
transparentIntroductory course on the R software

Introductory course on the R software

P. Lafaye de Micheaux1

1Mathematics and Statistics Departement
Université de Montréal

CANADA

New South Wales University
Sydney, Australia

July 1, 2014

https://biostatisticien.eu/springeR/courseRw7.pdf

1/22 Lafaye de Micheaux, Pierre Introductory course on the R software

https://biostatisticien.eu/springeR/courseRw7.pdf

transparentIntroductory course on the R software

Goals

Goals of today lecture

Describing the instructions for

developing functions ;

debugging functions ;

managing sessions ;

making R packages.

2/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Quick start

Declaring a function is done with the following general form :
function(<list of arguments>) <body of the function>

where

<list of arguments> is a list of named (formal) arguments ;

<body of the function> represents, as the name
suggests, the contents of the code to execute when the
function is called.

Here is an example of function declaration :
> function(name) cat("Hello",name,"!")
function(name) cat("Hello",name,"!")

3/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Quick start

For R, a function is a specific object. Creating a function thus cor-
responds to affecting the object “R function” to a variable, the name
of which corresponds to the function itself. For example, to create
the function hello(), you can proceed as follows :

> hello <- function(name) cat("Hello",name,"!")
> hello
function(name) cat("Hello",name,"!")

4/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Quick start

For this function to be executed, the user needs to call the func-
tion, followed by the effective arguments listed in brackets. Recall
that an effective argument is the value affected to a formal argu-
ment. We will use the terms calling argument and input argument
as synonyms of effective argument.

> hello("Peter")
Hello Peter !

5/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Body of a function

The body of a function can be a simple R instruction, or a sequence
of R instructions. In the latter case, the instructions must be enclo-
sed between the characters { and } to delimit the beginning and end
of the body of the function. Several R instructions can be written
on the same line as long as they are separated by the character ;.
When the body of the function includes several R instructions written
on the same line, do not forget to enclose them between characters
{ and }. Recall that on a line, any code written after the character #
is not interpreted by R and is taken to be a comment.
> hello <- function(name) {
+ # Convert the name to upper case.
+ name <- toupper(name)
+ cat("Hello",name,"!")
+ }
> hello("Peter")
Hello PETER !

6/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Arguments

When declaring a function, all arguments are identified by a unique
name. Each argument can be associated with a default value. To
specify a default value, use the character = followed by the default
value, as when declaring a list object (list). When the function is
called with no effective argument for that argument, the default va-
lue will be used. We have used this functionality many times in pre-
vious chapters, but we now know how to include it when developing
new functions. Here is an example :

> hello <- function(name="Peter") cat("Hello",name,"!")
> hello()
Hello Peter !

7/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Naming effective arguments

In R, an effective argument can be entered by adding the name of
the formal argument. Of course, this is of little interest when the
function only depends on a single formal argument. Let us add to
our function hello() the possibility of choosing a language, and
see a few calls of this function.
> hello <- function(name="Peter",language="eng") {
+ cat(switch(language,fr="Bonjour",sp="Hola",
+ eng="Hello"),name,"!")
+ }
> hello()
Hello Peter !
> hello(name="Ben")
Hello Ben !
> hello(language="fr")
Bonjour Peter !

8/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Partial naming of effective arguments

In the same context, a second functionality of R is that it allows
calling a function without typing in the complete name of a formal
argument. Consider the following calls of the function hello() :
> hello(lang="eng")
Hello Peter !
> hello(l="eng")
Hello Peter !
> hello(l="e")
Peter !

The rule for determining the formal argument corresponding to a
partial name is : in the ordered list of formal arguments of the func-
tion, the selected formal argument is the first formal argument for
which there is a match between the first letters of the argument
name and the partial name given by the user.

9/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

List of supplementary arguments “...”

You can give a list of supplementary arguments with the syntax
When calling the function, all “named” arguments which are not in
the list of formal arguments are grouped in the structure In the
body of the function, the user can then use the syntax ... as if
copy-pasting the list of supplementary named arguments.
> test.3points <- function(a="foo",...) print(list(a=a,...))
> test.3points("bar",b="foo")
$a
[1] "bar"
$b
[1] "foo"

Unless for very specific purpose, use ... as the last formal argu-
ment.

10/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Object returned by a function

The function hello() does not return any object.
> res <- hello()
Hello Peter !
> res
NULL

A general rule to return an object is to use the function return().
This instruction halts the execution of the code of the body of the
function and returns the object between brackets.
> hello <- function(name="Peter") {
+ return(paste("Hello",name,"!",collapse=" "))}
> hello()
[1] "Hello Peter !"
> message <- hello()
> message
[1] "Hello Peter !"

11/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Variable scope in the body of a function

The notion of variable scope is very important for a language which
allows to develop functions. The main point is that variables defined
inside the body of a function have a local scope during function
execution. This means that a variable inside the body of a function
is physically different from another variable with the same name, but
defined in the workspace of your R session. Generally speaking,
local scope means that a variable only exists inside the body of
the function. After the execution of the function, the variable is thus
automatically deleted from the memory of the computer.

12/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Developing functions

Scope of variables

> message <- "hello Pierre !"
> message # Workspace initialization.
[1] "hello Pierre !"
> hello <- function(name="Peter",message="hello") {
+ print(message)
+ message <- paste(message,name,"!",collapse=" ")
+ print(message)
+ invisible(message)
+ }
> hello()
[1] "hello"
[1] "hello Peter !"
> message # Workspace has not been modified!
[1] "hello Pierre !"
> message <- hello()
[1] "hello"
[1] "hello Peter !"
> message # Workspace has been modified!
[1] "hello Peter !"
> message <- hello(message="Welcome")
[1] "Welcome"
[1] "Welcome Peter !"
> message # Workspace has been modified again!
[1] "Welcome Peter !"

13/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Debugging functions

The function browser()

A useful debugging function in R is the function browser(). If you
insert the instruction browser() in the source of your function, the
program will stop at the place where it was inserted.

By typing the letter n (for next), you can inspect the code and the
contents of variables sequentially. To leave the inspection mode,
type Q.

14/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Debugging functions

The function debug()

Another interesting function is debug() which is equivalent to put-
ting the instruction browser() at the top of a function. Thus debug(var)
marks the functions var as debuggable. Any subsequent call of this
function will launch the online debugger.

debug(var)
var(1:3)

To get rid of this mark, use the function undebug().

undebug(var)

15/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Managing sessions

Listing and deleting objects

After you have created R objects, you can get the list of all objects
with the function ls() or the synonymous function objects().

To delete objects, use the function rm().

It is worth noting that the command getwd() returns the current
working directory. The command setwd() is used to change wor-
king directory.

16/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Managing sessions

Workspace : .RData files

When working with R, objects are created : vectors, matrices, func-
tions, etc. These objects are physically saved in a file on the hard
disk called workspace. The file name extension must be .RData.
It is possible to create several .RData files : one for each project
you are working on. You should create these .RData files in dif-
ferent appropriate folders. For example, suppose you are working
on two different projects : one related to cars and one related to cli-
mate events. You could then create a folder called Cars containing
a file cars.RData, and another folder called Climate containing
a file called climevt.RData ; these files will contain the R objects
corresponding to the two studies.
The function save.image() is used to save a workspace ; you can
use the function load() to load an existing workspace.

17/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Managing sessions

.RData files

Perform the “Do it yourself” on page 286.

http://biostatisticien.eu/springeR/Rbook-chap9.pdf

18/22 Lafaye de Micheaux, Pierre Introductory course on the R software

http://biostatisticien.eu/springeR/Rbook-chap9.pdf

transparentIntroductory course on the R software

Managing sessions

Command history

R includes a mechanism to recall and reexecute old commands. The
up and down arrows on the keyboard can be used to go back and
forward in the command history. Once you have located a command
using this method, you can move the cursor using the right and
left arrows, delete characters with the DEL key, and add or modify
characters with the keyboard.

To save the command history of the current session, use the com-
mand savehistory(). To load the command history from a pre-
vious session, use the command loadhistory(). The commands
are saved in a file which must have the extension .Rhistory (or
.rhi in old versions of R).

19/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Managing packages

Managing packages

A package is a collection of data and functions belonging to a same
theme. When you install R, some basic functionalities come out of
the box. But you can extend the functionalities of R by adding libra-
ries, also called packages. First, install the package on the compu-
ter’s hard disk, then load (activate) it in the memory of R only when
needed (see Appendix A for further details).

The function search() gives the list of databases (collections of
R packages) attached to the system. The function searchpaths()
returns the same list, but adds the path to the corresponding file.

The function library() returns the list of all packages installed on
disk.

20/22 Lafaye de Micheaux, Pierre Introductory course on the R software

transparentIntroductory course on the R software

Managing packages

.RData files

Perform the “Do it yourself” on page 291.

http://biostatisticien.eu/springeR/Rbook-chap9.pdf

21/22 Lafaye de Micheaux, Pierre Introductory course on the R software

http://biostatisticien.eu/springeR/Rbook-chap9.pdf

transparentIntroductory course on the R software

Managing packages

Your turn to work !

Do the Exercises and the Worksheet on pages 306–309.

http://biostatisticien.eu/springeR/Rbook-chap9.pdf

22/22 Lafaye de Micheaux, Pierre Introductory course on the R software

http://biostatisticien.eu/springeR/Rbook-chap9.pdf

	Goals
	Developing functions
	Debugging functions
	Managing sessions
	Managing packages

