
Understanding Convergence Concepts: a Visual-Minded and

Graphical Simulation-Based Approach

Pierre Lafaye de micheaux and Benoit Liquet

This paper describes the difficult concepts of convergence in probability, almost sure convergence, convergence in law

and in r-th mean using a visual-minded and a graphical simulation-based approach. For this purpose, each probability

of events is approximated by a frequency. An R package is available on CRAN which reproduces all the experiments
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1. INTRODUCTION

Most departments of statistics teach at least one course on the difficult concepts of convergence in probability (P ),

almost sure convergence (a.s.), convergence in law (L) and in r-th mean (r) at the graduate level (see Sethuraman

(1995)). Indeed, as pointed out by Bryce (2001), ”statistical theory is an important part of the curriculum, and is

particularly important for students headed for graduate school”. Such knowledge is prescribed by learned statistics

societies (see Accreditation of Statisticians by the Statistical Society of Canada, and Curriculum Guidelines for Under-

graduate Programs in Statistical Science by the American Statistical Association). The main textbooks (for example

Billingsley (1986), Chung (1974), Ferguson (1996), Lehmann (2001), Serfling (2002)) devote about 15 pages to defining

these convergence concepts and their interrelations. Very often, these concepts are provided as definitions and students

are exposed only to some basic properties, and to the universal implications displayed in Figure 1.

The aim of this article is to clarify these convergence concepts for master’s students in mathematics and statistics, and

also to provide software useful for learning them. Each convergence notion provides an essential foundation for further
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work. For example, convergence in law is used to obtain asymptotic confidence intervals and hypothesis tests using the

Central Limit Theorem. Convergence in probability is used to obtain the limiting distribution of the Z test replacing

an unknown variance with its estimate (through Slutsky’s Theorem). Quadratic mean convergence is used to obtain a

mean squared error for point estimators, and almost sure convergence is a natural extension of deterministic uniform

convergence. To explain these modes of convergence, we could follow Bryce’s (2001) advice: ”a modern statistical theory

course might, for example, include more work on computer intensive methods”. Dunn (1999) and Marasinghe et al.

(1996) proposed interactive tools for understanding convergence in law. Mills (2002) proposed a review of statistical

teaching based on simulation methods and Chance and Rossman (2006) have written a book on this subject.

In section 2, we first define the convergence concepts and show how to visualize them, and help form relevant mental

images. Second, a graphical simulation-based approach is used to illustrate this perspective and to investigate some

modes of convergence in practical situations. Section 3 points out subtler distinctions between the various modes through

examples. This is illustrated through exercises and solutions which emphasize our visualization approach in an online

appendix. We propose an R (R Development Core Team, 2006) package named ConvergenceConcepts. The interactive

part of the package provides an interesting pedagogic tool facilitating the visualization of the convergence concepts.

The package also creates all the figures presented here, and can be used to investigate the convergence of any random

variable. This approach aims to help students to develop intuition and logical thinking.

Xn
a.s.−→ X

Xn
r−→ X

Xn
P−→ X

(r > 0)

Xn
L−→ X

Figure 1: Universally valid implications of the four classical modes of convergence. See Ferguson (1996) for proofs.

2. MODES OF CONVERGENCE

Probability theory is the body of knowledge that enables us to reason formally about any uncertain event A. A

popular view of probability is the so-called frequentist approach (Fisher, 1956): if an experiment is repeated M times

”independently” under essentially identical conditions, and if event A occurs k times, then as M increases, the ratio
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k/M approaches a fixed limit, namely the probability P (A) of A.

In our context, we will mainly be interested in the probability of events related to some random variables, namely

P [ω ∈ Ω; Xω ∈ E], where Ω is some arbitrary set. We will use the following property

P [ω;Xω ∈ E] = lim
M→∞

#{j ∈ {1, . . . ,M};xj ∈ E}
M

where xj denotes the j-th outcome of X independently of the others and #{j ∈ {1, . . . ,M};xj ∈ E} ≡ #{xj ∈ E}

denotes the number of j ∈ {1, . . . ,M} such that xj ∈ E, for some set E.

In the sequel, we will study the convergence (in some sense to be defined) of sequences of random variables Xn to X.

We note (xj
n − xj)n∈N = (xj

1 − xj , xj
2 − xj , . . . , xj

n − xj , . . .), the j-th sample path of (Xn −X)n∈N.

2.1 Convergence in Probability

We shall write Xn
P−→ X and say that the sequence (Xn)n∈N converges in probability to X if

∀ε > 0, pn = P [ω; |Xn,ω −Xω| > ε] −→
n→∞

0. (1)

The index ω can be seen as a labelling of each sample path. To understand this notion of convergence, we use the

aforementioned frequentist approach to approximate the probability pn = P [ω; |Xn,ω −Xω| > ε] by the frequency

p̂n = !
M ×#{|xj

n − xj | > ε}.

Mind visualization approach:

We can mentally visualize the M sample paths of the stochastic process (Xn−X)n=1,...,nmax . Each sample path is made

up of a sequence of points indexed by the integers. For each successively increasing value of n, we can then evaluate the

proportion p̂n of the sample paths that are out of an horizontal band [−ε,+ε]. This band can be chosen to be arbitrarily

narrow. The sample paths should only be observed at each fixed position n, for example by mentally sliding along the n

values axis a highlighting vertical bar. This is illustrated in Figure 2 which can be seen as a static example of our dynamic

mental images. The evolution of p̂n towards 0 informs us about the convergence (or not) in probability of Xn towards X.

In order to have a better understanding of how Figure 2 describes the idea of convergence in probability, students are

invited to manipulate the interactive version of it provided in our package, as demonstrated in Example 1.
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+ε

−ε

n
21

p̂2000 = 1
10p̂1000 = 2

10

Move bar in this direction

Bar at position 2000Bar at position 1000

1000 2000

Xn,ω −Xω

Figure 2: Seeing convergence in probability with M = 10 fictitious realizations. For n = 1000, p̂n = 2/10 since we can

see two sample paths lying outside the band [−ε,+ε] in the bar at position 1000. For n = 2000, p̂n = 1/10 since we can

see one sample path lying outside the band [−ε,+ε] in the bar at position 2000.

Example 1. Figure 3 shows the convergence in probability Xn = Y n = 1
n

∑n
i=1 Yi

P−→ X = 0 where the random

variables Yi are independent and identically distributed (i.i.d.) N(0, 1). We use M = 500 realizations, consider ε = 0.05

and take nmax = 2000. Using our package, the user can move the vertical bar on the left side of Figure 3, and thus see

the sample paths which are lying outside the horizontal band as indicated by red marks, and simultaneously observe

their proportion p̂n decreasing to 0 on right side of Figure 3 as indicated by a sliding blue circle.

Remark 1. Note that Xn
P−→ X ⇔ Xn − X

P−→ 0. Therefore to study the convergence in probability of a random

variable Xn to another random variable X, you can define the random variable Yn = Xn−X and study the convergence

in probability of Yn to the constant 0. This remark is also valid for almost sure convergence and convergence in r-th

mean (see Exercise 6).
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Figure 3: Ten sample paths of Y n = Xn −X amid the 2000 (left); p̂n and ân moving towards 0 (right).

2.2 Almost sure convergence

We shall write Xn
a.s.−→ X and say that the sequence (Xn)n∈N converges almost surely to X if

P [ω; lim
n→∞

Xn,ω = Xω] = 1. (2)

This means that lim
n→∞

Xn,ω = Xω for all paths (Xn,ω)n∈N, except for a set of null probability. So almost sure convergence

is the familiar pointwise convergence of the sequence of numbers Xn,ω for every ω outside of a null event. To clarify

the distinction between convergence in probability and almost sure convergence, we will use the following lemma which

contains an equivalent definition of almost sure convergence.

Lemma 1. (Ferguson, p.5, 1996) Xn
a.s.−→ X if and only if,

∀ε > 0, an = P [ω;∃k ≥ n; |Xk,ω −Xω| > ε] −→
n→∞

0.

Convergence in probability requires that the probability that Xn deviates from X by at least ε tends to 0 (for every

ε > 0). Convergence almost surely requires that the probability that there exists at least a k ≥ n such that Xk deviates

from X by at least ε tends to zero as n tends to infinity (for every ε > 0). This shows that an ≥ pn and consequently

that almost sure convergence implies convergence in probability.

To understand this notion of almost sure convergence, we use the frequentist approach to approximate the probability

an by ân = 1
M ×#{∃k ∈ {n, . . . , nmax}; |xj

k − xj | > ε}.
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Mind visualization approach:

We can mentally visualize the pieces of sample paths inside the block [n, nmax], where nmax should be chosen as large

as possible. Then, we can count the proportion ân of the pieces of sample paths that are outside an horizontal band

[−ε,+ε]. The aforementioned block is then mentally moved along the n values axis and ân is updated accordingly, as

illustrated in Figure 4 which can be seen as a static example of our dynamic mental images. The evolution of ân towards

0 informs us about the almost sure convergence (or not) of Xn towards X. Note that we always have (for the same

Xi’s) ân ≥ p̂n which is illustrated in Figure 3.

+ε

−ε

n
21 . . .

Move block in this direction

â1000 = 3
10

â2000 = 2
10

a

b

c

d

Block beginning at position 2000

1000 2000

Block beginning at position 1000

Xn,ω −Xω

Figure 4: Seeing almost sure convergence with M = 10 fictitious realizations. For n = 1000, ân = 3/10 since we can see

3 sample paths (a, c, d) lying outside the band [−ε,+ε] in the block beginning at position 1000. For n = 2000, ân = 2/10

since we can see 2 sample paths (a, c) lying outside the band [−ε,+ε] in the block beginning at position 2000.

Example 1 (continuing). Figure 3 shows the almost sure convergence Xn = Y n = 1
n

∑n
i=1 Yi

a.s.−→ X = 0 where the

random variables Yi are i.i.d. N(0, 1). We use M = 500 realizations and we put ε = 0.05. We compute ân only

for n = 1, . . . ,K.nmax = 1000 with nmax = 2000 and with K = 0.5 chosen in (0, 1) in order to have enough future

observations in the last blocks. This allows us to see if there are some sample paths that lie outside the band [−ε,+ε]

in the last block positions. We also compute p̂n for n = 1, . . . , nmax = 2000 (to see convergence in probability) and add

it to the same plot. We can see that p̂n and ân go to 0.
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2.3 Convergence in r-th mean

For a real number r > 0, we shall write Xn
r−→ X and say that the sequence (Xn)n∈N converges to X in the r-th mean

if

en,r = E|Xn −X|r −→
n→∞

0. (3)

Here one has to look at the convergence of one sequence of real numbers to 0. Suppose that we would like to check the

convergence in r-th mean of some random variables Xn to X and that we cannot calculate en,r explicitly. However, if

we have a generator of the Xn −X, we can use the following Monte-Carlo approximation of en,r

ên,r =
1
M

M∑
j=1

|xj
n − xj |r.

Then, we can plot the (ên,r)n∈N sequence for n = 1 to a large value, n = nmax say, to see graphically if it approaches 0

or not.

See online Appendix Example 2 for an illustration.

2.4 Convergence in law (in distribution, weak convergence)

We shall write Xn
L−→ X and say that the sequence (Xn)n∈N, with distribution functions (Fn)n∈N, converges to X in

law if

ln(t) = |Fn(t)− F (t)| −→
n→∞

0 (4)

at all t for which F (the distribution function of X) is continuous.

Here, it is the notion of pointwise convergence of the real numbers (Fn(t))n∈N to F (t) (for every t at which F is contin-

uous) which is involved. Note that we do not have to look at the realizations of the random variables, as the concept of

convergence in law does not necessitate that Xn and X are close in any sense.

In practice, imagine that we would like to check the convergence in law of some random variables Xn to a random

variable X with known distribution function F and that we do not have the distribution functions Fn of Xn defined by

Fn(t) = P [Xn ≤ t]. However, if we have a generator of the Xn, we can use the frequentist approach to approximate the

probability Fn(t) by the empirical distribution function

F̂n(t) =
#{xj

n ≤ t}
M

.

Submitted to The American Statistician, September 10, 2008 7



Then we can plot F̂n(t) for different increasing values of n to discover whether it approaches F (t). Alternatively, one

can use a tri-dimensional plot of l̂n(t) = |F̂n(t) − F (t)| as a function of n and t to evaluate if it approaches to the

zero-horizontal plane.

See online Appendix Example 3 for an illustration.

3. POINTING OUT THE DIFFERENCES BETWEEN THE VARIOUS MODES THROUGH

EXAMPLES

We recalled in the introduction the only universally valid implications between the various modes of convergence.

Under certain additional conditions some important partial converses hold. Thus, to fully understand all the previously

encountered modes of convergence, we think it is good pedagogic practice to provide examples where one weaker type of

convergence is valid whereas a stronger type is not. We propose here one exercise with its solution. Five more exercises

with their solutions are provided in the online Appendix. Students should use our mind visualization approach to

perceive the problem, then use our package to investigate it numerically and graphically before trying to demonstrate it

rigorously. Students should not use our package as a black box to ”prove” some convergence but rather to support their

intuition, which should be based logically on the behaviour of the sequence of random variables under investigation.

Exercise 1. Let Z be a uniform U [0, 1] random variable and define Xn = 1[m.2(−k);(m+1).2(−k))(Z) where n = 2k + m

for k ≥ 1 and with 0 ≤ m < 2k. Thus X1 = 1, X2 = 1[0,1/2)(Z), X3 = 1[1/2,1)(Z), X4 = 1[0,1/4)(Z), X5 = 1[1/4,1/2)(Z),

. . .. Does Xn
a.s.−→ 0? Does Xn

P−→ 0? Does Xn
2−→ 0?

Solution to Exercise 1. The drawing on Figure 5 explains the construction of Xn.

x4 = 0 x6 = 1 x7 = 0

x12 = 1

z
1

x5 = 0

x8 = 0 x15 = 0

0
x1 = 1

x2 = 0 x3 = 1

Figure 5: One fictitious sample path for Xn.
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Lets us apply our mental reasoning as explained in Section 2. Once a z value is randomly drawn, the entire associated

sample path is fully determined. As n increases, each sample path ”stays” for a longer time at 0 but eventually jumps

to 1. In fact it will jump to 1 an infinite number of times after each fixed n value. So, with the help of Figure 4, one

can immediately see that for all n = 1, . . ., all the sample paths will jump to 1 somewhere (and even at many places) in

the block beginning at position n. This shows that we cannot have almost sure convergence.

With regard to the question about convergence in probability, you should look back at Figure 2. If you have understood

Figure 5, you can see that for each increasing fixed n value, the probability that the sample paths lies outside a band

[−ε, ε] in the bar at position n corresponds to the proportion of [0, 1]-uniform z values falling into an interval whose

length gets narrower. This lets us perceive that in this case we do have convergence in probability.

Figure 6: p̂n going towards 0 and ân equals 1.

Using our package, the user can interactively move the grey block on left side of Figure 6, and thus observe the pieces

of sample paths which leave the horizontal band. For each sample path, red marks indicate the first time when this

happens. Simultaneously we can observe their proportion ân (equals to 1 here) on right side of Figure 6 as indicated by

a sliding red circle. In the same way, we can investigate graphically convergence in probability by sliding the vertical

bar (click first on radio button: Probability) and observe that p̂n is going towards 0. This confirms what we perceived

by our mind visualization approach.

Now Xn does not converge almost surely towards 0 since we have ∀ω lim
n→∞

Xn,ω 6= 0. For all n, there always exists a
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k ≥ n such that Xk = 1. So an = 1 6= 0.

However, Xn converges in probability to 0 since pn = P [Xn = 1] = 1
2k which tends to 0 when n = 2k + m → ∞ with

0 ≤ m < 2k. We also see that X2
n is a Bernouilli(pn) so that E[X2

n] = 1
2k which shows that Xn

2−→ 0.
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Online Appendix

To use our package named ConvergenceConcepts, download it from CRAN (http://cran.r-project.org) and install

it along with the required dependencies. Then launch R and type in its console the following instructions:

require(ConvergenceConcepts)

investigate()

Now, you can investigate all the examples and exercises presented in this paper.

A Examples

A.1 Convergence in r-th mean

Example 2. We would like to investigate the convergence in r-th mean (for r = 1, 2, 3 say) of Xn towards X = 0,

where the Xn are independent random variables such that P [Xn = n0.4] = 1/n and P [Xn = 0] = 1 − 1/n. One can

show that E|Xn|r = n0.4r−1 and thus Xn
r−→ 0 for r = 1, 2 but not for r = 3. This can be observed on the following

plot (see Figure 7) where we took nmax = 2000 and M = 500.

Figure 7: ên,1 (red) and ên,2 (blue) going towards 0 ; ên,3 (green) not going towards 0.

A.2 Convergence in law

Example 3. Figure 8 shows the convergence in distribution of Xn = 1√
n

[Pn
i Zi−n√

2

]
towards N(0, 1) where the Zi are

i.i.d. χ2
1 random variables. On the left you can see an output of our law.plot2d function with the slider value fixed at

n = 70. The distribution function of a standard Gaussian is plotted in black whereas the empirical distribution function

of Xn based on M = 5000 realizations is plotted in red. We can move the slider and see that the red curve comes closer
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to the black one. Also, on the right you can see the tri-dimensional plot of |F̂n(t)− F (t)| for n = 1, . . . , nmax = 200 to

see if gets closer to the zero horizontal plane. These plots suggest a convergence in distribution.

Figure 8: Convergence in distribution in action on a simulated example. Left: the distribution function of a standard

Gaussian is plotted in black whereas the empirical distribution function of Xn (n = 70) based on M = 5000 realizations

is plotted in red. Right: tri-dimensional plot of |F̂n(t)− F (t)| as a function of n and t.

B Exercises

Exercise 2. Let X1, X2, . . . , Xn be i.i.d. N(0, 1) random variables and X = X1. Does Xn
L−→ X? Does Xn

P−→ X?

Exercise 3. Let X1, X2, . . . , Xn be independent random variables such that P [Xn =
√

n] = 1
n and P [Xn = 0] = 1− 1

n .

Does Xn
2−→ 0? Does Xn

P−→ 0?

Exercise 4. Let Z be U [0, 1] and let Xn = 2n1[0,1/n)(Z). Does Xn
r−→ 0? Does Xn

a.s.−→ 0?

Exercise 5. Let Y1, Y2, . . . , Yn be independent random variables with mean 0 and variance 1. Define X1 = X2 = 1 and

Xn =
∑n

i=1 Yi

(2n log log n)1/2
, n ≥ 3.

Does Xn
2−→ 0? Does Xn

a.s.−→ 0?

Exercise 6. Let Y1, Y2, . . . , Yn be independent random variables with uniform discrete distribution on {0, . . . , 9}. Define

Xn =
n∑

i=1

Yi

10i
.

It can be proved that Xn
a.s.−→ X =

∑∞
i=1

Yi

10i which follows a U [0, 1] distribution. Now, let Z ∼ U [0, 1] independent of

X.

Does Xn
a.s.−→ Z? Does Xn

L−→ Z?
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C Solutions to the exercises

Solution to Exercise 2.

Figure 9: Ten sample paths of Xn −X1 amid the 500 (left); p̂n (resp. ân) going towards pn 6=0 (resp. an = 1) (right).

It is trivial that Xn converges in law to X1 since for each n both Xn and X have the same distribution function.

Now, since Xn and X are independent, Xn,ω −Xω has no particular reason to be close to 0 for any n or any ω. Thus

we do not have Xn
P−→ X. It can be seen on the plot of Figure 9 that Xn,ω −Xω tends to be far from 0 and that p̂n

and ân are not going towards 0. Indeed, in this case, by noting that Xn −X ∼ N(0, 2), one can obtain explicitly

pn = 2
[
1− Φ

(
ε/
√

2
)]
' 0.9718 6= 0 (for ε = 0.05) (5)

where Φ(·) denotes the standard N(0, 1) distribution function. Thus Xn
a.s.9 X and Xn

P9 X.
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Solution to Exercise 3.

Figure 10: ên,2 not going towards 0 (left) and p̂n going towards 0 (right).

We can mentally visualize each sample path to be essentially equal to 0, but to sometimes jump higher and higher, as

n increases, with a decreasing probability. This gives us the intuition that Xn converges in probability to 0. On the

other hand, for a fixed n, the mean of the X2
n,ω values is taken away from 0 due to these few but very large values. But

for increasing values of n, one can not say if the mean of the X2
n,ω values will decrease or not. So we cannot tell more

about the quadratic mean convergence to 0.

The intuition for convergence in probability is confirmed using our package (p̂n is going to 0, see Figure 10). But we can

expect that we do not have convergence in quadratic mean towards 0 because ên,2 is not going to 0 but oscillates around 1.

Now, one can prove that Xn does not converge in a quadratic mean to 0 since en,2 = E|Xn|2 = 1,∀n and that Xn

converges to 0 in probability since pn = 1
n → 0.
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Solution to Exercise 4.

Figure 11: ên,2 not going towards 0 (left) and ân going towards 0 (right). We plotted the left graph only for the very

first n values since divergence is very fast here.

We can mentally visualize each sample path to be growing to large values then suddenly dropping to 0 and after that

staying infinitely at this null value. These sample paths can also be visualized using our package with the possibility to

use the ”zoom in” facility. This gives us the intuition that Xn converges almost surely to 0 since ∀ω, lim
n→∞

Xn,ω = 0. On

the other hand, for a fixed n, the mean of the X2
n,ω values is taken away from 0 due to the small proportion of sample

paths that take very large values. But for increasing values of n, one can not say if the mean of the X2
n,ω values will

decrease or not. So we cannot tell more using our intuition about the quadratic mean convergence to 0.

Convergence almost surely to 0 is illustrated using our package (ân is going to 0, see Figure 11). But we can expect

that we do not have convergence in quadratic mean towards 0 because ên,2 is not going to 0.

We can now prove that Xn does not converge to 0 in r-th mean since E|Xn|r = 2rn

n →∞.
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Solution to Exercise 5.

Figure 12: ên,2 going towards 0 (left) and ân equals 1 (right).

Looking at the definition of Xn, we do not get a precise information on the sample paths. So, intuition cannot be of

great help in this case. Thus, we use our package (with Yi i.i.d. N(0, 1)) to get some clue on quadratic convergence and

almost sure convergence.

Figure 12 shows that ên,2 is going towards 0 and that ân equals 1. This suggests a quadratic mean convergence, and

not an almost sure convergence.

We can now prove that Xn converges in a quadratic mean to 0 since E|Xn|2 = 1
2 log log n for all n. We added a blue

curve on the plot for the function en,2 = 1
2 log log n and we see that the blue and red curves are superposed.

To prove almost sure convergence, we have to use the law of the iterated logarithm (see Billingsley, 1995, p.154) that

can be formulated as P [Xn > 1− ε, infinitely often] = 1. This suffices to prove that Xn does not converge to 0 almost

surely.
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Solution to Exercise 6.

Figure 13: l̂n(t) going towards 0 (left) ; ân not going to 0 (right).

Since Xn and Z are independent, Xn,ω − Zω has no particular reason to be close to 0 for any n or any ω. Thus we do

not have Xn
a.s.−→ Z. It can be seen on the plot of Figure 13 that Xn,ω − Zω tends to be far from 0 and that ân is not

going towards 0. Using our package, we can also see that l̂n(t) is going towards 0 forall t. This suggests a convergence

in law of Xn towards Z. Indeed, as almost sure convergence implies convergence in law, we have Xn
L−→ X and since

X and Z are both U [0, 1], Xn
L−→ Z.

Now, lets us prove rigorously that Xn

a.s.

6→ Z. We have Xn −Z = Xn −X + X −Z
a.s.−→ X −Z (by Slutsky theorem, see

Ferguson (1996) p.42). Therefore Xn−Z
L−→ X−Z which implies that ∀ε > 0, pn = P [|Xn−Z| > ε] −→

n→∞
P [|X−Z| >

ε] = (1 − ε)2 = 0.9025 (for ε = 0.05). Thus, Xn

P

6→ Z and so Xn

a.s.

6→ Z. Note that the density function p(.) of the

difference of two U [0, 1] is given by p(z) = (1 + z)1{−1≤z≤0} + (1− z)1{0≤z≤1}.

Note that if X and Z are two independent non constant random variables with the same law, we can have Xn
a.s.−→ X

(i.e. Xn,ω → Xω almost everywhere) but Xn

a.s.

6→ Z because we may not have Xω = Zω ∀ω ∈ Ω. But, in the case where

X and Z are constant random variables with the same law, we have obviously X = Z and thus trivially Xn
a.s.−→ X

implies that Xn
a.s.−→ Z.
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