest <- function(x) t.test($x, m u=1$) \$p.value
res.chi2 <- t(apply(simu,MARGIN=2,FUN=ttest))
proportion <- mean(res.chi2 < 0.05)
proportion
11.6- $\mathrm{n}<-10$

M <- 5000
simu <- replicate(M,rchisq(n,df=1), simplify=TRUE)
ttest <- function(x) t.test(x,mu=1)\$p.value
res.chi2 <- t(apply(simu, MARGIN=2,FUN=ttest))
proportion $<-$ mean(res.chi2 < 0.05)
proportion
The risk of the first kind of the test is greater than 5% because the Student test is not valid here due to a small sample size.
11.7- IC.p <- t.test ((res.chi2<0.05)*1)\$conf

IC.p
\# or also:
binom.test(sum(res.chi2<0.05), length(res.chi2))\$conf

- Study of power

```
11.1- n <- 20
    M <- 500
    simu <- replicate(M,rnorm(n,mean=5,sd=sqrt(1.2)),simplify=TRUE)
11.2- ttest <- function(x) t.test(x,mu=4)$p.value
    res <- apply(simu,MARGIN=2,FUN=ttest)
11.3- count <- sum(res < 0.05)
    power <- mean(res < 0.05)
11.4- n <- 100
    M <- 500
    simu <- replicate(M,rnorm(n,mean=5,sd=sqrt(1.2)),simplify=TRUE)
    res <- apply(simu,MARGIN=2,FUN=ttest)
    (power <- mean(res < 0.05))
```

The power is 100%. It has increased with the sample size.
11.5- $\mathrm{n}<-100$

M <- 500
simu <- replicate(M,rchisq(n,df=2), simplify=TRUE)
ttest <- function(x) t.test (x,mu=1)\$p.value
res.chi2 <- apply(simu, MARGIN=2,FUN=ttest)
proportion <- mean(res.chi2 < 0.05)
proportion
11.6- $\mathrm{n}<-10$

M <- 500
simu <- replicate(M, rchisq($n, d f=2$), simplify=TRUE)
ttest <- function(x) t.test ($x, m u=1$) \$p.value
res.chi2 <- t(apply(simu,MARGIN=2,FUN=ttest))
proportion <- mean(res.chi2 < 0.05)
proportion
The power of the test is low due to a small sample size $n=10$. We do not have enough information to show that the mean is different from 1.

C- A few practical examples

- Cow study
11.1- just.after.milking <- c(12000, 13000, $21500,17000,15000,22000,11000,21000)$
after.milking. $24 \mathrm{~h}<-\mathrm{c}(11000,20000,31000,28000,26000,30000,16000,29000)$
t.test(just.after.milking,after.milking.24h, paired=TRUE, alt="less")
11.2- \# Test of signs:
dif <- just.after.milking - after.milking.24h
sminus <- sum (dif< $)$
splus <- sum(dif>0)
binom.test(min(splus, sminus), splus+sminus, alt="less")
11.3- \# Mann-withney's test:
wilcox.test(just.after.milking, after.milking.24h, paired=TRUE, exact=FALSE, alt="less")
- East German athletes
11.1- hormons <- c(3.22,3.07,3.17,2.91,3.4,3.58,3.23,3.11,3.62)
t.test (hormons, mu=3.1,alt="greater")
11.2- The average amount of androgens for athletes in East Germany is significantly higher than the average reference 3.1. They are doped.
- Drinking and driving
before <- $c(57,54,62,64,71,65,70,75,68,70,77,74,80,83)$
after <- c $(55,60,68,69,70,73,74,74,75,76,76,78,81,90)$
t.test (before, after, paired=TRUE)
- Speed of light
11.1- speed <- c $(850,740,900,1070,930,850,950,980,980,880,1000$,
$980,930,1050,960,810,1000,1000,960,960)$
speed <- speed +299000
hist(speed)
There is a very visible absolute mode.
11.2- shapiro.test (speed)
11.3- t.test (speed, mu=299990)
11.4- mean(speed)
- Cholesterol levels

```
groupA <- c(46.3,42.5,43,43.9,42,41.5,41.6,44.4,40.7)
groupB <- c(47.1,44.5,45.8,49,44.6,43.7,44.5,47.4)
t.test(groupA,groupB,alt="less")
```

We can conclude that the treatment is efficient at significance level $\alpha=5 \%$.

- Treatment-death independence
x <- matrix $(\mathrm{c}(0,9,8,3)$, ncol=2, byrow=TRUE)
\# Table of theoretical frequencies:
chisq.test(x)\$ex \# Some values are < 5 .
chisq.test(x) \# Yates chi-2.
fisher.test(x) \# Fisher's exact test.
Mortality depends on the treatment.
- Number of patients in the emergency ward
files <- c $(1500,1600,1450)$
cases <- c $(675,720,610)$
chisq.test(cases/files)
In view of the results, we can not conclude that the proportion of emergencies is different depending on the month.

Solutions to Worksheet from Chapter 12

A- Study of simple linear regression

- Study of synthetic data
12.1- $\mathrm{n}<-50$
b0 <- 1
b1 <- 2
sigma <- 0.1
t <- 5
error <- rnorm(n,sd=sigma)

```
    \(x<-\operatorname{runif}(n, \min =0, \max =t)\)
```

 y <- b0+b1*x+error
 12.2- $\operatorname{plot}\left(y^{\sim} x\right)$
12.3- model <- $\operatorname{lm}\left(y^{\sim} x\right)$
coefficients(model)
$\operatorname{sd}(r e s i d u a l s(m o d e l)) * \operatorname{sqrt}((n-1) /(n-2))$
\# or also:
summary (model) [6]
12.4- plot(model, 1:2)
plot(model\$fitted ${ }^{\text {y }}$)
12.5- precision.parameter.b1 <- function(n,sigma) \{
error <- rnorm(n,sd=sigma)
$x<-\operatorname{runif}(n, \min =0, \max =t)$
$\mathrm{y}<-\mathrm{b0}+\mathrm{b} 1 * \mathrm{x}+$ error
model <- $\operatorname{lm}\left(y^{\sim} \mathrm{x}\right)$
summary (model) $\$ \operatorname{coef}[2,2]$
\}
size <- seq(50,1000,by=50)
sd.b1 <- vector("numeric",20)
for (i in 1:20) \{
sd.b1[i] <- precision.parameter.b1(size[i],0.1)
\}

We can see on the graph below, the precision of the estimate of b1 according to n for a noise standard deviation equal to 0.1 :
plot(sd.b1~size, xlab="n",
ylab="Estimation of standard deviation of the estimator of b1", main="Precision of the estimation of $b 1$ as a function of n ")

On the chart below, we can see the accuracy of the estimate of b1 according to sigma for n equal to 100 :
sd $<-\operatorname{seq}(0.1,10, b y=0.1)$
sd.b1 <- vector("numeric",100)
for (i in 1:100) \{
sd.b1[i] <- precision.parameter.b1(n=100,sd[i])
\}
title <- "Precision of the estimation of b1 as a function $\backslash n$ of the standard deviation of the noise"
plot(sd.b1~sd, xlab=expression(sigma), ylab=
"estimation of the standard deviation of the estimator of b1", main=title)

- Study of intima-media
12.1- url <- "http://biostatisticien.eu/springeR/Intima_Media_Thickness.xls" require(gdata)
intima.media <- read.xls(url,header=TRUE)
attach(intima.media)
12.2- plot (measure ${ }^{\text {AGE) }}$

Increasing trend of the measure of the thickness of the intima-media as a function of AGE.
12.3- \# Calculating the correlation coefficient between the two variables: cor (measure, AGE)
\# Test the significance of the coefficient of correlation: cor.test (measure, AGE)
12.4- model <- lm(measure~AGE, data=data.frame(measure, AGE))
summary (model)
abline(model, col="blue")
12.5- hist(residuals(model), main="Histogram")
plot(model, 1:6)
12.6- age $0<-33$
predict(model, data.frame (AGE=age 0), interval="prediction")
12.7- predict(model, data.frame(AGE=age 0), interval="confidence")
12.8- model2 <- $\operatorname{lm}\left(\right.$ measure ${ }^{\sim} I\left(\right.$ AGE $\left.^{\wedge} 2\right)$)
summary (model2)
The R^{2} increased (a little bit).

B- Study of multiple linear regression

- Study of intima-media

We notice (tobacco[is.na(packyear)] and packyear [tobacco==0]) that the variable packyear (giving the number of pack of cigarettes per year) contains missing values NA each time the variable tobacco takes the value 0 (meaning a non smoker). It is thus natural to replace missing data of variable packyear with zeroes:
intima.media\$packyear[is.na(packyear)] <- 0
Creation of the variable BMI:

BMI <- intima.media\$weight/((intima.media\$height/100)^2)
attach(intima.media)
my.data <- data.frame(AGE,SPORT, alcohol, packyear, BMI, measure)
12.1- pairs(my.data)

Some scatter plots have a linear trend, which can lead to collinearity.
12.2- model.age <- lm (measure ${ }^{\sim}$ AGE, data=my. data) summary (model.age)
model.sport <- lm(measure ${ }^{\sim}$ SPORT, data=my.data) summary (model.sport) \#\#\# p-value > 0.25 model.alcohol <- lm(measure ${ }^{\sim}$ factor (alcohol), data=my.data) summary (model.alcohol)
model.packyear <- lm(measure ${ }^{\text {packyear, data=my.data) }}$ summary (model. packyear) model.BMI <- lm(measure ${ }^{\text {BMI }}$, data=my.data) summary (model. BMI)
12.3- model.age.inter <- lm(measure ${ }^{\sim}$ AGE*packyear) \# Non-significant interaction at 0.25 level: summary (model.age.inter)
model.alcohol.without.inter <-
lm (measure \sim factor(alcohol)+packyear, data=my.data)
model.alcohol.inter <-
lm (measure ${ }^{\sim}$ factor(alcohol)*packyear, data=my.data)
summary (model.alcohol.inter)
anova(model.alcohol.without.inter, model.alcohol.inter)
model.BMI.inter <- lm(measure ${ }^{\text {BMI* }}$ packyear, data=my.data)
\# Non-significant interaction at level 0.25 :
summary (model.BMI.inter)
12.4- model. inter <-
lm (measure AGE+factor (alcohol)*packyear+BMI, data=my.data) summary (model.inter)
12.5- model.without.inter <- lm(measure ${ }^{\sim}$ AGE+factor(alcohol)+packyear+BMI, data=my.data) \# The interaction term is not significant anymore:
anova(model.inter, model.without.inter)
summary (model. without.inter)
12.6- modele.without.alcohol <- lm(measure AGE+packyear+BMI, data=my.data)
anova(model.without.alcohol, model.without.inter)
The variable alcohol does not bring any infomation.
summary (model.without.alcohol)
12.7- In the final model, the measurement of intima-media is explained by the variables AGE and BMI, with an adjustment on the variable packyear. Whatever the number of packs of cigarettes smoked each year, the measurement of intima-media increases with age and BMI.

- Study of unemployment rates
12.1- Download the file http://biostatisticien.eu/springeR/unemployment. RData in your working folder.
load("unemployment.RData")
names (unemployment)
attach(unemployment)
model.txpib <- lm(unemp~gdprate, data=unempolyment)
summary (model.gdprate)
plot(unemp~gdprate)
abline(model.gdprate)
hist(residuals(model.gdprate))
plot(model.gdprate,1:2)
12.2- cor (unemp[,2:7])
12.3- pairs(unemp[,2:7])
12.4- Most explicative variables: taxb, govspend, gdprate. Colinear variables: govspend and taxb, as well as govspend and gdprate, and finally taxb and gdprate.
12.5- full.model <- lm(unemp~gdprate+govspend+taxb+salav+infl, data=unemployment) summary (full.model)
12.6- require(car)
vif(full.model)
12.7- drop1(lm(unemp~gdprate+govspend+taxb+salav+infl, data=unemploment), test="F") \# We remove variable infl.
drop1(lm(unemp~gdprate+govspend+taxb+salaav, data=unemployment), test="F")
\# We remove variable txpib.
drop1(lm(unemp ~govspend+taxb+salav, data=unemployment), test="F")
\# We remove variable pfisc.
drop1(lm(unemp~govspend+salav, data=unemployment), test="F")
12.8- \# Final model:
final.model <- lm (unemp~govspend+salav, data=unemployment)
summary (final.model)
12.9- govspend93 <- unemployment\$govspend[unemployment\$year==1993]
salav93 <- unemployment\$salav[unemployment\$year==1993]
predict(final.model, data.frame(govspend=govspend93,salav=salav93), interval="prediction")
12.10- The observed value of unemployment in 1993 was 11.2 and this value is contained in the prediction interval.

C- Study of polynomial regression

- Study of synthetic data
12.1- $\mathrm{n}<-100$
x <- runif($n, \min =-2, \max =2$)
eps <- rnorm(n)
$y<-x+2 *\left(x^{\wedge} 2\right)+3.5^{*}\left(x^{\wedge} 3\right)-2.3 *\left(x^{\wedge} 4\right)+e p s$
12.2- $\operatorname{plot}\left(y^{\sim} x\right)$
curve ($x+2 * x * x+3.5 * x^{\wedge} 3-2 \cdot 3 * x^{\wedge} 4$, add=TRUE)
12.3- simple.model <- $\operatorname{lm}\left(y^{\sim} x\right)$
summary (simple.model)
hist(residuals(simple.model))
plot(simple.model,1:6)
12.4- poly.model <- $\operatorname{lm}\left(y^{\sim}-1+\operatorname{poly}(x, 4, r a w=T R U E)\right)$
summary (poly.model)
coef <- coef(poly.model)
plot ($\mathrm{y}^{\sim} \mathrm{x}$)
curve(coef[1]*x+coef[2]*(x^2)+coef[3]*x^3+coef[4]*x^4, add=TRUE)
- Fitting a scatter plot with a polynomial
12.1- Download the file http://biostatisticien.eu/springeR/fitpoly.RData in your current directory.
load("fitpoly.RData")
attach(fitpoly)
12.2- $\operatorname{plot}\left(\mathrm{Y}^{\sim} \mathrm{X}\right)$
12.3- lin.model <- $\operatorname{lm}\left(\mathrm{Y}^{\sim} \mathrm{X}\right)$
summary(lin.model)
abline(lin.model)
12.4- poly.model <- $\operatorname{lm}\left(Y^{\sim}\right.$ poly $\left.(X, 3, r a w=T R U E), d a t a=f i t p o l y\right)$
summary (poly.model)
12.5- coef <- coef(poly.model)
curve (coef[1]+coef[2]*x+coef[3]*x^2+coef[4]*x^3, add=TRUE)
$\mathrm{x}<-\operatorname{seq}(-3.5,3.5$, length=50)
pred.int <- predict(poly.model, data.frame(X=x),
interval="prediction") [, c("lwr","upr")]
conf.int <- predict(poly.model, data.frame(X=x),
interval="confidence") [, c("lwr", "upr")]
matlines(x, cbind(conf.int, pred.int), 1 ty $=c(2,2,3,3)$,
col=c("red", "red", "blue", "blue"), lwd=c (2,2,1,1))
legend("bottomright",lty=c (2,3),lwd=c(2,1),
c("confidence", "prediction"), col=c("red", "blue"))

Solutions to Worksheet from Chapter 13

A- Study of one-way ANOVA

- Study of noise levels
13.1- noise <- gl $(4,6,24)$
grade <- c $(62,60,63,59,63,59,56,62,60,61,63,64,63,67$, $71,64,65,66,68,66,71,67,68,68)$
13.2- grade $_{i k}=\mu+\alpha_{i}+\epsilon_{i k}$ where the $\epsilon_{i k}$'s are i.i.d. random variables following a $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution.
13.3- model <- aov(grade~noise)
summary (model)
13.4- pairwise.t.test(grade, noise,p.adjust="bonf")

TukeyHSD (model)

- Study of intima-media
13.1- url <- "http://biostatisticien.eu/springeR/Intima_Media_Thickness.xls" require(gdata)
intima.media <- read.xls(url,header=TRUE)
attach(intima.media)
13.2- $\operatorname{plot}\left(\right.$ measure ${ }^{\text {factor (alcohol) })}$
13.3- intima.model <- aov(measure ${ }^{\sim}$ factor (alcohol))
summary (intima.model)
There exists a differene in the measure of thickness of intima-media depending on alcohol consumption (p -value ${ }_{i} 0.05$).
13.4- plot(intima.model)
\# Homoscedasticity :
require(car)
leveneTest(measure, factor(alcohol))
- Study of physical activity
13.1- Download the file http://biostatisticien.eu/springeR/sports.RData in your working folder.
load("sports.RData")
attach(sports)
Factor time of practicing sport (7 levels). score ${ }_{i k}=\mu+\alpha_{i}+\epsilon_{i k}$ where the $\epsilon_{i k}$'s are i.i.d. random variables following a $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution.
13.2- sport.model <- aov(score~ ${ }^{\text {time }}$)
summary (sport, model)
13.3- cmat <- rbind(" : not athletic versus somewhat athletic"= $c(1,1,-1,-1,0,0,0)$,
" : very athletic versus not athletic"=c (3,3,0,0,-2,-2,-2))
13.4- require(gmodels)
fit. contrast(sport.model, time, cmat)

B- Study of two-way ANOVA

- Study of batteries
13.1- Factor temperature with 3 levels: 15, 70 and 125 degrees. Factor type with 3 levels: I, II and III. Dependent variable: lifetime.
13.2- $Y_{i j k}=\mu+\mu_{i j}+\epsilon_{i j k}$ where the $\epsilon_{i j k}$'s are i.i.d. random variables following a $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution.
13.3- lifetime <- c $(130,155,74,180,34,40,80,75,20,70,82,58,150,188,159$, $126,136,122,106,115,25,70,58,45,138,110,168,160,174$, $120,150,139,96,104,82,60)$
temperature <- as.factor (rep (rep (1:3,each=4,3)))

```
levels(temperature) <- c("15* C", "70}\mp@subsup{}{}{\circ}\textrm{C}","12\mp@subsup{5}{}{\circ}\textrm{C}"
type.battery <- as.factor(rep(1:3,each=12))
levels(type.battery) <- c("type I","type II","type III")
battery <- data.frame(lifetime=lifetime,temperature=temperature,
    type.battery=type.battery)
interaction.plot(temperature,type.battery,lifetime)
interaction.plot(type.battery,temperature,lifetime)
```

13.4- summary (lm(lifetime~temperature*type.battery))
13.5- anova(lm(lifetime~temperature*type.battery))

Significant interaction: be careful about the interpretation of parameters and tests of fixed effects, we must look at the conditional effects.
13.6- For example, test of the temperature effect for batteries of type I

```
model <- summary(aov(lifetime~temperature*type.battery))
lifetime.battery1 <- summary(aov(lifetime~ temperature,
                subset=type.battery=="type I"))
lifetime.battery1
F.lifetime.battery1 <- lifetime.battery1[[1]]$Mean[1]/model[[1]]$Mean[4]
pvalue <- 1-pf(F.lifetime.battery1,df1=2,df2=27)
```

- Milk yield
13.1- Factor food with 4 levels : Straw, Hay, Grass, Silage. Factor dose with 2 levels
: Low and High. Dependent variable : yield. $\mathrm{Y}_{i j k}=\mu+\mu_{i j}+\epsilon_{i j k}$ where the $\epsilon_{i j k}$'s are i.i.d. random variables following a $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution.
13.2- yield <- c $(8,11,11,10,7,12,13,14,11,10,10,12,12,13,14,17$, $13,17,14,13,8,9,8,10,9,10,7,10,12,11,11,9,11$, $11,12,13,12,11,15,14)$
food <- as.factor (rep (rep (1:4,each=5,2)))
levels(food) <- c("Straw","Hay","Grass", "Silage")
dose <- as.factor (rep(1:2,each=20))
levels(dose) <- c("Low", "High")
milk <- data.frame(yield=yield,food=food, dose=dose)
interaction.plot(food, dose,yield)
interaction.plot(dose,food,yield)
13.3- summary (lm(yield~ dose*food))
13.4- anova(lm(yield~dose*food))

Non significant interaction: We will prefer a simpler model.
13.5- anova(lm(yield~dose+food))

- Intima-media study
13.1- url <- "http://biostatisticien.eu/springeR/Intima_Media_Thickness.xls" intima.media <- read.xls(url, header=TRUE)
attach(intima.media)
13.2- Two way ANOVA model with an interaction term.
13.3- tobacco <- factor (tobacco)
alcohol <- factor(alcohol)
interaction.plot(tobacco, alcohol, measure)
interaction.plot(alcohol, tobacco, measure)
13.4- require(car)
intima.model <- Anova(lm(measure alcohol*tobbaco), type="III")
intima.model
\# non-significant interaction:
additive.intima.model <- Anova(lm(measure~alcohol+tobacco), type="III")
\# alcohol: p-value=0.09 Tobacco: p-value=0,16

[^0]: ${ }^{1}$ Source: http://www. sentiweb.fr/?lang=en

[^1]: ${ }^{1}$ See for example http://en.wikipedia.org/wiki/Ordinary_least_squares

[^2]: ${ }^{2}$ The function missing() is also very useful for this kind of programming.
 ${ }^{3}$ It should be noted that many programming languages do not have this functionality.

[^3]: ${ }^{4}$ In fact, this group of operators can be used by a user when developing a new class of objects. But this matter is too advanced for this book!

[^4]: $\Gamma^{\text {SECTION } 6.3} \dagger$ Object oriented programming

 In this section, we shall view an object as more than a quantity that can be saved and reused. We shall come closer to the spirit of the \mathbf{R} language by looking at the internal object-oriented mechanism which governs most of its use. The incredible part is that the user does not need to worry about knowing the internal workings of R. According to us, this is a strong point of R. Nonetheless, this section should help users better understand how \mathbf{R} proposes results. We expect this will lead to a less "random" and more controlled use of R.

[^5]: 5 To see this, type in the command line apropos("<-").
 ${ }^{6}$ The core of R is developed in the C language for obvious reasons of speed of execution, which makes it rather reactive when used in the command line.
 ${ }^{7}$ To speed up execution, it is usually possible to convert an R function into C , then to call it from R via the C API.

[^6]: 8 No further details are needed for now; we shall come back to this very original class of objects.

[^7]: ${ }^{9}$ This kind of function is often called a constructor in object-oriented programming.

[^8]: 10 This section does not give details on handling linear models in R ; this will be the focus of Chapter 12.

[^9]: 7.9- Install it from the following menu:

 Packages/Install package(s) from zip files... Read the help files of your package.

[^10]: - SECTION $10.1 \longrightarrow$ Notions on random number generation

 Consider an urn containing n balls numbered 1 to n. Random number construction can be imagined as an experience in which we pick (or draw) with replacement a single ball at a time, several times in a row. This operation produces a sequence of integers. The order in which these numbers appear is governed by a law called the discrete uniform distribution (on the set $\{1, \ldots, n\}$). It is then natural to wonder how to generate real numbers uniformly over an interval. We introduce a few elements on number generation from such a uniform distribution, using a computer algorithm.

 Random number generation is an essential part of simulation. The production of such numbers can be based on a mathematical algorithm which imitates randomness. We now explore such an algorithm ([34]), based on linear congruence, with period $2^{31}-1$.

[^11]: > model2 <- summary(aov(yield~region*fertilizer, data=wheat))
 > model2

