Introductory course on the R software

P. Lafaye de Micheaux¹

¹Mathematics and Statistics Departement Université de Montréal CANADA

New South Wales University Sydney, Australia May 13, 2014

https://biostatisticien.eu/springeR/courseRw2.pdf

Goals of today lecture

Introducing the

basics concepts of the R software :

- calculator mode
- assignment operator
- variables
- functions
- arguments

• various data types and structures which can be handled by R.

イロト イボト イヨト イヨト

First session

R is a calculator

R can easily replace all the functionalities of a (very sophisticated !) calculator.

```
> sin(2*pi/3)
                  # <--- this symbol is for comments.
[1] 0.8660254
> 5^2
                  # Same as 5**2.
[1] 25
> sqrt(4)
                  # Square root of 4.
[1] 2
> log(1)
                  # Natural logarithm of 1.
[1] 0
> c(1,2,3,4,5)
                  # Collection of the first 5 integers.
[1] 1 2 3 4 5
> c(1,2,3,4,5)*2  # First five even numbers.
[1] 2 4 6 8 10
```

イロト イポト イヨト イヨト

First session

Displaying results and variable redirecting

R responds to your requests by displaying the result obtained after evaluation. **But, this result is displayed, then lost.** Nevertheless, we can use the **assignment arrows** : <- or ->

> x <- 1		Assignment.				
> x	#	Display.				
[1] 1						
> 2 -> x	#	Assignment	(in	the	other	direction).
> x	#	Display.				
[1] 2						
> (x <- 1)	#	Assignment	AND	dis	play.	
[1] 1						

The = symbol

It is not good practice to use the = symbol for assignment.

First session

Continuation symbol

If a command is not complete at the end of a line, R will display a different prompt symbol, by default the plus sign (+), on the second line and on following lines. R will continue to wait for instructions until the command is syntactically complete.

```
> 2*8*10+exp(1)
[1] 162.7183
> 2*8*
+ 10+exp(
+ 1)
[1] 162.7183
```

First session

Rules for choosing a variable name

- a variable name can only include alphanumerical characters as well as the dot (.);
- variable names are case sensitive, which means that R distinguishes upper and lower case;
- a variable name may not include white space or start with a digit, unless it is enclosed in quotation marks "".

(日)

First session

Work strategy

You should use either a *script window* (R *editor*) or Rstudio to type your commands before sending them to R for execution.

The key combinations CTRL+R (or CTRL+ENTER) can be used to execute your commands.

You can also use the source(file.choose()) command (typed in the R console) to read and execute the contents of an external R script file.

Note : The function help() can be used to access the documentation : help(source).

Perform the two "Do it yourself" on pages 42 and 43. http://biostatisticien.eu/springeR/Rbook-chap3.pdf

First session

Using functions

A function in R is defined by its **name** and by the list of its **parameters** (or **arguments**). Most functions output a **value**.

Using a function (or **calling** or **executing** it) is done by typing its name followed, in brackets, by the list of (formal) arguments to be used. Arguments are separated by commas. Each argument can be followed by the sign = and the value to be given to the argument.

functionname(arg1=value1, arg2=value2, arg3=value3)

Note that you do not necessarily need to indicate the names of the arguments, but only the values, as long as you follow their order. For any **R** function, some arguments must be specified and others are optional (because a default value is already given in the code of the function).

イロト イボト イヨト イヨト

First session

Understanding the use of arguments

The function log(x, base=exp(1)) can take two arguments : x (its value must be specified) and base (optional, because a default value is provided as exp(1)).

You can call a function by playing with the arguments in several different ways. This is an important feature of R which makes it easier to use.

log(3)	<pre>log(3,base=exp(1))</pre>
log(x=3)	log(3,exp(1))
<pre>log(x=3,base=exp(1))</pre>	<pre>log(base=exp(1),3)</pre>
<pre>log(x=3,exp(1))</pre>	<pre>log(base=exp(1),x=3)</pre>

Question : what is done with this instruction?

log(exp(1),3)

イロト イボト イヨト イヨト

First session

Using functions

Don't forget the brackets when you call a function

A common mistake for beginners is forgetting the brackets :

```
> factorial # Typing the name gives the code.
function (x)
gamma(x + 1)
<environment: namespace:base>
> factorial(6)
[1] 720
> date
function ()
.Internal(date())
<environment: namespace:base>
> date() # Brackets are also necessary when
            no arguments are required.
         #
>
[1] "Wed Jan 9 16:04:32 2013"
```

First session

Creating functions

It is very easy to code a new function in R, by using the function function().

For example, here is how to code a function which takes two arguments n and p and calculates the binomial coefficient

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$

> binomial <- function(n,p) factorial(n)/(factorial(p)*
+ factorial(n-p))</pre>

You can now then use this new function as any other R function :

> binomial(4,3)
[1] 4

イロト イポト イヨト イヨト

Data in R

The various data types in R

One of the main strengths of R is its ability to organize data in a structured way. This will turn out to be very useful for many statistical procedures.

Data type	Type in R	Display
real number (integer or not)	numeric	3.27
complex number	complex	3+2i
logical (true/false)	logical	TRUE or FALSE
missing	logical	NA
text (string)	character	"text"
binary	raw	1c

イロト イボト イヨト イヨト

L Data in R

Dealing with data type

```
> a <- 1 # Similar to: a <- 1.0
> typeof(a)
[1] "double"
> c <- as.integer(a)</pre>
> typeof(c)
[1] "integer"
> b < -3.4
> c(b>a, a==b)
[1] TRUE FALSE
> is.numeric(a)
[1] TRUE
> is.integer(a)
[1] FALSE
> x <- TRUE # Similar to: x <- T
> is.logical(x)
[1] TRUE
```

イロト イポト イヨト イヨト

э

Missing data

A missing or undefined value is indicated by the instruction NA (for *non available*).

Character string type

Any information between quotation marks (single ' or double ") corresponds to a character string.

```
> a <- "R is my friend"
> mode(a)
[1] "character"
> is.character(a)
[1] TRUE
```

– Data in R

The various data structures in R

Data structure	Instruction in R	Description
vector	c()	Sequence of elements of the
		same nature.
matrix	<pre>matrix()</pre>	Two-dimensional table of ele-
		ments of the same nature.
multidimensional table	array()	More general than a matrix; table
		with several dimensions.
list	list()	Sequence of R structures of any
		(and possibly different) nature.
individual×variable table	<pre>data.frame()</pre>	Two-dimensional table. The co-
		lumns can be of different natures,
		but must have the same length.
factor	<pre>factor(), ordered()</pre>	Vector of character strings asso-
		ciated with a modality table.
dates	as.Date()	Vector of dates.
time series	ts()	Values of a variable observed at
		several time points.

ヘロト 人間 ト 人間 ト 人間 トー

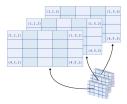
æ

Introductory course on the R software

- Goals

Data in R

```
> c(3,1,7)
[1] 3 1 7
> c(3, TRUE, 7) # Automatic conversion occurs.
[1] 3 1 7
> seq(from=0, to=1, by=0.1)
 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> seq(from=0,to=20,length=5)
[1] 0 5 10 15 20
> vec <- 1:10 # Stored as integers.
> names(vec) <- letters[1:10]</pre>
a b c d e f q h i j
 1 2 3 4 5 6 7 8 9 10
> (vec <- 2:33) # [17] = rank of the next element.
 [1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[17] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
```


イロト イヨト イヨト イヨト

Data in R

Matrices and arrays

> (X <- matrix(1:12,nrow=4,ncol=3,byrow=TRUE))
 [,1] [,2] [,3]
[1,] 1 2 3</pre>

- [2,] 4 5 6 [3,] 7 8 9
- [4,] 10 11 12
- > class(X)
- [1] "matrix"
- > X <- array(1:12,dim=c(2,2,3))

э

イロト イヨト イヨト イヨト

Introductory course on the R software

- Goals

Data in R

Lists : the most flexible and richest structure in R

Unlike the previous structures, lists can group together in one structure data of different types without altering them.

```
> ( A <- list(TRUE, -1:3, my.matrix=matrix(1:4, nrow=2),</p>
+
             c(1+2i,3), "A character string") )
[[1]]
[1] TRUE
[[2]]
[1] -1 0 1 2 3
$my.matrix Note: we have named this element of A.
  [,1] [,2]
[1,] 1 3
[2,] 2 4
[[4]]
[1] 1+2i 3+0i
[[5]]
[1] "A character string"
                                   イロト イポト イヨト イヨト
                                                  э
```

L Data in R

Data frames : most used structure in Statistics

<pre>> (BMI <- data.frame(Gender=c("M", "F", "M", "F", "M", "F"), + Height=c(1.83, 1.76, 1.82, 1.60, 1.90, 1.66),</pre>				
+ Weight=c(67,58,66,48,75,55),row.names=c("Jack",				
<pre>+ "Julia", "Henry", "Emma", "William", "Elsa")))</pre>				
Gender Height Weight				
Jack	M 1.83	67		
Julia	F 1.76	58		
Henry	M 1.82	66		
Emma	F 1.60	48		
William	M 1.90	75		
Elsa	F 1.66	55		
> str(BMI) # 3	Structure	of each column.		
'data.frame': 6 obs. of 3 variables:				
\$ Gender: Fa	ctor w/ 2	levels "F", "M": 2 1 2 1 2 1		
\$ Height: nu	m 1.83 1.	.76 1.82 1.6 1.9 1.66		
\$ Weight: nu				
-		・ロット 御マネ 明マ かんの		

Data in R

Factors and ordinal variables

```
> x <- factor(c("blue", "green", "blue", "red",</pre>
+
                         "blue", "green", "green"))
> x
[1] blue green blue red blue green green
Levels: blue green red
> levels(x)
[1] "blue" "green" "red"
> class(x)
[1] "factor"
>z<-ordered(c("Small", "Tall", "Average", "Tall", "Average",</pre>
+ "Small", "Small"), levels=c("Small", "Average", "Tall"))
> class(z)
[1] "ordered" "factor"
```

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ の Q @

Introductory course on the R software

- Goals

Data in R

Your turn to work !

You can now try to do the **Exercises** and the **Worksheet** of Chapter 3.

http://biostatisticien.eu/springeR/Rbook-chap3.pdf

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・