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Neuroscientific/medical motivation

Quality of brain fibres can impact quality of life

White matter (WM) comprises long myelinated axonal fibres generally
regarded as passive routes connecting several grey matter regions to permit
flow of information across them (brain networks).

I Elucidation of the genes involved in WM integrity may clarify the
relationship between WM development and atrophy (e.g., Leukoa-
raiosis), or between WM integrity and age-related decline and disease
(e.g., Alzheimer [Teipel et al., 2014]).

I This may help to suggest novel preventative (modification of en-
vironmental factors, if no genes are involved) or treatment (gene
therapy) strategies for WM degeneration [Kanchibhotla et al., 2013].
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Neuroscientific/medical motivation

OATS study

We will use the Old Australian Twin Study (OATS) [Sachdev et al., 2009]
data set, that was built by members of the Centre for Healthy Brain Ageing
(CHeBA), here in Sydney : http://cheba.unsw.edu.au.

The OATS cohort was aged 65–88 at baseline (now has 3 waves of data
over 4 years). The variables measured on the twins are : Zygosity, Age,
Sex, Scanner information, MRI measures, genetic information, etc.

We want to rely the genetic information to some brain charactetistics.

New hot field of NeuroImaging Genetics !

Let us first start by introducing a few neuroimaging concepts !
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A few neuroimaging concepts

Diffusion MRI or Diffusion Tensor Imaging (DTI)

Water molecular diffusion in white matter in the brain
is not free due to obstacles (fibres = neural axons).
Water will diffuse more rapidly in the direction aligned
with the internal structure, and more slowly as it moves
perpendicular to the preferred direction.

In the diffusion tensor model, the (random vector of) water molecules’ dis-
placement (diffusion) X ∈ R3 at voxel k (with center µk) follows aN3(µk,Σk)
law. The convention is to call D = Σ/2 the diffusion tensor, which is es-
timated at each voxel in the image from the available MR images.

The principal direction of the diffusion tensor (first ei-
genvector of D) can be used to infer the white-matter
connectivity of the brain (i.e., tractography = fibre
tracking).
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A few neuroimaging concepts

Fractional Anisotropy (FA)

In diffusion tensor imaging a strongly anisotropic diffusion tensor indi-
cates a strong direction of white matter fibre tracts.

A measure that is very commonly used in diffusion tensor imaging is Frac-
tional Anisotropy :
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where 0 ≤ FA ≤ 1 and λi are the eigenvalues of the diffusion tensor matrix.

Note that FA ≈ 1 if λ1 >> λi ≈ 0, i > 1 (very strong principal axis)
and FA = 0 for isotropy. See [Dryden et al., 2009] for other measures of
anisotropy. This measure characterizes WM integrity.

External link : http://brainimaging.waisman.wisc.edu/~tromp/DTI_
101.pdf
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A few neuroimaging concepts

3D map of FA values

For each one of n subjects, we have a 3D map (voxels) of FA values
stored in the NIFTI format that can be read using the AnalyzeFMRI R
package v. 1.7 [Bordier et al., 2011].

require("AnalyzeFMRI")
X <- f.read.volume("11001_FA_Na.nii")
hdr <- f.read.header("11001_FA_Na.nii")
flip.fonc <- 1 ; f.plot.volume.gui(X,hdr)
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A few neuroimaging concepts

Affine transformations : make several brains comparable

Inversible affine transformations Ti can be applied to place the brain of all
the subjects into the same Standard Space (St.).
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Transformation Ti, which is represented by a 4 × 4 affine transformation
matrix (composition of Translation, Scale, Shear and Rotation), can be
used to map any given voxel (x, y, z) in the brain of subject i (called the
Native Space (Na.) of subject i) to the corresponding voxel in the common
Standard Space, and back (using the inverse transform T−1

i ).
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The Neuroscientific question !

Studying the heritability of the CerebroSpinal Tract (CST)

Main fibre tract of the brain (from brainstem to motor cortex).
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The fibres

Fibre tracking

In the Standard Space, we select, with masks, a (small = 2mm) source
region RS t.

S (located in the brainstem) and a (large) target region RS t.
T

(located in the motor cortex). These regions can be mapped back to cor-
responding regions RNa.

S (i) and RNa.
T (i) in each native space.

We then use the streamtrack function from MRtrix software (http:
//www.brain.org.au/software/mrtrix) to obtain, for each subject i,
a set of Ni fibres Fi = { fi,1, . . . , fi,Ni } that go from RNa.

S (i) to RNa.
T (i) (in

their native space).

Note : we have two such sets for each subject (left and right hemisphere).
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The fibres

Data on fibres

Each fibre has two extremities, called the origin and destination.

The jth fibre fi, j ( j = 1, . . . ,Ni) of subject i is given as the (ordered, from
the lower extremity to the uper extremity) set of points

{Ph, j ≡ (x(h), j, y(h), j, z(h), j); h = 1, . . . , n f j }i.

This information is stored in *.txt files having a relatively complex struc-
ture. We have created several R codes to read these files and extract
geometric properties of the fibres (see the DTI.R script).

Length of fibre fi, j can be computed as follows :

Li, j ≡

n f−1∑
h=1

dh ≡

n f−1∑
h=1

√
(xh − xh+1)2 + (yh − yh+1)2 + (zh − zh+1)2.
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The fibres

Sampling FA values along the fibres

Because the fibres are not of equal length, we map each fibre to a (oriented)
straight segment of length 1, divided into q − 1 equal-length portions.

We note FAi, j(`) the FA value (obtained from the 3D map) at length `Li, j

on fibre fi, j, corresponding to length ` (0 ≤ ` ≤ 1) on this [0, 1] segment.
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The fibres

Visualization of fibres geometry

Our script rgl-fibres.R produces the following visualization :

Note : some fibres can be thought to be outliers.
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A first statistical challenge : Identify (and remove) outliers (median of 3D curves ?)

Using architecture of the fibres to remove outliers

Given a subject i :

Step 0 : Set h = 1 and consider the set of points Ph = {P1, j; j = 1, . . . ,Ni}.

Step 1 : Compute the projection median Mh [Basu et al., 2012] (or the
trimmed centroid) of the set of points Ph.

Step 2 : Find the nearest point to Mh among {Ph, j; j = 1, . . . ,Ni} and call it
Ph,k.

Step 3 : If (Ph+1,k exists) Then {Consider the vector
−−−−−−−−→
Ph,kPh+1,k and find the

orthogonal plane to this vector that goes through Ph+1,k} Else Stop.

Step 4 : Find one point on each one of the Ni (discretized) fibres that is
closest to this plane. Call Ph+1 this new set of Ni points.

Step 5 : If (Ph+1 , Ph) Then {h← h + 1 and goto Step 1} Else Stop.

The “curve” built using these values {Mh; h ≥ 1} will be called the Median
curve of the bundle (3D spatial median of the Ni fibres).
We can then remove the fibres too far apart from this Median curve.
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A second statistical challenge : characterize a bundle of fibres

Characterizing the geometry of the fibres

We can also parameterize each fibre with respect to this median curve
using three “polar coordinates” : (`, r`, θ`) where ` × L is the position (arc
length) along the median curve (of length L), r` is the distance from the
fibre to the median curve at position ` and θ` is the angle, using a sliding
coordinates system (z axis is aligned with the median curve), ` ∈ [0, 1].
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A second statistical challenge : characterize a bundle of fibres

Complete characterization of the bundle

For each subject i (i = 1, . . . , n), we observe Ni fibres fi, j ( j = 1, . . . ,Ni).
The jth fibre is characterized by the set of triplet values :

fi, j =
{

(FAi, j(`), θi, j(`), ri, j(`)); ` =
0

q − 1
,

1
q − 1

, . . . ,
q − 1
q − 1

}
.

More formally, we can consider that the whole CST bundle of a subject is
characterized by a trivariate stochastic process

{Y`}`∈[0,1] ≡ {Y` = (FA(`), θ(`), r(`)); ` ∈ [0, 1]}.

For a given subject i and a given value of ` ∈ [0, 1], we have several (i.e.,
Ni repeated) observations of Yi,`.

We can also apprehend this problem by working with functional data on
the space of 3D parameterized curves (of parameter `).
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Heritability of fibre bundles

Scientific aim : explore heritability of the fibre bundle

I The objective is to explore what is called the heritability of the
fibre bundle.

I We want to examine whether a white matter bundle of fibres has a
uniform genetic control over its entire length of axons.

I If some heritability is found, this will be a hint to further try to find
which SNPs (or genes) are involved in the observed phenotype (e.g.,
FA here).

Some papers on this topic : [Chiang et al., 2008, Chiang et al., 2012],
[Prasad et al., 2014], [Kochunov et al., 2010], [de Zubicaray et al., 2008]
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Heritability of fibre bundles

Heritability

I Heritability h2 measures the fraction of phenotype variability that
can be attributed to genetic variation.

I Heritability is measured by estimating the relative contributions of
genetic and non-genetic differences to the total phenotypic variation
in a population.

Any particular phenotype (trait) can be modeled as the sum of genetic
effects, environmental effects and residual effects

Phenotype (P) = Genotype + Environment

A particularly important component of the genetic variance is the additive
variance, Var(A), which is the variance due to the average effects (addi-
tive effects) of the alleles. The additive genetic portion of the phenotypic
variance is known as Narrow-sense heritability :

h2 =
Var(A)
Var(P)
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Heritability of fibre bundles

ACE model for the Fractional Anisotropy

FAs f = µ + As, f +Cs, f + Es, f , s=subject, f = family

As, f ∼ N(0, σ2
A) is an additive genetic component, Cs, f ∼ N(0, σ2

C) a com-
mon environment component and Es, f ∼ N(0, σ2

E) a unique environment
component (components are assumed to be mutually independent).

The total variance of the Fractional Anisotropy is :

Var(FAs, f ) = σ2
A + σ

2
C + σ

2
E .

Heritability is then defined as :

h2 =
σ2

A

σ2
A + σ

2
C + σ

2
E

.
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Heritability of fibre bundles

ACE model for Twin Data

Monozygotic twins (MZ) share all their genes while Dizygotic twins (DZ)
share half of their genes. Consider two unrelated twin pairs f = 1, 2 with
twins s = 1, 2 in each pair (first pair is (MZ,MZ) and second (DZ,DZ)).

Var


A1,1
A2,1
A1,2
A2,2

 = σ2
A


1 1 0 0
1 1 0 0
0 0 1 1/2
0 0 1/2 1

 ; Var


C1,1
C2,1
C1,2
C2,2

 = σ2
C


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1



Var


E1,1
E2,1
E1,2
E2,2

 = σ2
E


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
This model is usually fitted using the OpenMX software (http://openmx.
psyc.virginia.edu) that performs Structural Equation Modelling (SEM).
There is also the function twinlm() in the R package mets. And also the
software SOLAR (http://solar.txbiomedgenetics.org).
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Heritability of fibre bundles

Reparameterization of an ACE model

FAs, f = µ + π
Pair
f + ηs, fπ

M
f + (1 − ηs, f )πM

s, f + εs, f .

See [Visscher et al., 2004, Rabe-Hesketh et al., 2008].

I πPair
f ∼ N(0, σ2

Pair) : random effects shared by all twins from the
same family f .

I ηs, f is an indicator variable with 1 for MZ and 0 for DZ.

I πM
f ∼ N(0, σ2

M) : random effects shared by only monozygotic twins
from the same family.

I πM
s, f ∼ N(0, σ2

M) : random effects that concern only dizygotic twins
but are different for each twin from the same family.

Covariance
Twins ACE Reparameterization

MZ σ2
A + σ

2
C σ2

Pair + σ
2
M

DZ 1
2σ

2
A + σ

2
C σ2

Pair

↪→ σ2
A = 2 × σ2

M and σ2
C = σ

2
Pair − σ

2
M.
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Heritability of fibre bundles

Organization of data

Subject Family zyg(1=MZ ;0=DZ) Pair M FA
1 1 1 P1 M1 Y1
2 1 1 P1 M1 Y2
3 2 0 P2 M2 Y3
4 2 0 P2 M3 Y4
5 3 0 P3 M4 Y5
6 3 0 P3 M5 Y6
7 4 1 P4 M6 Y7
8 4 1 P4 M6 Y8
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Heritability of fibre bundles

Estimation using the R software

require("lme4")

model <- lmer(FA~1+(1|Pair)+(1|M),REML=FALSE)

res <- summary(model)

sig2E.es <- res$sigma**2

sig2A.es <- 2*res$varcor[1]$M[1]

sig2C.es <- res$varcor[2]$Pair[1]-res$varcor[1]$M[1]

(h2.es <- sig2A.es/(sig2A.es+sig2C.es+sig2E.es))

Equivalently, one can use :
require("nlme")
model.lme <- lme(FA~1,random=list(Pair=~1,M=~1),data=DataM,method="ML") # or equivalently:
model.lme <- lme(FA~1,random=list(Pair=pdDiag(~1),M=pdDiag(~1)),data=DataM,method="ML")
res.lme <- summary(model.lme)
sig2E.es <- res.lme$sigma**2
tmp <- as.numeric(VarCorr(res.lme)[4])
sig2A.es <- 2 * tmp[4]
sig2C.es <- tmp[2] - tmp[4]
(h2.es <- sig2A.es/(sig2A.es+sig2C.es+sig2E.es))

Note : For SAS, see [Feng et al., 2009, Wang et al., 2011].
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Heritability of fibre bundles

Presence of heritability

We want to confront (test) the hypotheses :

H0 : h2 = 0⇔ σ2
A = 0 versus H1 : h2 > 0⇔ σ2

A > 0.

Likelihood ratio test (LRT) is given by comparing the full model to the
following restricted one :

FAs, f = µ + π
Pair
f + εs, f .

Note that the distribution of the LRT statistic is a mixture (1/2)χ2
0+(1/2)χ2

1
(see [Guo and Wang, 2002]). This necessitates to halve the p-value (see
[Dominicus et al., 2006]).
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Heritability of fibre bundles

Estimation using the R software

require("lme4")

model0 <- lmer(FA~1+(1|Pair),REML=FALSE)

test <- anova(model,model0)

(pvalue <- test$Pr[2]/2)

Equivalently, one can use :

require("nlme")

model.lme.0 <- lme(FA~1,random=list(Pair=~1),

data=DataM,method="ML")

test <- anova(model.lme,model.lme.0)

(pvalue <- test.lme$"p-value"[2]/2)
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Heritability of fibre bundles

Application on real data

For each subject, one global FA mean value is computed for the bundle
(from FA values over all positions and all fibres). Then heritability is ob-
tained using the R script heritability-total-mean.R.

> Left.h2

[1] 0.4923544

> Right.h2

[1] 0

> Left.pval

[1] 0.04894947

> Right.pval

[1] 0.5
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Heritability of fibre bundles

Application on real data (following)

We now take into account the position along the bundle, by dividing it
into 2 then 4 portions. Heritability (and p-value) is then computed for
each portion using the R script heritability-portions.R.

Left hemisphere
2 portions

0.54 (0.022) 0.55 (0.027)
4 portions

0.74 (9.93e-05) 3.97e-16 (0.49) 0.43 (0.044) 0.63 (0.0069)

Right hemisphere
2 portions

0 (0.5) 0.42 (0.094)
4 portions

0 (0.5) 1.85e-14 (0.49) 0.29 (0.18) 0.54 (0.04)

Numbers between brackets are p-values.
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Heritability of fibre bundles

Application on real data (following)

We now divide the bundle into 99 portions and compute the heritability ...
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Heritability of fibre bundles

Application on real data (following)

... and the associated p-values, using the R script heritability.R.
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A third statistical challenge : Repeated measures ACE model for twin data

Repeated measures ACE model for twin data

Using the Linear Mixed Model Approach, we can define a repeated mea-
sures ACE model for twin data :

FAs, f ,t = µ + π
W
s + π

Pair
f + ηs, fπ

M
f + (1 − ηs, f )πM

s, f + εs, f ,t, t = 1, . . . , ns

where ns is the number of fibres for subject s and πW
s ∼ N(0, σ2

W ) is the
random effect which enables to take into account the repeated fibres for
each subject s.

modelR <- lmer(FA~1+(1|subject)+(1|Pair)+(1|M),REML=FALSE)
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A fourth statistical challenge : Multivariate ACE model

Multivariate ACE model

I We need to define a multivariate ACE model to modelize (FA, θ, r) and
not only FA : this should not be too difficult using the Multivariate
Linear Mixed Models approach.

I We will also need a new definition of heritability in this context : for
example using a ratio of the determinants of the appropriate variance-
covariance matrices ?
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A fifth statistical challenge : multiplicity correction

Multiplicity correction along a bundle

Given a sequence of correlated test statistics observed along the bundle,
we need to be able to correct for multiplicity to test for the presence of
heritability.

[Efron, 1997] has proposed a tool that could be applied in this context but
in his paper, the test statistics are supposed to follow aN(0, 1) distribution.
This would have to be adapated to the case of a mixture (1/2)χ2

0+ (1/2)χ2
1,

if possible.
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Perspectives for this neuroscience research

Perspectives for this neuroscience research

I Fit an AE model to the data (using Linear Mixed Effect Models) and
see if this is better than the ACE model.

I Identify the SNPs involved in the WM development/integrity, for
example using Bayesian variable selection with the R2GUESS R pa-
ckage.

I Study heritability of all bundles in the brain (heavy computations).
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Perspectives for this neuroscience research
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Perspectives for this neuroscience research
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